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Abstract
Using Brennan and Clark’s theory of a Conceptual Pact, that when interlocutors agree on a name for an object,
they are forming a temporary agreement on how to conceptualize that object, we present an extension to a simple
reference resolver which simulates this process over time with different conversation pairs. In a puzzle construction
domain, we model pacts with small language models for each referent which update during the interaction. When
features from these pact models are incorporated into a simple bag-of-words reference resolver, the accuracy
increases compared to using a standard pre-trained model. The model performs equally to a competitor using the
same data but with exhaustive re-training after each prediction, while also being more transparent, faster and less
resource-intensive. We also experiment with reducing the number of training interactions, and can still achieve
reference resolution accuracies of over 80% in testing from observing a single previous interaction, over 20%
higher than a pre-trained baseline. While this is a limited domain, we argue the model could be applicable to larger
real-world applications in human and human-robot interaction and is an interpretable and transparent model.

Keywords: reference resolution, small language models, situated dialogue

1. Introduction

The rise of Large Language Models (LLMs) in au-
tomatic dialogue processing like the Generative
Pre-Trained Transformer (GPT) models (Radford
et al., 2018) offer the promise of bigger and bet-
ter data-driven language models that can be fine-
tuned for different computational linguistics tasks
with high degrees of success. While these models
perform well across a range of tasks, they are large
and resource-intensive, and the contributions of
different interactions on their models cannot easily
be decomposed. Furthermore, while they can be
fine-tuned offline, doing so in a time-linear manner
during interaction remains challenging. In this pa-
per, we put several language models of a much
smaller size and more traditional kind to use in
situated reference resolution in a small data do-
main, to maximise speed, modularity, and human-
interpretability.

This paper draws on recent work in situated refer-
ence resolution using classical and neural models
(Kennington and Schlangen, 2015; Yu et al., 2016;
Jayannavar et al., 2020; Suglia et al., 2022; Loái-
ciga et al., 2022; Poesio et al., 2022; Kiseleva et al.,
2022), while trying to overcome the possible short-
comings of these models for interaction, particularly

those driven by LLMs, in so far as they rely on train-
ing on (standardly) large amounts of static data with
no model of dynamic update in reference models
during interactions.

In human interaction, we observe that in dia-
logue within populations of speakers of the same
official language, different pairs or groups of par-
ticipants can use very different referring expres-
sions to other groups. Furthermore, these con-
ventions stabilize over time within the group, con-
sistent with experimental evidence that there are
conventions which emerge for collaboratively re-
ferring to objects (Clark and Wilkes-Gibbs, 1986),
and that dynamically constructed sub-languages
emerge over interaction time (Healey, 2008; Mills,
2011) when seeing language as constantly evolv-
ing and dynamically changing through interaction
(Gregoromichelaki et al., 2022). This causes prob-
lems for machine learning and statistical models
which cannot adapt during the current interaction.

To move beyond static models, here we assume
a dynamic, interactive learning scenario where an
agent such as a robot receives live feedback from
an interlocutor as it guesses which object is being
referred to, and can update its own reference model
during the conversation, assuming an interactive
machine learning set-up (Kulesza et al., 2015). To
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Figure 1: The video feed which the Instruction Giver
sees during the data collection of PENTO-CV. The
Pentomino piece names from left to right are, top
row: F, X, Z, P, V; middle row: Y, I, U, T; bottom row:
N, L, W

build a cognitively realistic and interpretable model,
we use the insight from Brennan and Clark (1996)’s
argument that when interlocutors agree on a name
for an object, they are forming a temporary agree-
ment on how to conceptualize that object, a Con-
ceptual Pact. We model a Conceptual Pact process
as it occurs over time between different conversa-
tion pairs, using small language models assigned
to each referent which are trained from scratch by
the agent from the beginning of each interaction
with a new participant. We simulate a teaching
process where a positive example for a referent be-
comes available immediately after a reference has
been made to it. We use these models to extend
a simulation of an interactive reference resolution
setting by using existing human-human data.

Our aim here is to provide a method applicable
to any reference situation with interactive feedback
from a human user, and are guided by several mo-
tivating factors for the choice of method. Firstly, we
purposefully make use of efficient models which do
not require resource-intensive re-training regimes:
where two models are equal in terms of accu-
racy, we assume the less resource-intensive one is
preferable, not only for reasons of speed, but for en-
vironmental sustainability (Scuri et al., 2022). We
also want to use the approach to experiment with re-
duced data situations, inluding situations where the
robot may have only had a single interaction to learn
from. Finally, we also prefer human-interpretable
models over black box models. In the remainder
of this paper we present our domain and data in
§2, our Conceptual Pact model for reference in §3,
a first experiment on optimizing our model for ref-
erence resolution in §4, a second experiment on
reducing the amount of training data available in
§5, and a final discussion in §6.

Speaker End time (s) Referring expression English translation
B 167.5 das hellblaue L the light blue L
B 407.2 das zweite L the second L
B 454.0 das oben rechts liegende L the L at the top right
B 519.6 das große L the big L
B 785.7 das L the L
B 1083.5 das element the part
B 1101.9 dem blauen the blue one
B 1233.6 das blaue andere L the other blue L
B 1283.8 das blaue element the blue part
A 1545.5 das blaue element the blue part
A 1626.0 das blaue L the blue L
A 1635.4 das blaue L the blue L
A 1646.4 das blaue L the blue L
A 1661.9 das blaue L the blue L
A 1853.9 das blaue L the blue L
A 1922.8 das blaue L the blue L
A 1970.9 der blaue the blue one
A 2114.2 das blaue L the blue L
A 2296.3 das L the L
A 2297.3 das blaue the blue one
A 2298.1 das blaue L the blue L
A 2546.6 das blaue L the blue L
A 2645.0 das blaue L the blue L
A 2806.5 das blaue L the blue L
A 2834.6 das blaue L the blue L

Figure 2: A pair’s evolving referring expressions
for the V pentomino piece over time, eventually
stabilizing.

(a)

Spkr End time (s) Referring expression English translation
B 326.1 das plus the plus
B 547.3 das rote plus the red plus
B 700.6 das plus the plus
B 725.8 plus plus
B 743.3 plus plus
B 1060.7 das plus the plus
B 1070.0 plus plus
A 1246.4 das plus the plus
A 1249.6 das plus the plus
A 1429.0 das plus the plus
A 1447.9 das plus the plus
A 1666.1 das plus the plus
A 1695.4 das plus the plus
A 1808.5 plus plus
A 1811.3 das plus the plus

(b)

Spkr End time (s) Referring expression English translation
B 141.7 das rote kreuz the red cross
B 311.5 das rote kreuz the red cross
B 325.1 das kreuz the cross
B 338.2 das kreuz the cross
B 629.3 das kreuz the cross
B 645.9 das kreuz the cross
B 768.7 das kreuz the cross
B 825.7 das kreuz the cross
B 862.6 dem roten kreuz the red cross
B 862.6 dem kreuz the cross
B 1265.3 das kreuz the cross
A 1488.4 das X the X
A 1490.0 das kreuz the cross
A 1539.9 das X the X
A 1553.4 das kreuz the cross
A 1565.3 dem X the X
A 1815.6 das kreuz the cross
A 1839.2 dem X the X
A 1945.0 das kreuz the cross
A 2068.4 das kreuz the cross
A 2260.6 das kreuz the cross
A 2271.0 kreuz cross
A 2283.4 das kreuz the cross
A 2294.2 das X the X
A 2385.6 das kreuz the cross
A 2416.2 dem kreuz the cross

Figure 3: Two different pacts established for the X
piece by two different conversation pairs.

2. Domain and Data

We propose a component of a dynamic Spoken
Language Understanding (SLU) model of human
participants building puzzles with pieces of different
shapes and colours, specifically in the domain of
Pentomino puzzles (Golomb, 1996). This domain
requires that speakers use ways to refer to puzzle
pieces that they may not have a conventionalized
name for (Götze et al., 2022). Participants tend to
align and form a conceptual pact for each piece for
efficient interaction.

Specifically, we use the PENTO-CV corpus data
from the PentoRef data collection (Zarrieß et al.,
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2016) (Zarrieß et al., 2016) from Github.1 PENTO-
CV is a corpus of situated interactions between 16
German speakers wherein 8 pairs of participants
instruct one another via video and audio feed to
manually complete a Pentomino puzzle , using the
12 puzzle pieces as shown in Fig. 1. This data is
motivated by a long history of work on collaborative
referring in interactive settings - see e.g. (Clark and
Wilkes-Gibbs, 1986) for Tangram experiments for
forcing pact forming to refer to unfamiliar objects
and (Anderson et al., 1991) for the interactive Edin-
burgh map task where participants have to align to
each other’s reference strategies to complete a task.
Furthermore, PENTO-CV has high enough audio,
video and transcription and annotation quality for
developing automatic methods.

In PENTO-CV both participants have a turn at
playing one of two roles: the instruction giver (IG)
is given a photograph of the final goal configura-
tion of the puzzle pieces and can see the puzzle
being constructed by the instruction follower (IF).
Audio access is full-duplex and bidirectional while
only the IG has a video feed showing an overhead
view of the area of play including the puzzle pieces
and IF’s hands as per Fig. 1. Each game is further
subdivided into an initial ‘selection’ phase and a
following ‘building’ phase. In the selection phase,
the IF chooses some pieces and presents them
to the IG, often using speech and an indicative
gesture. The IG enters these objects into a user
interface that retrieves an image of a complete puz-
zle configuration from a database containing the
selected pieces in addition to others. After that, in
the building phase, the IG directs the IF in creat-
ing that target configuration. In this paper, we only
use the building phases of the participants’ interac-
tions due to inconsistent levels of transcription and
annotation in the selection phases. We use tran-
scribed speech data from both dialogue partners
which is annotated for references to the piece name
according to the Pentomino letter conventions as
described in the caption in Fig. 1.

In this paper we only deal with referring expres-
sions to individual pieces, rather than multiple ones.
We further filter the data by removing anaphoric
references.2 We preprocess the referring expres-
sions by removal of reparandum words (Shriberg,
1994) in repair disfluencies and of any filled pauses
marked up in the DUEL corpus style annotation
(Hough et al., 2016).3

1https://github.com/clp-research/
pentoref

2This was done procedurally by removing the words
in {“es", “das", “er", “da", “der", “ihn", “den", “sie", “die",
“damit", “daran", “dem" }

3The reparandum is taken to be any material before
the repair point + in the in-line annotation and filled
pauses annotated such as the ‘uh’ here are removed:

Once this cleaning process is complete, there
are a total of 1899 referring expressions to the 12
pentomino pieces across the 8 pairs of speakers.
The median number of referring expressions each
pair makes to a piece is 19, with a lower bound of 2
mentions for a piece and the highest at 41. For an
example of the referring expressions used for the V
piece in the order they occur for an interaction pair,
see Fig. 2, and for two different pairs’ references
to the X piece over time, see Fig. 3.

3. Conceptual Pact Models for
Reference Resolution using Small

Dynamically Constructed
Language Models

We intend to capture two ways conceptual pacts
can work in conversation. Firstly, as shown in
Fig. 3, different dialogue partners can develop dif-
ferent pacts for naming different objects which have
quite different lexical content, but remain consistent
throughout their interaction - in this example pair (a)
use ‘plus’ while (b) alternate between ‘kreuz’ and ‘X’
for the shape description of the X and they consis-
tently use these conventions. Secondly, as Fig. 2
shows, the convention of naming a piece can stabi-
lize over time in the interaction after initial variation,
in this case alighting on ‘das blaue L’ for the V piece.
These observations suggest a model which does
not dynamically update with feedback from the cur-
rent interaction and only draws on previous pacts
it has observed in its training data may perform
poorly when dealing with a novel pair, particularly
in small data situations.

To capture the contribution of local conceptual
pacts, we use local updating language models
for each piece r, ppactr , e.g. for the X piece
ppactX (w0..wn) gives the probability value that a re-
ferring expression w0..wn will be used for X based
on the previous references to the piece seen so far.
For our simulated interactive learning element, we
make the simplifying assumption that after trying to
resolve w0..wn, our agent receives a signal of the
correct piece then adds w0..wn to the training data
for the relevant ppactr model.

While our focus is on the locally constructed mod-
els for capturing pacts, the practical challenge is
that initially they will be maximally uncertain when
encountering the first instance of a referent as they
have had no training data for it and may continue
to be uncertain in the early mentions of the piece.
We allow the possibility of incorporating prior ex-
perience from observing other interactions, with
language models pexr (w0..wn). The experience
models return the probability of the words being
generated to refer to piece r based on prior con-

(the + the) {F uh} red cross → the red cross

https://github.com/clp-research/pentoref
https://github.com/clp-research/pentoref
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versations they have observed and do not update
during the current interaction, much like standard
static machine learning models. We assume that
an effective model will make use of both sources
of knowledge, optimally using the locally built lan-
guage model in combination with the experience
model with some weight λ in reference resolution,
for example in a simple Bayesian model as in (1).

arg max
r∈refs

pexr (w0..wn) + λppactr (w0..wn) · p(r) (1)

The final hyper-parameter of the model we posit
is motivated by the fact that while the prior expe-
rience model should be drawn on initially, as the
agent interacts more it should become more confi-
dent in its local pact model in accordance with our
observations of stabilizing pacts over time such as
in Fig. 2. Technically, this parameter determines
what the λ weight should be dynamic, making λ a
function of how many times a certain referent has
been seen so far, based on a linear degradation
of the influence of the prior experience model pexr .
This weighting begins with complete use of pexr and
λ=0 for the local model before the first mention of
a piece due to it having no training data, then in-
creases it linearly with each mention until the final λ
is used after a certain number of occurrences. We
define the number of mentions until the stabiliza-
tion of the pact as an integer variable stable which
can be optimized. The λ weighting after a given
number of occurrences or of reference r is below,
replacing the λ in (1), is therefore:

λr(or) = λ− (
1

stable
·max(stable− or, 0) · λ) (2)

The final model for each referent r is a joint score
given to the words in a referring expression w0..wn,
computed by the weighted interpolation of the rel-
evant language models’ probability estimations of
w0..wn: one based on the experience of object r
from previous interactions pexr and one dynamically
built during the current interaction ppactr . The inter-
polated weight depends on the λ hyper-parameter
and the number of times the referent r has been
encountered so far using (2) to give:

(1−λr(or))p
ex
r (w0..wn)+λr(or)p

pact
r (w0..wn) (3)

In application, after such a score has been ob-
tained for a referring expression w0..wn and ground-
truth piece g, a simulated teaching episode is car-
ried out using a positive example of g, by increment-
ing og by 1 and updating the local pact model ppactg

with w0..wn as a training example.

4. Experiment 1: Conceptual Pacts as
Local Language Models blended
with Prior Experience Language

Models

To test the efficacy of the models we set up a simple
reference resolution task with baselines and com-
petitor models, implementing the experiments in
Python.4 We use a simple classifier model through-
out for all experiments, the Linear Support Vector
Classifier (LSVC) with square hinge loss, and inves-
tigate the benefit of including scores from our model
described above in the instance data. The primary
baseline we compare against is a standard classifi-
cation set-up which is trained on all available other
data, using lexical features without our model’s fea-
tures, with no dynamic updating with the current
interaction. We also compare our model against a
competitor which exhaustively re-trains the LSCV
after each new instance is encountered, again just
using the lexical data but without information from
our models.

4.1. Obtaining model features
For each candidate referent r, we build two simple
n-gram language models (Shannon, 1948) with
Lidstone (add-k) smoothing, one trained using the
referring expressions to r from other pairs pexr and
one dynamically built during the interaction for that
piece ppactr which is initialized with empty counts.

For each referring expression w0..wn encoun-
tered in time-linear order, we compute the per-word
negative log probability (cross-entropy) of (3) for
each possible referent r then compute a relative
score for those values with Z-score normalization.
After the scores have been obtained, the simu-
lated teaching episode for ground-truth referent g
is carried out by incrementing observation count og
and updating the local pact model ppactg by adding
w0..wn into its n-gram counts for subsequent prob-
ability estimations. This update is a simple incre-
mental modification to count dictionaries and is
extremely computationally efficient.

Fig. 4 shows the moving average of the Z-score
normalized cross-entropy values for referring ex-
pressions generated by each model for 10 of the 12
pieces for one interaction, though note these plots
are shown for a different ground truth referent in
each graph. As can be seen, the model for a given
ground-truth piece (solid line with solid markers)
successfully separates out its cross-entropy values
from the other models (dashed lines) over time as
its local pact model is built dynamically, becoming
more certain about the expressions referring to its
piece over time as the others become less certain.

4The code for all experiments is available at https:
//github.com/julianhough/conceptualpacts.

https://github.com/julianhough/conceptualpacts
https://github.com/julianhough/conceptualpacts
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Figure 4: Plots of the moving average of the per-word cross-entropy (per-word negative log probability) of
10 different Pentomino pieces being referred by one conversational pair according to the model for that
piece (solid line with solid circular markers), vs that assigned by models for other pieces (dashed lines).
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System X-val Accuracy Test Accuracy X-val Time (s)
Pact-ex+Lex: Pact+Experience Model + Lexical 86.5 88.0 10.73
Static baseline: Lexical Only no update 82.5*** 83.3*** 10.12
Retrain: Exhaustive re-training Lexical Only 86.4 89.9 31.47

Table 1: Experiment 1 results. MacNemar test of difference to top row model ***p<=0.001

Some objects have distinct referring expressions
early on such as the X (bottom row, left), while
others take longer to separate out from the others,
such as the N (second row, right).

While in some cases pexr models do not always
help to provide useful initial values due to the whole
dataset being quite small and the pacts on pieces
being diverse, it is hoped that overall, the Z-scored
cross-entropies for the ground-truth piece’s model
versus the rest will be sufficiently lower than that
produced by other models to provide useful infor-
mation for the reference resolution classifier.

4.2. Experimental set-up and Evaluation
We evaluate in two settings as follows: 1) cross-
validation: after selecting a test conversation pair
that is closest in size to the mean number of overall
referring expressions, we exclude that from cross-
validation experiments to give 7 interactions. We
train on 6 folds and evaluate on the 7th iteratively
and obtain the mean accuracy of the predictions of
all folds. To obtain the pexr values for the training
data for each fold iteration, we train pexr models
on 5 folds and apply them on the 6th, again in a
cross-fold way, to ensure we are simulating the
test scenario where the test data will never have
been used before, even for language modeling. For
each example we combine the Z-score normalized
scores of (3) for each candidate referent with bag-
of-words length-normalized counts for the lexical
features. 2) testing: we use the test pair removed
from the cross-validation experiments to test on,
using all the data from the 7 other pairs for training.
While in theory, the training data could use pexr
models with 6 of the pairs, this is kept to 5 to be
consistent with the size of the cross-validation pexr
models so as not to alter the range of expected
probability values the models assign during testing.

We employ a standard accuracy metric for refer-
ence resolution in all experiments and significance
test between the models’ predictions using MacNe-
mar’s test on their predictions and the ground-truth
labels as applied to machine learning models by
Dietterich (1998). In the cross-validation case to
compute this we concatenate the predictions and
labels across all folds into single lists.

4.3. Optimization
We use the cross-validation setting to exhaustively
optimize the 6 hyper-parameters for our model: nex

and npact, the order of n-grams for the experience
and local pact language models respectively; kex
and kpact, their two add-k smoothing parameters; λ
for the pact model weighting, and the count stable
at which point λ is set to its final value as per (2).
The optimal parameter values for our 7-fold cross-
validation set-up were found to be the following:

nex kex npact kpact λ stable
1 0.1 1 0.9 0.1 6

The optimization shows that the model needs to
rely on the experience model more than the final
1-λ weight up until the sixth mention of a piece,
where we could see this as the typical stabilisation
point of the pacts for each piece. The fact the λ
weighting on the local ppactr models is only 0.1 is
more due to their size being roughly a fifth of the
pexr models rather than them not being very useful
- with less prior experience data and smaller pexr
models we expect this to rise towards or above 0.5,
as will be shown in Experiment 2.

4.4. Results
When using the optimized hyper-parameters, the re-
sults of the cross-validation and testing evaluations
are as per Table 1. Our model achieves reference
resolution accuracies of 86.5% and 88% in the two
settings. The application of the MacNemar test on
the error distributions shows the optimized model
significantly outperforms the static baseline in both
cross-validation and in final testing. The competitor
model which exhaustively re-trains after each refer-
ence with lexical data does not perform statistically
significantly differently to our model. However, the
exhaustive retraining model has a far increased
training time and resource use - Table 1 shows the
full running time of our model training and testing
on the 7-fold cross-validation, running on an Apple
M2 Pro chip with a 16GB memory, being around 3
times faster than the exhaustive retraining model,
and with very little extra time needed over that of
the static baseline. The very low computational re-
source intensity of our model is due to the fact that
dynamically adding counts to existing n-grams or
adding novel n-grams to the object language mod-
els consists of simply updating the relevant Python
dictionaries, with average case operation times of
constant time O(1) and worst case times of linear
time O(n), where n is the number of n-gram types
in the model.
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5. Experiment 2: The effect of limiting
prior experience

While in Experiment 1 in cross-validation and test-
ing, 6 and 7 interactions were available for training,
we imagine a scenario where a robot has little to no
previous experience. To simulate this, we look at
the effect of reducing the training data by one more
interaction iteratively, all the way down to allowing
observation of a single interaction as training data.

5.1. Optimization
Using cross-validation, we optimize the parameters
separately for each number of interactions allowed
for training (#experience). For each setting, using a
Python random seed, we pseudo-randomly choose
the data of the appropriate #experience size. The
exceptional case is when #experience=1, where the
standard way of applying language models does
not hold as the experience models pexr have no
data to build from to obtain the training data: to
alleviate this we simulate language model training
data by using the same interaction to train pexr as
for ppactr , which is a set-up not available at test time
as it would require predicting the whole interaction
before it happened. While this accommodation is
not ideal, it yielded quite promising results in testing.
The optimal parameters found in cross-validation
were as below:

#experience
1 2 3 4 5

nex 1 1 1 1 1
kex 0.1 1.0 0.95 0.75 0.7
npact 1 1 1 1 1
kpact 0.1 0.1 0.1 0.1 0.1
λ 0.1 0.8 0.65 0.4 0.3

stable 7 6 8 5 7
As can be seen, with the exception of #experi-

ence=1, the λ weighting starts high and gradually
diminishes with more training data pairs, as the
models trust the pexr s from other pairs more as more
data is made available. The pexr is still used more
than the final weighting in all models in the opening
mentions of the pieces, with stable being between
5-8 mentions.

5.2. Results
The reference resolution results from Experiment 2
are shown in Table 2, against the same competitor
models as in Experiment 1 with their training sets
reduced to the same data available to our models
and the comparison of our model’s performance
against the static baseline on the test set is shown
in Figure 5. In cross-validation, the model outper-
forms the static baseline for all #experience, reach-
ing an accuracy of 78.2% with only 1 pair to train on,

Figure 5: Reference resolution accuracy showing
faster convergence of the Pact Model with limited
experience compared to the static baseline.

exhibiting a steady improvement as #experience
increases, with the exception of 5. The model per-
forms the same as the exhaustive re-training model
for #experience={3-6}, however it is outperformed
when training on just 1 and 2 pairs: this may be due
to their uniquely small pexr models and the unique
set-up for #experience=1.

In testing, the model is outperformed by the
exhaustive re-training model in all set-ups. As
shown in Figure 5, our model outperforms the
static baseline for #experience={1-3} but not for
#experience={4-6}, however it does again for the
full version in Experiment 1 (i.e. #experience=7).
We discovered in development that the size and se-
lection of the language model training interactions
can greatly affect results, so particular fold pairings
can make a difference and further experimentation
is needed in future. It is still promising that in testing
with one single dialogue to learn from, the model
can exceed the baseline static lexical model by a
large margin (81.4% vs 59.7%), making good use
of the dynamically available data despite the chal-
lenges of the set-up, and as per the run times in
Table 1 at a very marginal extra computational cost.

6. Discussion

The two experiments we present using features
generated by our conceptual pact model show
promise for their use in reference resolution in an
interactive learning set-up. While in Experiment
1, the method using the full dataset was shown to
be effective compared to a non-interactive lexical
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System X-val Accuracy (#experience) Test Accuracy (#experience)
1 2 3 4 5 1 2 3 4 5 6

Pact-ex+Lex 78.2 82.5 83.6 85.2 84.5 81.4 84.9 85.3 82.6 83.7 83.7
Static baseline 66.0*** 72.0*** 72.9*** 79.6*** 79.2*** 59.7*** 71.7*** 72.9*** 82.9 82.9 82.9
Retrain 81.4*** 83.8** 83.7 85.1 85.4 85.7* 88.4* 88.8* 89.9*** 90.3*** 90.3***

Table 2: Experiment 2 results. MacNemar test of difference to top row model
***p<=0.001,**p<=0.01,*p<=0.05

feature baseline, in Experiment 2 where training
data was reduced, the picture is more mixed, yet in
cross-validation it still outperforms the baseline for
all amounts of reduced training data tested. While
it does not outperform the exhaustive re-training
competitor, as shown by the run times, it is consid-
erably less resource-intensive to update counts of
simple n-gram models than retraining classifiers
from scratch. Furthermore, complex discriminative
classifiers like the LSVC using lexical and other
features do not allow a clear decomposition of the
contributions of the different parts of their training
data, so our model also brings the benefits of mod-
ularity and human interpretability for analysis.

Our work follows work in embodied reference
resolution (Kennington and Schlangen, 2015; Yu
et al., 2016; Suglia et al., 2022) and live grounded
language acquisition in the spirit of (Steels and
Vogt, 1997). We maintain principles of small data
use for a more realistic language acquisition mod-
els than is currently employed for large language
model-based systems. In future, we plan for a more
realistic evaluation in an in-robot system adopt-
ing the instruction follower role, such as PentoRob
(Hough and Schlangen, 2016), where the system
would consume raw audio data and use automatic
speech recognition hypotheses and use visual fea-
tures similar to PENTO-CV’s provided features or
those extracted by another system.

While modelling a zero, or near-to-zero, initial
linguistic knowledge approach for the pact refer-
ence models, technically, neural models of any
kind could substitute the n-gram models for the
prior experience language models here, including
LLMs like the GPT models or LLaMA (Touvron et al.,
2023). As described here, they could be used ini-
tially, likely with appropriate prompt engineering
for reference resolution in this small domain, with
their influence attenuated over time as the local
pact is formed. However, our intention was to show
the strength of the framework for language mod-
els in general, with promising results for classical,
efficient, and interpretable n-gram models being
a strong starting point with scant use of compute
power and maintaining complete transparency of
the training data. We propose that the components
of the model, such as the weight of the local pact
model’s contribution λ and stabilization point stable
can be experimented with in a range of interactive

reference scenarios, using different language mod-
els, to test the difference between different domains
and participant pairs.

In terms of how well this model could general-
ize beyond the micro-domain of Pentomino puzzle
building, we claim this is a proof-of-concept for a
much more general model. We argue for a multi-
domain, rather than domain-general, approach to
dialogue systems, where individual pacts can be es-
tablished for different situations either starting with
existing knowledge or starting anew for new sound-
meaning pairs, conversational genres (Ginzburg,
2012) or, in Wittgenstinian terms, different language
games (Wittgenstein, 1953). We try to model lan-
guage as a completely dynamic process in a state
of constant change, in the spirit articulated by inter-
activism (Gregoromichelaki et al., 2022). If models
only rely on static knowledge, even if using very
large amounts of it, they will ultimately be limited.

7. Conclusion

We have presented a model of Brennan and Clark’s
conceptual pacts in spoken interaction situations
where agents refer to objects in a puzzle-building
task. We simulate the pact-building process with
small local language models for each referent which
are updated through a simulation of interactive
learning. The models capture how uncertainty in
determining which referent is being referred to de-
creases over time as a pact stabilises and also how
different interaction pairs build different models be-
tween them. We show how our model can combine
the local language models from the current interac-
tion with those from prior experience in an optimal
way and their features can help a reference reso-
lution classifier outperform a lexical model without
them. When reducing the amount of prior train-
ing data, the model is still robust, performing well
after just a single interaction has been observed.
While it does not outperform an exhaustive retrain-
ing baseline, it exhibits parity to it in a number of
situations, and its interpretability, modularity, and
far lower resource intensity make this an interesting
model to explore in more complex domains and for
fully interactive systems.
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Limitations and Ethical Considerations

The study has several limitations: Firstly, our ex-
periments were limited to German speakers and in
a fairly narrow reference domain, so cross-lingual
and cross-domain claims must be limited from this
study alone. Secondly, we did not carry out full, end-
to-end reference resolution from the transcripts as
we only used the ground-truth annotated referring
expressions, simulating perfect mention detection.
Thirdly, the fact certain kinds of anaphoric reference
and referring expressions for multiple objects were
filtered out means not all references to objects were
used from the transcription data due to inconsis-
tent annotation protocols, where these could be the
most challenging cases. Fourth, while it is a simple
domain, for a more solid empirical basis and com-
parison to human-human agreement, a sample of
the reference annotations should be checked using
inter-annotator agreement measures as described
by e.g. (Artstein and Poesio, 2008).

In terms of ethical considerations, all participants
from the PENTO-CV data gave explicit permission
for their data to be used for research purposes, and
were paid at above the German minimum wage rate
for their participation. The publicly downloadable
transcribed data does not include audio or video
data which could identify the participants. We con-
sider our use of relatively low resource models com-
pared to modern large language models to be part
of a more sustainable approach to this kind of the-
oretically informed computational linguistics.
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