
LREC-COLING 2024, pages 3645–3653
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

3645

Complex Word Identification: a Comparative Study Between
ChatGPT and a Dedicated Model for this Task

Abdelhak Kelious1 , Mathieu Constant1, Christophe Coeur2
University of Lorraine and CNRS/ATILF1, consultant2

{abdelhak.kelious, mathieu.constant}@univ-lorraine.fr, christophe.coeur@gmail.com

Abstract
This paper focuses on the task of lexical complexity prediction. We explore deep learning methods to assess the
complexity of a word based on its context. Specifically, we investigate how to use pre-trained language models
to encode both the sentence and the target word, and then fine-tune them by combining them with additional
frequency-based features. Our approach outperforms the best systems in SemEval-2021 (Shardlow et al., 2021).
Finally, we carry out a comparative study with ChatGPT to assess its potential for predicting lexical complexity, and
whether prompt engineering can be an alternative to this task.

Keywords: Natural language processing, Lexical complexity prediction, Language models, ChatGPT

1. Introduction

Understanding language is a complex process that
requires a multitude of linguistic skills such as
knowledge of grammar, acquisition of vocabulary,
and the ability to produce correct and fluent sen-
tences. The complexity of words can play an im-
portant role in this process as it can influence the
speed and ease with which learners acquire new
language skills. Sometimes, the presence of a
word in an unusual or infrequent context can make
it difficult for a reader to comprehend, causing them
to either give up, misinterpret, or continue without
understanding. Even an attentive reader may need
to look up the meaning of a word, which can detract
from their concentration and overall understanding
of the text. Natural language processing can be
used to identify difficult words in a text and thus
help readers better understand the content.

Lexical complexity prediction is a research field
that focuses on predicting the complexity level
of a lexical item in a given textual context. Re-
search in this field has explored various approaches
(North et al., 2023), including the use of lexical fea-
tures such as word frequency or sentence length
(Zampieri et al., 2016), as well as the use of pre-
trained language models such as BERT (Devlin
et al., 2019), etc. These works have important
practical applications, particularly in the field of lan-
guage teaching and reading comprehension (Alfter,
2021). However, there is still much to be done to
improve the accuracy of lexical complexity predic-
tion and research in this field is therefore continuing
to explore new approaches.

Inspired by the work published in SemEval-2021
Task 1 (Shardlow et al., 2021), we propose a
method for predicting lexical complexity by combin-
ing pre-trained language models, such as DeBerta
(He et al., 2023), with features based on text fre-

quency. The rarity of words can have an influence
on their level of complexity (Chen and Meurers,
2016), and the frequency of a word can be corre-
lated with its complexity. Therefore, our approach
of combining these two features could provide ac-
curate results for predicting lexical complexity.

The development of generative Large Language
Models (LLMs), such as ChatGPT, has recently
gained significant attention from the scientific com-
munity. However, their evaluation on real data re-
mains relatively unexplored, primarily due to the
challenges posed by the output produced by these
models. In our paper, we will conduct a compara-
tive study on lexical complexity and propose a com-
parative method for evaluating the performance of
ChatGPT.

The main contributions of this paper are the fol-
lowing:

• A new model trained on Complex 2.0 data,
combining pre-trained language models with
frequency features.

• An evaluation of ChatGPT’s capability for our
task. Finding: it is not proficient at predicting a
complexity score, but has some ability to rank
contexts by their complexity, especially when
the contexts are clearly difficult or clearly easy.

2. Related work

2.1. Complex word identification:
methods and datasets

There are several reasons to evaluate the identifi-
cation of complex words in a sentence (context),
and this has been the subject of research for sev-
eral years. For instance, this has been explored in
the context of lexical simplification, which involves



3646

automatically replacing complex words with simpler
alternatives (Shardlow, 2013).

The task of complex word identification (CWI),
recently extended to lexical complexity prediction
(North et al., 2023), has been studied as a se-
quence annotation task, taking into account the con-
text (sentence) in which the word appears (Gooding
and Kochmar, 2019). During the 15th International
Workshop on Semantic Evaluation in 2021 (Shard-
low et al., 2021), this task has been further ex-
plored, prompting the reuse of the same data and
evaluation metrics for comparative analysis and
performance enhancement. This shared task high-
lighted the impact of using pre-trained language
models for CWI, as well as using various fine-tuning
techniques. For instance, one of the best system,
JUST BLUE, (Bani Yaseen et al., 2021) combines
BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) models. The models were separately fine-
tuned to predict complexity scores, the final score
being their average. Another notable example is
the DeepBlueAI system (Pan et al., 2021) that in-
tegrated pre-trained language models fine-tuned
with techniques like pseudo-labeling, data augmen-
tation, stacked training models, and a multi-sample
dropout layer. The data was encoded for the trans-
former models using the corpus type and token as
the query string, with the given context as additional
input. For a more comprehensive survey on lexical
complexity prediction, readers may refer to North
et al. (2023).

There exist various datasets for complex word
identification. Some of the commonly used
datasets include the Complex 2.0 dataset (Shard-
low et al., 2022), CWI-2018 (Yimam et al., 2018)
and CWI-2016 (Paetzold and Specia, 2016). Com-
plex 2.0 is an improvement over Complex 1.0, as it
includes more instances and additional annotations
for each instance.

In the Complex 2.0 dataset, they observed vari-
ous reasons why a word can be complex (Shard-
low et al., 2022). These include the word being
outdated or archaic, originating from another lan-
guage or referring to a concept that is unusual
within the reader’s culture. Additionally, a word
may be considered complex if it is uncommon and
not frequently encountered by many individuals or
if it pertains to a highly specialized subject matter.
Furthermore, even if a word is commonly used, it
can still be regarded as complex if it is being used
with an unusual or uncommon meaning in a partic-
ular context.

2.2. ChatGPT
Given that we are currently in the era of ChatGPT,
it is challenging to approach our study without in-
cluding a comparison to assess the role of this
task in relation to ChatGPT. Recent studies have

demonstrated the promising potential of ChatGPT
for various text annotation and classification tasks.
Among the tasks that have piqued the interest of
the scientific community is data augmentation, and
one of the data augmentation techniques used with
ChatGPT is paraphrasing. By rephrasing the input
text in various ways, the model can generate a more
diverse set of examples for training. This helps the
model grasp the underlying meaning of the text
rather than simply memorizing specific sentences
or patterns. For example, the AugGPT framework
(Dai et al., 2023) reformulates each sentence in the
training samples into multiple conceptually similar
but semantically different samples. The augmented
samples can then be used for model training, and
research results regarding the AugGPT framework
clearly demonstrate that it significantly improves
performance (Dai et al., 2023). Huang et al. (2023)
explore the potential and limitations of ChatGPT
in answering two questions: Can it effectively de-
tect implicit hate tweets, and does it generate high-
quality natural language explanations? The study
shows that ChatGPT is capable of recognizing hate
tweets with an 80 percent accuracy rate. Regarding
the remaining 20 percent of disagreements, further
examination revealed that these tweets are poten-
tially debatable. A second evaluation with humans
was conducted, and the results indicate that these
individuals tend to strongly lean towards ChatGPT’s
classification results. As for the second question,
the study demonstrates that ChatGPT generates
explanations comparable to those of humans in
terms of informativeness and clarity. In this paper,
we investigate to what extent ChatGPT can predict
word complexity in a comparative way with a model
specifically trained for this task.

3. A model dedicated to complex
word identification

3.1. Data

During the training and testing phase, we used the
"CompLex 2.0" dataset, an improvement on "Com-
pLex 1.0" (Shardlow et al., 2020). The corpus con-
tains human evaluations of lexical complexity for
a set of English texts using a 5-point Likert scale.
The texts in the corpus were collected from sources
such as Wikipedia, educational books, and newspa-
per articles, covering a wide variety of topics. The
texts were annotated by human evaluators who as-
sessed the lexical complexity of a target word in
its context (sentence) using the Likert scale. Each
instance was annotated multiple times, and the av-
erage of these annotations was taken as the score
for each data instance. This score represents a
continuous value between 0 and 1, once normal-
ized. The training and the test data respectively



3647

contain 7662 and 917 instances.

3.2. Model
In our study, we developed a neural network model
to predict word complexity based on the target
words and their contexts. We used transformer-
based word embeddings, which are dense repre-
sentations of words trained on large text datasets.
We also used frequency features of the target word
and the sentence to enhance the prediction qual-
ity. To capture non-linearity in the data, we added
hidden layers to the model (cf. Figure 1).

3.3. Features
Our experimentation takes into account two types
of inputs: one is based on word embeddings for
semantic representation, while the other is based
on frequency features.

3.3.1. Pre-trained language model

As indicated in the related work section, pre-trained
language models have shown the best perfor-
mances for Lexical Complexity Prediction.

In our case, we use the DeBERTa model which
is a new architecture (Decoding-enhanced BERT
with disentangled attention) that introduces rela-
tive position information and enhances BERT and
RoBERTa models by using two innovative tech-
niques (He et al., 2021). The first is the use of a
disentangled attention mechanism, which allows
the model to attend to specific parts of the input
sequence without being influenced by irrelevant
information. The second is an improved mask de-
coder, enabling the model to better predict masked
tokens during the pre-training phase. Compared to
RoBERTa-Large, DeBERTa was trained on half of
the training data and consistently achieves better
results on a wide range of natural language pro-
cessing tasks. The inclusion of relative position
information in DeBERTa’s architecture enhances
its ability to capture long-range dependencies and
improve performance on tasks involving sequential
data.

3.3.2. Frequency features

We have also chosen to calculate input features
based on the Zipf frequency of words, as we
believe that the complexity of a word depends not
only on its semantics or morphological structure,
but also on its rarity in a given corpus and the words
that surround it (Chen and Meurers, 2016). Zipf’s
law, which describes the statistical distribution
of word frequencies in a text, is often used in
natural language processing to characterize the
lexical richness of a text and identify keywords.

To determine the frequency of word usage, we
will use the wordfreq (Speer, 2022) library, which
provides estimates of word usage frequency from
over 40 different languages, collected from various
diverse sources.

By using this measure to extract input features
for our model, we hope to improve its ability to
discriminate between different types of words and
generalize to new and diverse data.

In our case the frequency features correspond
to :

F1 : Zipf score of the target word frequency given
by the following equation :

f(k, s,N) =
1/ks∑N

n=1 1/n
s

where k is the rank of the word in the frequency
table, s is the shape parameter, the value of the
exponent characterizing the distribution, N is the
total number of words in the corpus.

F2 : This feature calculates the average Zipf
score of all the words in the sentence.

F3 : This feature measures the difference be-
tween the Zipf score of the target word and the
average Zipf score of all the words in the sentence.
This difference can indicate whether the target word
is more or less frequent than the words in the sen-
tence, and therefore may show some contrast be-
tween the target word and its context.

F4 : This feature counts the number of words
in the sentence that have a Zipf score higher than
the target word. A higher count suggests that the
target word may be less common than the other
words in the sentence.

F5 : This feature is a binary value that indicates
whether the target word has a Zipf score less than
or equal to 3, which suggests that it is very rare.
If the word is very rare, it may be more difficult
for readers to understand its meaning. We chose
the value 3 for this feature qualitatively without a
thorough statistical analysis.

To normalize frequency features between 0 and
1, we use the MinMaxScaler function. The mathe-
matical formula can be expressed as:

Xscaled =
X −Xmin

Xmax −Xmin

where X is the original feature value, Xmin and
Xmax are the minimum and maximum values of
the feature, respectively, and Xscaled is the scaled
value.

Since pre-trained language models can process
multiple input sentences, we add special tokens
[CLS] and [SEP] to separate the context and the



3648

Figure 1: The overall architecture for predicting complexity scores.

target word as shown in Figure 1. We also perform
pooling using the [CLS] approach. This approach
involves taking the hidden state of the special to-
ken [CLS] as the representation of the entire input
sequence. The [CLS] token is inserted at the begin-
ning of the input sequence, and its hidden state is
then concatenated with the hidden representation
of the frequency. This concatenated representation
is then fed to the final classification layer.

3.4. Evaluation
We have run our experiments for four word em-
bedding models: bert-base, DeBERTa-base-v3, as
well as their multilingual versions. To evaluate the
results, we use correlation metrics such as Pear-
son, Spearman and R2 score. We kept the same
hyperparameters for each training, including learn-
ing rate = 5e-5, batch size = 4,h1=228,h2=128,
shared layer=200 and maximum sequence length
= 300. We also include our baseline as well as the
shared task baseline, the disparity between the two
baselines lies in the fact that the one suggested by
the task is a Frequency Reference generated using
the log-frequency of Google Web1T (Evert, 2010)
and linear regression, while ours is based solely on
the frequency features listed in section 3.3.2 (F1 to
F5), excluding lexical embeddings.

Table 1 shows the results of our approach using
several different language models. We also include
the best score obtained during the SemEval-2021
shared task (Shardlow et al., 2021). Deberta-v3-
large model outperforms the other language mod-
els, as well as the best system of the shared task,

the JUST BLUE system (Bani Yaseen et al., 2021).

Models Pearson Spearman R2
Deberta-v3-
large 0.81 0.74 0.65

Deberta-v3-
base 0.79 0.74 0.62

The highest
score in Se-
mEval 2021
(Bani Yaseen
et al., 2021)

0.78 - 0.61

mDeberta-
v3-base 0.75 0.70 0.57

bert-base-
cased 0.74 0.70 0.55

bert-base-
multilingual 0.67 0.64 0.45

Frequency
Baseline
provided by
(Shardlow
et al., 2021)

0.52 - 0.27

Table 1: Results of different models

In order to understand the impact of pre-trained
language models and frequency features in each
of the models, we conducted an ablation study to
measure the importance of each component.

Figure 2 is a graphical representation that shows
the performance of the models for predicting lexi-
cal complexity. Each column represents a different
model, with different colors to distinguish the dif-



3649

Figure 2: Comparison of Pearson Correlation val-
ues for the different models.

ferent types of models. The blue bar represents a
model that only uses frequency features (We ob-
serve equivalent performances for this frequency
model since it remains unchanged), the red bar rep-
resents a model based only on language models,
while the green one uses both frequency features
and language models. Pearson correlation scores
are used to evaluate the performance of models by
comparing their predictions to the actual data. The
results indicate that adding frequency features to
language models slightly improves their accuracy in
predicting lexical complexity. In other words, mod-
els that use both frequency features and language
models are better at predicting lexical complexity
than models that use only one or the other. More-
over, our frequency-based model outperforms the
baseline in Table 1 with a Pearson correlation score
of 0.61.

4. Comparative evaluation with
ChatGPT

One goal of this paper is to assess the potential
of ChatGPT in measuring lexical complexity and
to compare it to our current approach. This will
enable us to determine whether ChatGPT can be
used as a viable alternative for this specific task.
This comparative evaluation is crucial for making
informed decisions regarding the use of ChatGPT
in our specific context. If ChatGPT proves to be
more effective, it could open up new possibilities
for enhancing our lexical complexity evaluation ap-
proach. Conversely, if our current approach proves
to be more efficient, it could help us identify areas

where ChatGPT still requires improvements or ad-
justments.

For this experiment, we used ChatGPT Turbo 3.5
(October 4, 2023) via the API provided by OpenAI.
It is important to underline, however, a significant
limitation of our experiment: ChatGPT is regularly
updated, which poses reproducibility issues (Chen
et al., 2023). Moreover, it is difficult to deeply inter-
pret the results obtained since ChatGPT operates
as a "black box". Therefore, we will limit ourselves
to surface level observations of the results.

4.1. Comparison methodology
Our initial idea was to provide an input (i.e. a target
and a context) to ChatGPT and ask it to assess
the complexity of the word based on its context
(the sentence in which it appears), on a scale from
0 to 1. However, the results obtained were very
poor. The Pearson correlation score between hu-
man evaluations and ChatGPT is actually 0.034.

As ChatGPT was not trained specifically for the
CWI task on our specific dataset, such a direct com-
parison is somewhat unfair. Moreover, ChatGPT
does not have access to complete information on
how humans have evaluated this data, making it
difficult for ChatGPT to "interpret" the scale. Even
with a sophisticated prompt, the task remains very
complex.

We therefore need to make the evaluation more
fair. Instead of evaluating the capacity of ChatGPT
to predict a complexity score for a given instance
(target word + context), we evaluate its capacity to
compare two instances with respect to their com-
plexity, and thus to rank a set of instances according
to it. In other words, we eliminate the need to pre-
dict scores between 0 and 1, allowing ChatGPT
to focus solely on evaluating the relative order of
complexity among instances.

To do so, we used the bubble sort algorithm to
sort a list of instances, where the comparison be-
tween two instances is performed by ChatGPT. For
each pair of instances to be compared, we use the
following ChatGPT prompt:

"""
I give you two sentences, evaluate the
complexity of the target word in quotes
based on its context, and return only the
sentence or the target word that is simpler
to understand. The output format should
be as follows:
{’simplest sentence’: sentence}
The two sentences are:
sentence 1
sentence 2
"""



3650

The prompt was produced through successive
trial and error. The first challenge was to create a
prompt that consistently generates the desired out-
put. The temperature setting was fixed at 0 to avoid
favoring creativity, which could lead to undesirable
effects (Peng et al., 2023).

The bubble sort algorithm is very costly in terms
of complexity. However, despite our efforts to find
alternatives, pairwise comparison remains prefer-
able. We have observed that the use of other al-
gorithms leads to hallucinations for the ChatGPT
model, increasing its non-deterministic nature, and
the scores obtained are lower than those with bub-
ble sort. It is possible that these issues will be
resolved in new versions, such as GPT-4.

To make the output fully comparable with our gold
data and our CWI approach described in section 3,
the list of instances are sorted according to their
gold and predicted scores.

For the evaluation, we use Kendall’s Tau (also
known as Kendall rank correlation coefficient),
which is a statistical measure employed to quantify
the similarity between two rankings. It assesses
the correspondence or agreement between the or-
derings of the same set of items in two different
lists. Kendall’s Tau is frequently utilized when work-
ing with ordinal data, where the ranking or order
of items is pertinent. We will employ this metric
when comparing with ChatGPT. The Kendall’s Tau
formula is given by:

τ =
concord− discord

1
2n(n− 1)

Let X = (x1, x2, x3, . . . , xn) and Y =
(y1, y2, y3, . . . , yn) be two lists of n elements. We
count the number of pairs of elements in the two
lists that are in agreement (concord) and the num-
ber of pairs in disagreement (discord). A pair (i,j)
is in agreement if xi < xj and yi < yj (or xi > xj

and yi > yj), and in disagreement otherwise. The
result τ is between -1 and 1.

4.2. Evaluation
We divide our evaluation into two experiments. In
the first experiment, for each target word, we sort
the list of instances where the word occurs. In
the second experiment, we sort lists of instances
randomly picked varying the sample size.

4.2.1. Ranking contexts by target word

In the first experiment, for each target word, we sort
the list of instances where the word occurs.

Among the 917 entries in our dataset, we only
retain those in which the word appears in more than
one sentence (at least two occurrences). This al-
lows us to keep 685 entries. Figure 3 illustrates the
number of sentences per target keyword. The data

does not exhibit a uniform distribution, for instance,
the number of target keywords appearing in 5 sen-
tences is equal to 310. We have excluded entries
with only one sentence. This exclusion is important
because, when comparing two lists in terms of or-
der, including entries with only one sentence would
result in a perfect 100 percent match, biasing the
comparison. To prevent this bias, we have chosen
to exclude such cases to ensure a more equitable
comparison between different words and their con-
texts. It is important to note that as the number of
instances per target word increases, the precision
of the comparison should decrease.

Figure 3: Distribution of the number of sentences
per target word.

The evaluation per target word for our model and
for ChatGPT is based on the Kendall’s Tau com-
paring the ranking generated from our model or
ChatGPT with the ones based on human annota-
tions. The final score for a system is the average
of the Kendall’s Tau scores for all target words of
the dataset.

As shown in Table 2, even without being specif-
ically trained on the target dataset, ChatGPT is
capable of outperforming a model that was trained
on this dataset.

Models Kendall’s Tau Score
ChatGPT 0.61

Our approach 0.52

Table 2: Results of the scores based on the ranks.

Figure 4 shows that scores vary depending on
the number of instances for each target word in
the dataset. For example, words occurring in two



3651

sentences have a higher score than those occur-
ring in three. The curve decreases as the number
of sentences per word increases. Additionally, it
is noticeable that the performance curve of Chat-
GPT decreases at a slightly higher rate than that
of our approach. Both curves appear to converge
as the number of sentences increases. When the
number of sentences equals 6, our model outper-
forms ChatGPT, however, it is important to note that
this cannot be conclusive due to the low number of
target words occuring in six instances (24).

Figure 4: Scores based on the number of sen-
tences per target word

4.2.2. Ranking sampled instances

In this part, we evaluate the ranking of instances
randomly sampled in the dataset. This means that
the considered lists can include contexts with vari-
ous target words. The idea is to evaluate the ability
of the different systems to deal with word complex-
ity in general independently of a given target word.
In our experiment, we vary the sample size to eval-
uate its impact on the ranking performances.

We will run the experiments for 5 sample sizes
(n=4, 5, 8, 10, 20). For each sample size, we will
conduct 10 separate random draws to obtain more
robust measurements and enhance our assess-
ment. Subsequently, we will calculate the mean
and standard deviation of these ten draws to obtain
a more precise estimation.

Table 3 shows that our model outperforms Chat-
GPT regardless of the sample size n. For example,
with n=20, our model achieves an average Kendall
score of 0.415, whereas ChatGPT scores -0.079,
indicating a significant difference. Additionally, as
the sample size increases, the standard deviation
primarily decreases due to the reduction in vari-
ability resulting from a larger number of instances,
making the mean a more precise estimate of the
central tendency.

This shows that our model exhibits robustness

n Mean Standard Deviation

ChatGPT Our
Model ChatGPT Our

Model
4 0.145 0.491 0.566 0.391
5 0.011 0.152 0.391 0.288
8 0.062 0.376 0.275 0.281
10 -0.078 0.153 0.236 0.324
20 -0.079 0.415 0.065 0.095

Table 3: Means and Standard Deviations for Vari-
ous Sample Sizes (100% random)

when it comes to deal with different words based
on their context and ranking them from the simplest
to the most complex. In other words, our model
consistently shows better performance compared
to ChatGPT.

Considering the demonstrated capabilities of
ChatGPT in various research studies for other
tasks, the current question is why this task appears
to be challenging for ChatGPT ? One of the hy-
potheses we want to verify is that ChatGPT may
have difficulty distinguishing degrees of complexity
when they are close.

To test this hypothesis, we will continue to ran-
domly sample instances, but 50% of the instances
will have an easy complexity level (degree <0.25),
and the remaining 50% will have a difficult com-
plexity level (degree > 0.5). This will create a clear
distinction between instances based on their com-
plexity.

n Mean Standard Deviation

ChatGPT Our
Model ChatGPT Our

Model
4 0.655 0.425 0.261 0.321
5 0.6 0.567 0.249 0.3
8 0.483 0.412 0.154 0.142
10 0.504 0.429 0.116 0.099
20 0.495 0.432 0.077 0.091

Table 4: Means and Standard Deviations for Var-
ious Sample Sizes (Random but 50 % contexts
easy, 50 % very difficult)

Table 4 shows that the scores are better with
ChatGPT in this scenario. ChatGPT performs more
satisfactorily when the gap in complexity levels be-
tween contexts is higher, indicating that it can differ-
entiate between contexts having clear distinct level
of complexity. The standard deviation values also
become smaller when comparing with the results
in Table 3, indicating that the sample is more rep-
resentative, and the values are closer to the mean
compared to when the data is randomly sampled
100%.



3652

Figure 5 indicates that our approach performs
better than ChatGPT when instances are 100%
randomly selected. However, when we introduce a
distinction in the complexity levels of the contexts
(50% easy, 50 % very difficult), it makes the task
easier for ChatGPT, resulting in better performance,
we can also notice that this gap between the data
contributes to improving the scores generated by
our model as well.

Figure 5: Average scores as a function of sample
size.

5. Conclusion

In this paper, we proposed a method to improve
the quality of lexical complexity prediction. This
method is based on the use of pre-trained language
models and frequency features. We also showed
that ChatGPT has some capacity in distinguishing
lexical complexity among different contexts for the
same word, especially when the number of contexts
is limited. In such case, it outperforms our model.
However, this task becomes more challenging as
the number of sentences increases, particularly
when introducing different words in diverse con-
texts. Indeed, ChatGPT faces challenges when
complexity between sentences is very similar, as
demonstrated in this study when specifically eval-
uating extremely difficult sentences compared to
simple ones, excluding medium complexity levels.
This notable difference aids in the prediction for
ChatGPT. In situations where contexts can be very
similar in terms of complexity, it is preferable to use
a model that has been trained specifically for this
task. Furthermore, such a model can produce a
more precise and coherent degree of complexity.

6. Limitations

Our current study focuses on assessing the lexical
complexity for English only. It is possible that our

model may react differently in contexts for other lan-
guages. In future work, we plan to explore multiple
models for various languages. We also intend to
explore the use of our system in a real-world sce-
nario to evaluate its robustness. Another limitation
of our study is that ChatGPT being regularly up-
dated, some reproducibilty issues arise. Moreover,
as ChatGPT operates as a "black box" in-depth
qualitative analysis is limited.

7. Bibliographical References

David Alfter. 2021. Exploring natural language pro-
cessing for single-word and multi-word lexical
complexity from a second language learner per-
spective.

Tuqa Bani Yaseen, Qusai Ismail, Sarah Al-Omari,
Eslam Al-Sobh, and Malak Abdullah. 2021.
JUST-BLUE at SemEval-2021 task 1: Predicting
lexical complexity using BERT and RoBERTa
pre-trained language models. In Proceedings
of the 15th International Workshop on Seman-
tic Evaluation (SemEval-2021), pages 661–666,
Online. Association for Computational Linguis-
tics.

Lingjiao Chen, Matei Zaharia, and James Zou.
2023. How is chatgpt’s behavior changing over
time? arXiv preprint arXiv:2307.09009.

Xiaobin Chen and Detmar Meurers. 2016. Char-
acterizing text difficulty with word frequencies.
pages 84–94.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xi-
aoke Huang, Yihan Cao, Zihao Wu, Lin Zhao,
Shaochen Xu, Wei Liu, Ninghao Liu, Sheng
Li, Dajiang Zhu, Hongmin Cai, Lichao Sun,
Quanzheng Li, Dinggang Shen, Tianming Liu,
and Xiang Li. 2023. Auggpt: Leveraging chatgpt
for text data augmentation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding.

Stefan Evert. 2010. Google web 1t 5-grams made
easy (but not for the computer). In Proceedings
of the NAACL HLT 2010 Sixth Web as Corpus
Workshop, pages 32–40.

Sian Gooding and Ekaterina Kochmar. 2019. Com-
plex word identification as a sequence labelling
task. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 1148–1153, Florence, Italy. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2021.semeval-1.85
https://doi.org/10.18653/v1/2021.semeval-1.85
https://doi.org/10.18653/v1/2021.semeval-1.85
https://doi.org/10.18653/v1/W16-0509
https://doi.org/10.18653/v1/W16-0509
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/P19-1109
https://doi.org/10.18653/v1/P19-1109
https://doi.org/10.18653/v1/P19-1109


3653

Pengcheng He, Jianfeng Gao, and Weizhu
Chen. 2023. Debertav3: Improving deberta
using electra-style pre-training with gradient-
disentangled embedding sharing.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-
enhanced bert with disentangled attention.

Fan Huang, Haewoon Kwak, and Jisun An. 2023.
Is ChatGPT better than human annotators? po-
tential and limitations of ChatGPT in explaining
implicit hate speech. In Companion Proceedings
of the ACM Web Conference 2023. ACM.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pre-
training approach.

Kai North, Marcos Zampieri, and Matthew Shard-
low. 2023. Lexical complexity prediction: An
overview. ACM Comput. Surv., 55(9).

Gustavo Paetzold and Lucia Specia. 2016. Se-
mEval 2016 task 11: Complex word identification.
In Proceedings of the 10th International Work-
shop on Semantic Evaluation (SemEval-2016),
pages 560–569, San Diego, California. Associa-
tion for Computational Linguistics.

Chunguang Pan, Bingyan Song, Shengguang
Wang, and Zhipeng Luo. 2021. DeepBlueAI at
SemEval-2021 task 1: Lexical complexity predic-
tion with a deep ensemble approach. In Proceed-
ings of the 15th International Workshop on Se-
mantic Evaluation (SemEval-2021), pages 578–
584, Online. Association for Computational Lin-
guistics.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023. Towards making the most
of chatgpt for machine translation. arXiv preprint
arXiv:2303.13780.

Matthew Shardlow. 2013. A comparison of tech-
niques to automatically identify complex words.
In 51st Annual Meeting of the Association for
Computational Linguistics Proceedings of the
Student Research Workshop, pages 103–109,
Sofia, Bulgaria. Association for Computational
Linguistics.

Matthew Shardlow, Michael Cooper, and Marcos
Zampieri. 2020. CompLex — a new corpus for
lexical complexity prediction from Likert Scale
data. In Proceedings of the 1st Workshop on
Tools and Resources to Empower People with
REAding DIfficulties (READI), pages 57–62, Mar-
seille, France. European Language Resources
Association.

Matthew Shardlow, Richard Evans, Gustavo Hen-
rique Paetzold, and Marcos Zampieri. 2021.
SemEval-2021 task 1: Lexical complexity pre-
diction. In Proceedings of the 15th International
Workshop on Semantic Evaluation (SemEval-
2021), pages 1–16, Online. Association for Com-
putational Linguistics.

Matthew Shardlow, Richard Evans, and Marcos
Zampieri. 2022. Predicting lexical complexity in
english texts: the complex 2.0 dataset. Language
Resources and Evaluation, 56(4):1153–1194.

Robyn Speer. 2022. rspeer/wordfreq: v3.0.

Seid Muhie Yimam, Chris Biemann, Shervin Mal-
masi, Gustavo Paetzold, Lucia Specia, Sanja Šta-
jner, Anaïs Tack, and Marcos Zampieri. 2018. A
report on the complex word identification shared
task 2018. In Proceedings of the Thirteenth Work-
shop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 66–78, New Or-
leans, Louisiana. Association for Computational
Linguistics.

Marcos Zampieri, Liling Tan, and Josef van Gen-
abith. 2016. MacSaar at SemEval-2016 task
11: Zipfian and character features for Complex-
Word identification. In Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016), pages 1001–1005, San Diego,
California. Association for Computational Linguis-
tics.

http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
https://doi.org/10.1145/3543873.3587368
https://doi.org/10.1145/3543873.3587368
https://doi.org/10.1145/3543873.3587368
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/3557885
https://doi.org/10.1145/3557885
https://doi.org/10.18653/v1/S16-1085
https://doi.org/10.18653/v1/S16-1085
https://doi.org/10.18653/v1/2021.semeval-1.72
https://doi.org/10.18653/v1/2021.semeval-1.72
https://doi.org/10.18653/v1/2021.semeval-1.72
https://aclanthology.org/P13-3015
https://aclanthology.org/P13-3015
https://aclanthology.org/2020.readi-1.9
https://aclanthology.org/2020.readi-1.9
https://aclanthology.org/2020.readi-1.9
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.18653/v1/2021.semeval-1.1
https://doi.org/10.1007/s10579-022-09588-2
https://doi.org/10.1007/s10579-022-09588-2
https://doi.org/10.5281/zenodo.7199437
https://doi.org/10.18653/v1/W18-0507
https://doi.org/10.18653/v1/W18-0507
https://doi.org/10.18653/v1/W18-0507
https://doi.org/10.18653/v1/S16-1155
https://doi.org/10.18653/v1/S16-1155
https://doi.org/10.18653/v1/S16-1155

	Introduction
	Related work
	Complex word identification: methods and datasets
	ChatGPT

	A model dedicated to complex word identification
	Data
	Model
	Features
	Pre-trained language model
	Frequency features

	Evaluation

	Comparative evaluation with ChatGPT 
	Comparison methodology
	Evaluation
	Ranking contexts by target word
	Ranking sampled instances


	Conclusion
	Limitations
	Bibliographical References

