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Abstract
Thanks to the rise of deep learning and the availability of large-scale audio-visual databases, recent advances
have been achieved in Visual Speech Recognition (VSR). Similar to other speech processing tasks, these
end-to-end VSR systems are usually based on encoder-decoder architectures. While encoders are somewhat
general, multiple decoding approaches have been explored, such as the conventional hybrid model based on Deep
Neural Networks combined with Hidden Markov Models (DNN-HMM) or the Connectionist Temporal Classification
(CTC) paradigm. However, there are languages and tasks in which data is scarce, and in this situation, there
is not a clear comparison between different types of decoders. Therefore, we focused our study on how the
conventional DNN-HMM decoder and its state-of-the-art CTC/Attention counterpart behave depending on the
amount of data used for their estimation. We also analyzed to what extent our visual speech features were able
to adapt to scenarios for which they were not explicitly trained, either considering a similar dataset or another
collected for a different language. Results showed that the conventional paradigm reached recognition rates that
improve the CTC/Attentionmodel in data-scarcity scenarios along with a reduced training time and fewer parameters.
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1. Introduction
Inspired by different studies that have shown the
relevance of visual cues during our speech per-
ception process (McGurk and MacDonald, 1976;
Besle et al., 2004), several authors explored the
task of Automatic Speech Recognition (ASR) from
an audio-visual perspective (Potamianos et al.,
2003; Afouras et al., 2018; Ma et al., 2021b).
These works supported that auditory and visual
cues complement each other, leading to more
robust systems, especially in adverse scenarios
such as a noisy environment (Juang, 1991).
Nonetheless, in the last few decades, there has
been an increasing interest in Visual Speech
Recognition (VSR) (Fernandez-Lopez and Sukno,
2018), a challenging task that aims to interpret
speech solely by reading the speaker’s lips. Rec-
ognizing speech without the need for the auditory
sense can offer a wide range of applications, e.g.,
silent visual passwords (Ezz et al., 2020), active
speaker detection (Kim et al., 2021; Tao et al.,
2021), visual keyword spotting (Stafylakis and Tz-
imiropoulos, 2018; Prajwal et al., 2021), or the de-
velopment of silent speech interfaces that would
be able to improve the lives of people who experi-
ence difficulties in producing speech (Denby et al.,
2010; Gonzalez-Lopez et al., 2020).
Although unprecedented results have recently
been achieved in the field (Ma et al., 2022;
Shi et al., 2022; Prajwal et al., 2022), VSR re-
mains an open research problem, where differ-
ent factors must be considered, e.g., visual am-
biguities (Bear et al., 2014b; Fernández-López

and Sukno, 2017), the complex modeling of si-
lence (Thangthai, 2018), the inter-personal vari-
ability among speakers (Cox et al., 2008), and dif-
ferent lighting conditions, as well as more techni-
cal aspects such as frame rate and image resolu-
tion (Bear and Harvey, 2016; Bear et al., 2014a;
Dungan et al., 2018).
Motivated by these challenges, one of the main
research purposes in the field of VSR has been
exploring diverse approaches to extract pow-
erful visual speech representations (Fernandez-
Lopez and Sukno, 2018). Traditional techniques,
either based on Principal Component Analysis
(PCA), Discrete Cosine Transform (DCT), or Ac-
tive Shape Models (AAM), were the object of study
for decades (Bregler and Konig, 1994; Matthews
et al., 2002; Potamianos et al., 2003; Gimeno-
Gómez and Martínez-Hinarejos, 2021). Nowa-
days, the most common approach is the design
of end-to-end architectures (Ma et al., 2022; Shi
et al., 2022; Prajwal et al., 2022), models capable
of automatically learning these visual speech rep-
resentations in a data-driven manner. However, to
the best of our knowledge, there is no systematic
analysis of how robust these data-driven features
are to domain- and language-mismatch scenarios.
Regarding visual speech decoders, different ap-
proaches have been explored in the literature.
From the systems based on Hidden Markov
Models combined with Gaussian Mixture Models
(GMM-HMM) (Juang and Rabiner, 1991; Gales
and Young, 2008), the use of Deep Neural Net-
works (DNNs) to model emission probabilities
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provided the so-called hybrid DNN-HMM model
(Hinton et al., 2012). However, these con-
ventional systems present limitations (Watanabe
et al., 2017) because of the need for forced align-
ments, a pre-defined lexicon, independent mod-
ule optimizations, and the use of pre-defined, non-
adaptive visual speech representations. Hence,
research shifted towards end-to-end architectures
based on Deep Learning techniques (Wang et al.,
2019). Early works, either based on Recurrent
Neural Networks (RNNs) (Chan et al., 2016) or on
the Connectionist Temporal Classification (CTC)
paradigm (Graves et al., 2006; Graves and Jaitly,
2014) demonstrated what these novel architec-
tures were capable of. Thereafter, based on ad-
vances in neural machine translation (Vaswani
et al., 2017), remarkable results were obtained
thanks to the use of powerful attention-based
mechanisms (Dong et al., 2018). Nowadays, the
hybrid CTC/Attention decoder, which combines
the properties of both paradigms, is considered
the current state of the art in speech processing
(Watanabe et al., 2017; Ma et al., 2021b).
Most comparative studies on decoding paradigms
were conducted for auditory-based ASR (Lüscher
et al., 2019; Karita et al., 2019; Afouras et al.,
2018). However, albeit different speech decoders
were explored in VSR (Thangthai and Harvey,
2017; Son Chung et al., 2017; Afouras et al.,
2018; Ma et al., 2022), it is not easy to compare
all these approaches due to the use of different
databases or the design of different experimental
setups (Fernandez-Lopez and Sukno, 2018).
These were the main reasons that motivated our
research, where our key contributions are:

• A comprehensive comparison of conventional
hybrid DNN-HMM decoders and their state-
of-the-art CTC/Attention counterpart for the
continuous VSR task.

• We systematically studied how these differ-
ent decoding paradigms behave based on the
amount of data available for their estimation,
showing that conventional HMM-based sys-
tems significantly outperformed state-of-the-
art architectures in data-scarcity scenarios.

• We discussed different deployment aspects,
such as training time, number of parameters,
or real-time factor, supporting a more appro-
priate model selection where not only perfor-
mance is considered.

• We analyzed to what extent our pre-trained
data-driven visual speech features were able
to adapt to scenarios for which they were not
explicitly trained by considering databases
covering a different domain or language.

2. Related Work
Visual Speech Features. Unlike auditory-based
ASR, there was no consensus on the most suit-
able visual speech representation for decades
(Fernandez-Lopez and Sukno, 2018). In the past,
diverse traditional techniques were widely ex-
plored (Bregler and Konig, 1994; Matthews et al.,
2002; Potamianos et al., 2003; Gimeno-Gómez
and Martínez-Hinarejos, 2021). Nowadays, the
design of end-to-end architectures, capable of au-
tomatically learning these speech representations
in a data-driven manner during their training pro-
cess, has led to unprecedented advances in the
field (Ma et al., 2022; Shi et al., 2022; Prajwal
et al., 2022). Most of these approaches rely on
convolutional neural networks, such as the so-
called ResNet (He et al., 2016), to obtain a latent
visual representation, and then, attention-based
mechanisms (Vaswani et al., 2017) are used to
model temporal relationships. In addition, self-
supervised methods, complemented with acoustic
cues during their estimation, have also been ex-
plored (Ma et al., 2021a; Shi et al., 2022). How-
ever, there are no studies on how these data-
driven features can adapt or transfer their knowl-
edge when dealing with different domains or lan-
guages which they were not explicitly trained for.
Visual Speech Recognition. Albeit conventional
paradigms were explored for VSR (Thangthai
and Harvey, 2017; Gimeno-Gómez and Martínez-
Hinarejos, 2022), the current state of the art is
dominated by end-to-end approaches based on
powerful attention-mechanisms (Ma et al., 2022;
Shi et al., 2022; Prajwal et al., 2022). On average,
results of around 25-30% Word Error Rate (WER)
were achieved for the English corpora LRS2-BBC
(Afouras et al., 2018) and LRS3-TED (Afouras
et al., 2018b). However, by the use of large-scale
pseudo-label (Ma et al., 2023) or synthetic data
(Liu et al., 2023), recent works have reached a
new state of the art around 15% WER.
Besides, interest in VSR for languages other than
English has recently increased (Ma et al., 2022;
Gimeno-Gómez andMartínez-Hinarejos, 2022). A
remarkable work in this regard is the one carried
out by Anwar et al. (2023), where 8 non-English
languages were explored presenting a new multi-
lingual benchmark. However, the authors fo-
cused on audio-visual speech recognition/transla-
tion and did not report results for lipreading. Re-
garding Spanish VSR (a language also considered
in our work), Ma et al. (2022) reached recognition
rates of around 50% WER for different Spanish
corpora, using an end-to-end architecture, while
Gimeno-Gómez and Martínez-Hinarejos (2022)
presented the challenging LIP-RTVE database,
reporting baseline results (roughly 95% WER)
using traditional visual speech features and a
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GMM-HMM model. Subsequently, although re-
sults around 60% WER were achieved for the
LIP-RTVE corpus, the same authors focused their
study on speaker-dependent scenarios (Gimeno-
Gómez and Martínez-Hinarejos, 2023).
Due to the use of different databases, model ar-
chitectures, and experimental setups, it is not easy
to adequately compare all approaches explored in
the literature (Fernandez-Lopez and Sukno, 2018;
Nemani et al., 2023).
Speech Decoders: Multiple studies in model
comparison for auditory-based ASR have been
developed. Lüscher et al. (2019) presented a com-
parison between a conventional DNN-HMMmodel
and an end-to-end RNN-based architecture. Their
results showed that the DNN-HMM paradigm out-
performed the end-to-end recognizer. Karita et al.
(2019) carried out a thorough comparative study
focused on RNN- and Transformed-based end-to-
end models, including HMM-based models in the
comparison. Although their findings showed that
Transformer-based models outperformed RNNs,
they also demonstrated that a DNN-HMM model
could reach state-of-the-art recognition rates.
Regarding VSR, to the best of our knowledge,
(Afouras et al., 2018) is the only work that in-
cludes a systems comparison. Specifically, it com-
pared the CTC paradigm to the attention-based
one, showing that, albeit each one offers different
valuable properties, the attention-based approach
performed better, probably due to its powerful con-
text modeling. However, although databases of
different natures and multiple architectures were
explored in the literature, none of the previous
works conducted a systematic study on how these
different decoding paradigms behave for VSR, de-
pending on the data available for training.
Present Work. Motivated by all these aspects, we
present a comprehensive comparison of conven-
tional hybrid DNN-HMM decoders and their state-
of-the-art CTC/Attention counterpart for the contin-
uous VSR task. We not only systematically com-
pared both approaches based on the amount of
data available for their estimation, but we also
took into account different deployment aspects.
In addition, by considering three benchmarking
VSR datasets, we evaluated how robust our pre-
trained data-driven visual speech features could
be to domain- and language-mismatch scenarios.

3. Method
3.1. Databases
LRS2-BBC (Afouras et al., 2018) is a large-scale
English database composed of around 224 hours
collected from BBC TV programs. It consists of a
pre-training set with 96,318 samples (195 hours),
a training set with 45,839 samples (28 hours), a
validation set with 1,082 samples (0.6 hours), and

a test set with 1,243 samples (0.5 hours). It offers
more than 2 million running words with a vocabu-
lary size of around 40k different words. This cor-
pus represents our ideal scenario, since our visual
speech encoder was explicitly trained for this task.
LRS3-TED (Afouras et al., 2018b) is the largest
publicly audio-visual English database offering
around 438 hours. It was collected from TED talks,
consisting of a ‘pre-train’ set with 118,516 samples
(407 hours), a ‘train-val’ set with 31,982 samples
(30 hours), and a test set with 1,321 samples (0.9
hours). It comprises more than 4 million running
words with a vocabulary size of around 50k dif-
ferent words. This corpus represents our domain-
mismatch scenario.
LIP-RTVE (Gimeno-Gómez and Martínez-
Hinarejos, 2022) is a challenging Spanish
database collected from TV newscast programs,
providing around 13 hours of data. Its speaker-
independent partition consists of a training set
with 7,142 samples (9 hours), a validation set with
1638 samples (2 hours), and a test set with 1572
samples (2 hours). It provides more than 100k
running words with a vocabulary size of around
10k different words. This corpus represents our
language-mismatch scenario.

3.2. Visual Speech Encoder
A pre-trained encoder is used to extract our 256-
dimensional visual speech features. As reflected
in Figure 1, the encoder is based on the state-of-
the-art architecture designed by Ma et al. (2022),
where two different blocks are distinguished.
Visual Frontend. A 3D convolutional layer with a
kernel size of 7x7 pixels and a receptive field of 5
frames is used to deal with spatio-temporal rela-
tionships. Once the video stream data is flattened
along the time dimension, a 2D ResNet-18 (He
et al., 2016) focuses on capturing local visual pat-
terns. The Swish activation function (Ramachan-
dran et al., 2017) was used. This visual frontend
comprises about 11 million parameters.
Temporal Encoder. A 12-layer Conformer en-
coder (Gulati et al., 2020) is defined to capture
both global and local speech interactions across
time from the previous visual latent representation.
Each layer is composed of four modules, namely
two feed forward networks in a macaron style, a
multi-head self-attention module, and a convolu-
tion module. Layer normalization precedes each
module, while a residual connection and a final
dropout are applied over its output. The main dif-
ference w.r.t. the original Transformer encoder ar-
chitecture (Vaswani et al., 2017) is the convolu-
tion module, which is able to model local temporal
speech patterns by using point- and depth-wise
convolutions. This temporal encoder comprises
about 32 million parameters.
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Figure 1: The overall architecture of our visual speech encoder. For simplicity, the initial layer normaliza-
tion, the residual connection, and the final dropout of each module that compose the conformer encoder
are omitted. Conv and FFN refer to Convolutional layer and Feed Forward Network, respectively.

3.3. Conventional Hybrid Decoder
Morphological Model. The design of our con-
ventional DNN-HMM decoder was based on the
Wall Street Journal recipe1 provided by the Kaldi
toolkit (Povey et al., 2011). First of all, we es-
timated a preliminary GMM-HMM to obtain tem-
poral alignments. Then, we applied the so-called
HiLDA technique (Potamianos et al., 2001), reduc-
ing our visual speech features to a 40-dimensional
latent representation.
Regarding our best DNN-HMM architecture, it
consisted of two hidden layers of 1024 units, each
followed by a Sigmoid activation function. We de-
fined as input an 11-frame context window over the
previous HiLDA features. The output layer dimen-
sion depended on the number of HMM-state la-
bels defined by the preliminary GMM-HMM. Con-
cretely: 3624, 3304, and 1968 HMM-state labels
were defined for the LRS2-BBC, LRS3-TED, and
LIP-RTVE corpora, respectively. Then, we esti-
mated our DNN-HMM system based on a frame
cross-entropy training (Hinton et al., 2012). In av-
erage terms, each DNN-HMM decoder comprised
around 4 million parameters.
Another important aspect was the HMM’s topol-
ogy. Due to the lower sample rate presented by
visual cues compared to acoustic signals, our first
experiments focused on the optimal HMM’s topol-
ogy. By adding transitions and/or reducing the
number of states, we found that, in all cases, a
3-state left-to-right topology with skip transitions to
the final state was the best approach to fit the tem-
porary nature of our visual data.
Lexicon Model. For LRS2-BBC and LRS3-TED,
we processed their corresponding training tran-
scriptions with a phonemizer2 based on the CMU
pronunciation dictionary3. Similarly, for LIP-RTVE,

1https://github.com/kaldi-asr/kaldi/tree/
master/egs/wsj/s5

2www.github.com/Kyubyong/g2p
3www.speech.cs.cmu.edu/cgi-bin/cmudict

we considered a phonemizer based on Span-
ish phonetic rules (Quilis, 1997). However, the
amount of training data of LIP-RTVE is not compa-
rable to its English counterparts. For this reason,
we used the text provided by the LIP-RTVE’s au-
thors for the estimation of a languagemodel, which
offers around 80k phrases collected from different
but contemporary TV newscasts4. Thus, a set of
39 and 24 phonemes were defined for English and
Spanish, respectively. In both cases, the default
silence phones of Kaldi were then included.
Language Model. We used a 6-layer character-
level Language Model (LM) based on the Trans-
former architecture (Vaswani et al., 2017). A more
detailed description about this Transformer-based
LM can be found in Subsection 4.2.
However, for this conventional paradigm, we ap-
plied an approach based on a combination of
one-pass decoding and lattice re-scoring (Lüscher
et al., 2019). Consequently, we used an auxiliary
n-gram language model for decoding before re-
scoring with the Transformed-based LM. Hence,
a 3-gram word-level LM was also estimated. For
each English database, we used the transcriptions
included in its corresponding training set, while
for LIP-RTVE, we considered the aforementioned
80k phrases. The estimated n-gram LMs offered
100.5, 112.8, and 113.4 test perplexities, with 25,
16, and 193 out-of-vocabulary words, for LRS2-
BBC, LRS3-TED, and LIP-RTVE, respectively.
Decoding. The decoder is defined as a weighted
finite-state transducer integrating the morphologi-
cal, lexicon, and language models. Readers are
referred to Mohri et al. (2008) for more details.

3.4. CTC/Attention Decoder
Morphological Model. This state-of-the-art ap-
proach was implemented using the ESPNet toolkit
(Watanabe et al., 2018). Specifically, the decoder

4It comprises 1.5 million running words with a vocab-
ulary size of around 45k different words

https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
www.github.com/Kyubyong/g2p
www.speech.cs.cmu.edu/cgi-bin/cmudict
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was composed of a 6-layer Transformer decoder
(Vaswani et al., 2017) and a fully connected layer
as the CTC-based decoding branch (Graves et al.,
2006). By combining both paradigms, the model
is able to adopt both the Markov assumptions of
CTC (an aspect in harmony with the speech na-
ture) and the flexibility of the non-sequential align-
ments provided by the attention-based decoder.
As proposed by Watanabe et al. (2017), the loss
function is defined as follows:

L = α log pctc(y|x) + (1− α) log pattn(y|x) (1)

where pctc and pattn denote the CTC and Attention
posteriors, respectively. In both terms, x and y re-
fer to the input visual stream and its corresponding
character-level target, respectively. The α weight
balances the relative influence of each decoder.
It should be noted that this end-to-end approach
is based on a character-level speech recognition.
For LRS2-BBC and LRS3-TED, we considered a
set of 41 characters, while for LIP-RTVE we used
a set of 37 characters. In both cases, special char-
acters were included, such as the ‘space’ and the
‘blank’ symbols. On average, each CTC/Attention
decoder comprised around 9.5 million parameters.
Language Model. We used a 6-layer character-
level LM based on the Transformer architecture
(Vaswani et al., 2017). More details about how it
was estimated are found in Subsection 4.2.
Decoding. The decoder integrates the attention-
and CTC-based branches and the Transformer-
based LM in a beam search process. Albeit it is
the attention-based branch that leads this decod-
ing process until predicting the end-of-sentence
token, the rest of the components influence the
search in a shallow fusion manner, as reflected in:

S = λSctc + (1− λ)Sattn + βSlm (2)

where Sctc and Sattn are the scores of the CTC
and the Attention decoder, respectively, λ is their
corresponding relative weight, and β and Slm re-
fer to the LM influence weight and the LM score,
respectively. Readers are referred to Watanabe
et al. (2017) for a more detailed description.

4. Experimental Setup
Experiments were conducted on a 12-core
3.50GHz Intel i7-7800X CPU and a GeForce RTX
2080 GPU with 8GB memory.

4.1. Visual Speech Encoder
In most of our experiments, the visual speech
encoder used the weights publicly released by
Ma et al. (2022) for the LRS2-BBC database,
where more than 1000 hours of data from differ-
ent databases (including the LRS3-TED corpus)

were considered. Only in the case of the LIP-
RTVE database, due to language mismatch, the
encoder was fine-tuned by assembling the LRS2-
BBC encoder and its corresponding CTC/Attention
decoder pre-trained with the weights publicly re-
leased by Ma et al. (2022) for the Spanish lan-
guage. In order to represent the situation in a
data-scarcity scenario, we only used 1 hour of data
from the LIP-RTVE training set. Implementation
details about this encoder fine-tuning process can
be found in Subsection 4.3.

4.2. Transformer Language Model
In our experiments, our Transformer-based LM
(used both for the DNN-HMM lattice re-scoring
and the CTC/Attention decoder) was pre-trained
using the weights publicly released by Ma et al.
(Ma et al., 2022) for both the English and Span-
ish language. Each of them was estimated us-
ing millions of characters collected from differ-
ent databases corresponding to the language ad-
dressed. Nonetheless, it should be noted that, for
the English LM, the transcriptions from the training
sets of the LRS2-BBC and LRS3-TED databases
were also considered. Therefore, to conduct a fair
comparison, we fine-tuned the Spanish LM to the
LIP-RTVE database using the 80k phrases pro-
vided by the original authors (Gimeno-Gómez and
Martínez-Hinarejos, 2022). Details on this LM fine-
tuning process are described in Subsection 4.3.
Considering the same character vocabularies de-
scribed in Subsection 3.4, our LMs presented a
character-level perplexity of around 3.0 for the cor-
responding test set of all the proposed databases.
Each LM comprises around 50 million parameters.

4.3. Training Process
Data Sets: the official splits were kept, with slight
variations for the English corpora. For the LRS2-
BBC, the pre-training and training sets were con-
densed into one training set, comprising a total
of 223 hours. Similarly, the ‘pre-train’ and ‘train-
val’ sets from the LRS3-TED were used as a 437-
hours training set. In both cases, utterances with
more than 600 frames were excluded, as consid-
ered by Ma et al. (2021b, 2022).
Conventional Hybrid Decoder. Although we ex-
plored different training setups, the toolkit’s default
settings specified in Karel’s DNN-HMM implemen-
tation5 provided the best recognition rates.
CTC/Attention Decoder. In all our experiments,
we considered the settings specified by Ma et al.
(2022). Concretely, we used the Adam optimizer
(Kingma and Ba, 2014) and the Noam scheduler
(Vaswani et al., 2017) with 25,000 warmup steps
during 50 epochs with a batch size of 16 samples,

5https://github.com/kaldi-asr/kaldi/blob/
master/egs/wsj/s5/steps/nnet/train.sh

https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/nnet/train.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/nnet/train.sh
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Figure 2: Comparison in terms of performance (% WER) of the DNN-HMM and the CTC/Attention de-
coders based on the number of hours used to estimate both paradigms. The 9, 223, and 437 hours refer
to the entire training set of the LIP-RTVE, LRS2-BBC, and LRS3-TED databases, respectively.

yielding a peak learning rate of 4×10-4. Regarding
the CTC/Attention balance, we set the α weight of
Equation 1 to 0.1.
Fine-Tuning Settings. The LM and the visual
speech encoder were fine-tuned when address-
ing the LIP-RTVE database. In both cases, the
AdamW optimizer (I.Loshchilov and Hutter, 2019)
and a linear one-cycle scheduler (Smith and Topin,
2019) were used during 5 epochs, yielding a peak
learning rate of 5×10-5. Due to our memory lim-
itations, the batch size was set to 1 sample. We
explored the accumulating gradient strategy (Ott
et al., 2018), but no significant differences were
found, possibly because the normalization layers
were still affected by the actual reduced batch size.

4.4. Inference Process
Conventional Hybrid Decoder. As considered
by Lüscher et al. (2019), we applied an approach
based on a combination of one-pass decoding and
lattice re-scoring. First of all, with a beam size
of 18, we explored word insertion penalties from
-5.0 to 5.0 and LM scales from 1 to 20. Once
the best setting was determined, a lattice com-
posed of the best 100 hypothesis for each test
sample was obtained using the 3-gram word-level
LM. Afterwards, the lattice was re-scored using the
Transformer-based LM. In all the cases, the visual
speech decoder was scaled by a factor of 0.1.
CTC/Attention Decoder. As considered by Ma
et al. (2022), we incorporated the Transformer-
based LM in a shallow fusion manner. According
to Equation 2, we set the β weight to 0.6 and 0.4
for English and Spanish, respectively. For English,
we set a word insertion penalty of 0.5 and a beam
size of 40, while for Spanish, we set the word inser-
tion penalty and the beam size to 0.0 and 30, re-
spectively. Regarding the CTC/Attention balance,

we set the λ weight of Equation 2 to 0.1. It should
be noted that we used the model averaged over
the last 10 training epochs.
Evaluation Metric: Experiment results were re-
ported in terms of the well-known Word Error Rate
(WER) with 95% confidence intervals using the
method described by Bisani and Ney (2004).

5. Results & Discussion
LRS2-BBC. Using the LRS2-BBC database is the
ideal scenario, where the proposed encoder ex-
tracts the visual speech features for which it was
explicitly trained. Table 1 reflects how the con-
ventional paradigm is not only capable of obtain-
ing state-of-the-art results, but also of significantly
outperforming the CTC/Attention model in data-
scarcity scenarios. Only when at least 10 hours
of data were available, both approaches provided
similar recognition rates. Besides, it should be
mentioned that both paradigms presented a real
time factor of around 0.75. However, despite of-
fering a slightly better performance, the CTC/At-
tention estimation took more than twice the hybrid
system training time.
LRS3-TED. It is considered our domain-mismatch
scenario. First, it should be noted that this cor-
pus was used during the pre-training stage of the
visual speech encoder. However, due to the data-
driven nature of the encoder and the fact that it
was later fine-tuned to the LRS2-BBC database,
the resulting features were expected to be worse
than those extracted for the aforementioned cor-
pus. Nonetheless, it allowed us to study whether
the consequences of this deterioration in the qual-
ity of visual speech features could be mitigated
when a larger amount of data is available.
As Table 2 reflects, results comparable to state
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Training
Hours

DNN-HMM CTC/Attention
% WER Time % WER Time

1 38.4±1.5 3.9 100.0±0.0 3.3
2 35.3±1.4 6.3 87.2±1.3 5.8
5 31.9±1.5 9.4 35.1±1.6 15.8
10 31.5±1.5 15.9 31.7±1.6 30.8
20 31.5±1.5 25.9 30.7±1.5 61.7
50 31.1±1.5 58.4 29.3±1.5 151.7
100 30.2±1.4 114.0 28.7±1.4 306.7
223 29.8±1.5 221.7 28.0±1.5 634.2

Table 1: Comparison of the DNN-HMM and
the CTC/Attention decoders for the LRS2-BBC
database based on the number of hours used to
estimate both paradigms. System performance
(% WER) and training time (Time) expressed in
minutes are reported. The 223 training hours refer
to the entire training set.

Training
Hours

DNN-HMM CTC/Attention
% WER Time % WER Time

1 70.7±1.1 4.4 100.0±0.0 2.5
2 67.1±1.2 7.0 100.0±0.0 5.0
5 59.4±1.3 9.4 98.0±1.8 13.3
10 57.4±1.4 15.5 67.2±1.7 25.8
20 55.7±1.5 26.6 58.8±1.7 52.5
50 54.8±1.4 60.6 53.1±1.8 130.8
100 54.6±1.4 115.5 50.9±1.8 261.7
200 53.7±1.4 229.0 50.3±1.7 524.2
437 53.5±1.5 358.2 50.0±1.7 820.0

Table 2: Comparison of the DNN-HMM and
the CTC/Attention decoders for the LRS3-TED
database based on the number of hours used to
estimate both paradigms. System performance
(% WER) and training time (Time) expressed in
minutes are reported. The 437 training hours refer
to the entire training set.

of the art (25-30% WER) were not achieved.
Moreover, 20 hours were now necessary for both
paradigms to offer a similar performance. The
real time factor was around 0.82 and 0.75 for the
DNN-HMM and CTC/Attention paradigm, respec-
tively. Nonetheless, we can observe an analo-
gous behaviour to that described for the LRS2-
BBC database regarding data-scarcity scenarios,
where the DNN-HMM would still be the best ap-
proach. Conversely, from 100 hours of data, the
CTC/Attention showed significant differences w.r.t
the conventional paradigm. It suggests that the
state-of-the-art decoder could be more adaptable
to poorer-quality speech representations.
However, the DNN-HMM and CTC/Attention de-
coders converge when the availability of more data
does not imply any improvement in terms of per-
formance (with 20 and 50 hours of training data,
respectively, differences are not significant w.r.t.

using all available data). This fact would demon-
strate that the quality of the visual speech en-
coder is a real limitation whose consequences are
not mitigated by decoders despite having larger
amounts of data.
LIP-RTVE. In the case of the LIP-RTVE database,
we were not only faced with a data-scarcity sce-
nario, but also with a mismatch in terms of lan-
guage. These could be the reasons why our first
results were not acceptable. Therefore, we de-
cided to adapt the visual speech encoder as if
we were in the worst possible scenario of our ex-
periments: when only 1 hour of data was avail-
able. As described in Subsection 3.2, we fine-
tuned the encoder in an end-to-end manner, ob-
taining a baseline model capable of reaching re-
sults around 88.6% WER.
Results in Table 3 show that, as in the rest of the
studied scenarios, the conventional DNN-HMM
decoder outperforms its CTC/Attention counter-
part. Using around 10 hours of data w.r.t. only
1 hour enhances around 15% WER in relative
terms for the DNN-HMM system, which is in har-
mony with the roughly 18% relative improvement
observed for the LRS2-BBC and LRS3-TED cor-
pora. Furthermore, we argue that one of the rea-
sons that could be behind the success of the DNN-
HMM paradigm was the word-level LM influence.

Training
Hours

DNN-HMM CTC/Attention
% WER Time % WER Time

1 78.1±0.9 3.5 >100.0† 2.5
2 77.5±1.0 5.5 >100.0† 5.0
5 67.8±1.1 9.9 >100.0† 12.5
9 66.2±1.1 16.6 89.0±1.2 23.3

† due to a peculiarity of the WER metric

Table 3: Comparison of the DNN-HMM and
the CTC/Attention decoders for the LIP-RTVE
database based on the number of hours used to
estimate both paradigms. System performance
(% WER) and training time (Time) in minutes are
reported. The 9 training hours refer to the entire
training set.

We also investigated fine-tuning the entire end-to-
end architecture using the whole training set of the
LIP-RTVE database. Recognition rates of around
60% WER were obtained, which significantly im-
proves the best performance obtained for the LIP-
RTVE database to date. However, it should be
noted that their estimate assumes more than six
times the training time w.r.t the DNN-HMM model.
Overall Analysis. Figure 2 reflects how system
performance degrades as visual speech features
deteriorate from the ideal scenario (LRS2-BBC)
to the language-mismatch (LIP-RTVE) scenario.
This trend is not only an aspect we could expect,
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but it is also supported by Tseng et al. (Tseng et al.,
2023), whose study demonstrated the lack of gen-
eralization of different audio-visual self-supervised
speech representations in multiple tasks. How-
ever, the interesting finding is that the conven-
tional DNN-HMM, compared to its state-of-the-art
counterpart, offers a significantly more robust ap-
proach when the quality of our visual speech fea-
tures is not optimal. If, for instance, we analyze
the scenario with 5 hours of training data, we can
observe how the performance gap between the
DNN-HMM and CTC/Attention paradigms in the
language- and domain-mismatch scenario is sig-
nificantly greater than in ideal settings, making the
DNN-HMM paradigm a more suitable option when
addressing the task in data-scarcity scenarios and
non-optimal visual speech features.
Findings. According to the findings of our case
study, different aspects might be helpful for fu-
ture researchers and developers focused on de-
signing VSR systems in data-scarcity scenarios
with limited computational resources. One of
the main aspects is that, even in ideal scenar-
ios with any type of limitation, DNN-HMM de-
coders not only reach state-of-the-art performance
rates but also offer significantly lower training time
costs. Furthermore, the fewer number of parame-
ters composing it would facilitate the deployment
of this type of system. Similarly, when we suf-
fer from data scarcity and/or lack of optimal self-
supervised speech representations for our specific
conditions, the state-of-the-art CTC/Attention ar-
chitecture would not be a recommendable option.

6. Conclusions & Future Work
In this work, we presented, to the best of our
knowledge, the first thorough comparative study
on the conventional DNN-HMM decoder and its
state-of-the-art CTC/Attention counterpart for the
visual speech recognition task. Unlike those com-
parative studies focused on auditory-based ASR,
we also systematically investigated how these dif-
ferent decoding paradigms behave based on the
amount of data available for their estimation. As
reflected in Figure 2, our results showed that the
conventional approach achieved recognition rates
comparable to the state of the art, significantly
outperforming the CTC/Attention model in data-
scarcity scenarios. In addition, the DNN-HMM ap-
proach offered valuable properties, such as re-
duced training time and fewer parameters. Fi-
nally, by exploring databases of different natures,
experiments suggest that further research should
still focus on improving the robustness of visual
speech representations for data scarcity, as well
as domain- and language-mismatch scenarios.
For this reason, one of our future lines of research
is not only studying how state-of-the-art visual

speech features can generalize to other tasks and
domains, but also extending our work toward es-
timating and evaluating robust multi-lingual visual
speech representations using the MuAViC bench-
mark (Anwar et al., 2023).
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