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Abstract

Prompt-based methods have been widely used in few-shot named entity recognition (NER). In this paper, we first
conduct a preliminary experiment and observe that the key to affecting the performance of prompt-based NER
models is the capability to detect entity boundaries. However, most existing models fail to boost such capability. To
solve the issue, we propose a novel model, ParaBART, which consists of a BART encoder and a specially designed
parabiotic decoder. Specifically, the parabiotic decoder includes two BART decoders and a conjoint module. The
two decoders are responsible for entity boundary detection and entity type classification, respectively. They are
connected by the conjoint module, which is used to replace unimportant tokens’ embeddings in one decoder with
the average embedding of all the tokens in the other. We further present a novel boundary expansion strategy to
enhance the model’s capability in entity type classification. Experimental results show that ParaBART can achieve
significant performance gains over state-of-the-art competitors.
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1. Introduction

Named entity recognition (NER) is a fundamental
task in Natural Language Processing (NLP), which
aims to identify and categorize spans of text into
a set of pre-defined entity types, such as people,
organization, and location. While a consid-
erable number of approaches (Li et al., 2020; Yadav
and Bethard, 2019) based on deep neural networks
have shown remarkable success in NER, they gen-
erally require massive labeled data as training set.
Unfortunately, in some specific domains, named
entities that need professional knowledge to under-
stand are difficult to be manually annotated in a
large scale.

To address the issue, few-shot NER has recently
been proposed, which aims to improve the perfor-
mance of NER models in the few-shot scenario.
In particular, prompt-based methods have shown
promising prospects for few-shot NER (Cui et al.,
2021; Ma et al., 2021; Hou et al., 2022). Instead of
adapting Pre-trained Language Models (PLMs) to
downstream tasks directly, prompt-based methods
reformulate downstream tasks to match with the
tasks used in the PLMs pre-training with textual
prompts. For example, when recognizing named
entities in the sentence “ACL will be held in Toronto”,

*Equal Contribution.
†Corresponding author.

1Parabiotic is a biological term and refers to that com-
bining two living organisms that are joined together sur-
gically to develop a single, shared physiological system.

Republicans controlled [the [White House]ORG]O-entity …

[Mr. [Adel Ibrahim]PER]O-entity has asked …

… by [[John Doe]PER, Jr.]O-entity

[The [Congress]ORG]O-entity hold that …

Figure 1: Examples of O-entity on CoNLL03
dataset. An O-entity span means the span is
not an entity but it is similar to a certain entity span.

we can utilize a prompt “<candidate_span> is
a ____ entity”. Here, the <candidate_span>
can be replaced by all possible textual spans (e.g.
“Toronto”) in the original sentence. After that, we will
ask the PLM to fill the blank with an entity type (e.g.
“location”).

NER can be further decomposed into two sub-
tasks: entity boundary detection and entity type
classification. We first conduct a preliminary ex-
periment2 in the 10-shot setting on the CoNLL03
dataset to study the key to the performance of
prompt-based methods for few-shot NER. On the
one hand, we ignore specific entity types and con-
struct O-entity spans by adding certain entity
spans to its previous or subsequent word. As
shown in Figure 1, “White House” and “John Doe”
are Organization and Person entities, respec-
tively, while “The White House” and “John Doe
Jr." are in O-entity type. Then, we evaluate the

2The model used in the experiment is Template-
BART (Cui et al., 2021).
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Figure 2: The preliminary results on the CoNLL03
dataset. (a) More than half of O-entity spans
are predicted incorrectly. (b) High accuracy for
entity type classification when entity boundaries
are given.

model performance on entity boundary detection
by judging whether O-entity spans are entities
or not. On the other hand, assuming that the entity
boundaries are given, we classify the entity spans
into entity types. The results are shown in Fig-
ure 2. From the figure, we see that more than half
of O-entity spans are predicted incorrectly as
entities, while the prompt-based model2 achieves
very high accuracies on entity type classification.
This shows that the key to the prompt-based mod-
els is entity boundary detection, rather than entity
type classification. Despite the success, most prior
methods focus on boosting their capability in en-
tity type classification and generally ignore entity
boundary detection.

In this paper, to address the problem, we propose
a BART-based model ParaBART, which consists of
a BART encoder and a specially designed parabi-
otic1 decoder. Specifically, the parabiotic decoder
includes two BART decoders and a conjoint mod-
ule. The two decoders are used for entity bound-
ary detection and entity type classification, respec-
tively. The conjoint module exchanges knowledge
between the two decoders, which replaces unim-
portant tokens’ embeddings in one decoder with
the average embedding of all the tokens in the other.
The two decoders behave like a parabiotic system,
so we call it parabiotic decoder. In addition, in-
spired by label smoothing (Szegedy et al., 2016;
Müller et al., 2019), we propose a novel boundary
expansion strategy to further improve the model’s
performance on entity type classification. Finally,
we summarize our main contributions as follows.

• We propose ParaBART, a BART-based model
with parabiotic decoder for few-shot NER. The
model significantly enhances its capability in
detecting entity boundaries.

• We design a novel boundary expansion strat-

egy to help classify entity types in NER.

• We perform extensive experiments to show the
superiority of ParaBART over other SOTAs.

2. Related Work

2.1. Prompt-based learning
Despite the success of Pre-trained Language Mod-
els (PLMs) (Devlin et al., 2018; Liu et al., 2019;
Yang et al., 2019) in massive NLP tasks, most of
them are hard to fine-tune in low-resource sce-
narios due to the gap between pre-training and
downstream tasks. Inspired by GPT-3 (Brown
et al., 2020), stimulating model knowledge with
a few prompts has recently received much atten-
tion. In prompt-based learning, instead of adapt-
ing PLMs to downstream tasks via objective en-
gineering, downstream tasks are reformulated to
keep pace with those solved during the original
LM training with the help of a textual prompt.
Early attempts (Schick and Schütze, 2021a,b)
introduce manual prompts to text classification
tasks. Building manual prompts requires the knowl-
edge of domain experts, limiting the application
of prompt-based methods in real-world scenarios.
To solve this problem, automatically searching dis-
crete prompts methods are proposed such as AU-
TOPROMPT (Shin et al., 2020) and LM-BFF (Gao
et al., 2021). Meanwhile, generating continuous
prompts through neural networks for both text clas-
sification and generation tasks (Han et al., 2021; Li
and Liang, 2021) have been proposed. Although
prompt-based methods are proved to be useful in
sentence-level tasks, they are very complicated for
NER task, which will be introduced in Section 2.2.

2.2. Few-shot NER
Few-shot NER has recently received much atten-
tion (Huang et al., 2020; Hou et al., 2020; Das et al.,
2021). The current mainstream methods for few-
shot NER can be grouped into two main categories:

Meta-learning-based methods Meta-learning-
based methods (Fu et al., 2023; Tian and Gao,
2022; Gao et al., 2023; Zhao et al., 2023) are
widely applied in handling few-shot tasks. Fritzler
et al. (2019) combine PROTO (Snell et al., 2017)
with conditional random field for few-shot NER. In-
spired by the nearest neighbor inference (Wiseman
and Stratos, 2019), StructShot (Yang and Katiyar,
2020) employs structured nearest neighbor learn-
ing and Viterbi algorithm to further improve PROTO.
MUCO (Tong et al., 2021) trains a binary classi-
fier to learn multiple prototype vectors for repre-
senting miscellaneous semantics of O-class. CON-
TaiNER (Das et al., 2021) proposes a contrastive
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learning method that optimizes the inter-token dis-
tribution distance for few-shot NER. ESD (Wang
et al., 2021) uses various types of attention based
on PROTO to improve the model performance. Ma
et al. (2022) addresses few-shot NER by sequen-
tially tackling few-shot span detection and few-shot
entity typing using meta-learning. However, these
methods assume a resource-rich source domain.
In the few-shot setting without a data-rich source
domain, the performance of these methods is lim-
ited.

Prompt-based methods Cui et al. (2021) uses
BART (Lewis et al., 2020) as the backbone and con-
structs templates by dividing sentences into spans
for few-shot NER. EntLM (Ma et al., 2021) proposes
a template-free approach through replacing entity
spans with verbalizers. LightNER (Chen et al.,
2021) generates a index of an entity span in the
input as well as a label word. ProtoVerb (Cui et al.,
2022) combines PROTO (Snell et al., 2017) and
prompt-based learning by generating prototype vec-
tors as verbalizers for few-shot NER. QaNER (Liu
et al., 2022) proposes a refined strategy for convert-
ing NER problem into the Question Answering (QA)
formulation and generates templates for QA mod-
els. Hou et al. (2022) improves model predic-
tion efficiency by introducing an inverse paradigm.
Although previous prompt-based methods have
achieved good performance, most of them focus on
boosting their capability in entity type classification
and generally ignore entity boundary detection.

3. Problem Definition

In this work, we focus on few-shot NER task.
Specifically, a training set Dtrain consists of word
sequences and their label sequences. Given a
word sequence X = {x1, ..., xn}, we denote L =
{l1, ..., ln} as its corresponding label sequence.
Here, we assume only K training examples (K-
shot) for each of N classes (N-way) in the training
set Dtrain. Our goal is to develop a model that
learns from these few-shot training samples then
makes predictions on the test set Dtest. Different
from previous works that assume a resource-rich
source domain and available support sets during
testing, we follow the few-shot setting of Gao et al.
(2021), which supposes that only a small number
of examples are used for fine-tuning. Such set-
ting makes minimal assumptions about available
resources and is more practical.

4. Method

In this section, we introduce our proposed model
ParaBART, which consists of a BART encoder and
a parabiotic decoder. The overall framework of

ParaBART is given in Figure 3. Next, we describe
its main components.

4.1. Parabiotic Decoder
The parabiotic decoder includes two BART de-
coders and a conjoint module. Specifically, one de-
coder is used for entity boundary detection, called
EBD decoder, while the other is for entity type clas-
sification, named ETC decoder. Further, the con-
joint module is introduced for knowledge exchange
between the two decoders.

We first manually create the templates for the two
decoders, respectively. For the ETC decoder, the
template should have two slots: one slot for candi-
date spans and the other for label words. We use
a one-to-one mapping function to convert a label
set L = {l1, ..., l|L|} (e.g., lk =“LOC”) to a natural
word set Y = {y1, ..., y|L|} (e.g., yk =“location”).
Then we can use the k-th word to define template
Tyk

ETC (e.g., <candidate_span> belongs to lo-
cation category.) In this way, we can obtain a
list of templates TETC = [Ty1

ETC , ...,T
y|L|
ETC ]. For

the EBD decoder, we construct two templates:
an entity template T+

EBD for all the named entity
spans (e.g., <candidate_span> is a named en-
tity.) and a non-entity template T−

EBD for non-entity
spans (e.g., <candidate_span> is not a named
entity.). We denote TEBD = [T+

EBD,T−
EBD].

For the conjoint module, its goal is to exchange
knowledge learned in two BART decoders. Inspired
by Caron et al. (2021); Liang et al. (2022), we se-
lect a proportion of tokens in one decoder with the
smallest attention scores to <CLS>3 , which are
considered as less important tokens. After that,
the selected tokens’ embeddings are replaced with
the average token embedding in the other decoder.
Further, we employ residual connection (He et al.,
2016) to reduce the information loss caused by the
replacement. The procedure of the conjoint module
at the ϕ-th layer is summarized in Alg.1. In particu-
lar, similar as in Pu et al. (2022), we only add the
module in the shallow layers (e.g. ϕ ∈ [1, 2, 3]) of
the decoders, to share the general perceptions.

4.2. Boundary Expansion
In few-shot NER, it is generally held that the an-
notated spans are scarce and assigned with full
probability to be an entity, while that of all other
spans is zero (Zhu and Li, 2022). However, this
could lead to the noticeable sharpness problem be-
tween the target span and its O-entity extended
span, which may adversely affect the model’s ef-
fectiveness. For example, given a sentence “ACL
will be held in Toronto”, the spans “Toronto” and

3The special token in Transformer that can be used
to derive the sentence-level embedding.
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Figure 3: The overall architecture of ParaBART, which consists of a BART encoder and a specially
designed parabiotic decoder. The details are shown in Section 4.

Algorithm 1 Conjoint Procedure
Input: The tokens’ embedding matrices E1, E2

and the <CLS> attention vectors A1, A2 of two
decoders; conjoint proportion γ;
# E1,E2 ∈ Rseq_len×hidden_dim

# A1,A2 ∈ R1×seq_len

1: Obtain the positions P1, P2, whose attention
scores are smaller than the γ-quantile of A1,
A2, respectively;

2: for p ∈ P1 do
3: E1[p]← E1[p] +

1
seq_len

∑seq_len
i=1 E2[i];

4: end for
5: for p ∈ P2 do
6: E2[p]← E2[p] +

1
seq_len

∑seq_len
i=1 E1[i];

7: end for

“in Toronto” share high similarity, but they have to-
tally different labels. The former has a gold label
location while that of the latter is O-entity.

To deal with the issue, inspired by label smooth-
ing (Szegedy et al., 2016; Müller et al., 2019), we
further design a boundary expansion strategy. For
each O-entity extended span, we change its la-
bel from O-class to the entity type corresponding to
the entity span. For example, we change the label
of “in Toronto” from O to location. It is noted that
we only implement entity boundary expansion for
the ETC decoder. After that, its corresponding tem-
plate in the EBD decoder is kept unchanged (e.g.
“in Toronto is not a named entity”), but that in the
ETC decoder is updated (e.g. “in Toronto belongs
to location category”). Therefore, the boundary ex-
pansion mainly affects the performance of entity
type classification, but has marginal influence on

entity boundary detection4 .

4.3. Training
Gold entities are used to create templates during
training. Given a text span xi corresponding to a
gold entity whose entity type is yk, we fill the text
span and the entity type into TETC and TEBD to
construct two target sentences Tyk,xi

ETC and T+
EBD.

If xi is a non-entity span, we only need to derive
the target sentence T−

EBD. We use all gold enti-
ties in the training set to construct positive sam-
ples (X,TETC ,T

+
EBD) and also negative samples

(X,T−
EBD) by randomly sampling non-entity text

spans. Further, with the boundary expansion strat-
egy, we can generate some expanded samples
(X,TETC ,T

−
EBD). We set the ratio between the

number of positive, negative and expanded sam-
ples to 1:1:1.

Given a positive sample (X,TETC ,T
+
EBD) or an

expanded sample (X,TETC ,T
−
EBD), we feed the

input X to the BART encoder, and then obtain the
hidden representation of the sentence:

henc = Encoder(X). (1)

For each BART decoder, at the c-th step, henc and
previous output tokens t1:c−1 are taken as inputs,
yielding a representation using attention (Vaswani
et al., 2017):

hdec
c = Decoder(henc, t1:c−1), (2)

For simplicity, the conjoint module is also included
in Equation 2, which is used to exchange knowl-
edge between the two decoders. Details can be

4The experimental analysis of the boundary expan-
sion strategy is introduced in Section 5.4.



3711

found in Section 4.1. After that, the conditional
probability for generating the word tc is defined as:

p(tc|t1:c−1,X)=Softmax(hdec
c Wlm + blm) (3)

where Wlm ∈ Rdh×|V| and blm ∈ R|V|. |V| rep-
resents the vocab size of pre-trained BART. The
cross-entropy between each decoder’s output and
the corresponding target template is used as the
loss function:

L = −
m∑
c=1

logp(tc|t1:c−1,X) (4)

The ETC and EBD decoders get LETC and LEBD

by Equation 4, respectively. We use LETC and
LEBD to update their corresponding decoder and
jointly update the encoder. Given a negative sam-
ple pair (X,T−

EBD), we only feed the encoder out-
put henc to the EBD decoder and obtain LEBD to
update the encoder and EBD decoder.

4.4. Inference
We first enumerate all possible spans in the sen-
tence {x1, ..., xn} and fill them in the prepared tem-
plates. Following Cui et al. (2021), we restrict the
number of n-grams for a span from one to eight for
efficiency. Then, we use the fine-tuned pre-trained
generative language model to assign a score for
each template, formulated as

f(T) =

m∑
c=1

logp(tc|t1:c−1,X) (5)

We first calculate scores f(T+
EBD) and f(T−

EBD)
for each candidate spans through the EBD decoder.
If f(T−

EBD) > f(T+
EBD), we predict the text span

is not an entity. Otherwise, we calculate scores
f(Tyk

ETC) for each entity type through the ETC de-
coder. Finally, we assign the entity type with the
largest score to the text span.

5. Experiments

We compare our proposed method with several
baselines on two classic few-shot scenarios: (1)
few-shot setting, which has only a few labeled data
as training data. (2) resource-rich setting, where
some additional data-rich source domains are avail-
able for pre-training.

Implementation Following Cui et al. (2021), we
use BARTLARGE (Lewis et al., 2020) as our back-
bone for all the datasets. Besides, following Hou
et al. (2022), we finetune the model only on few-
shot training set for 2 epochs (4 on 10/20 shots
settings) with the AdamW optimizer for all our ex-
periments. We use the grid search to find the best

hyper-parameters. As a result, we set the learn-
ing rate as 4e− 5 and batch size as 2 for few-shot
training. We add the conjoint module in the first
three layers of two decoders and set the conjoint
proportion γ to 0.2. We use the templates “<can-
didate_span> is a named entity” and “<candi-
date_span> is not a named entity” for EBD de-
coder and “<candidate_span> belongs to <en-
tity_type> category” for ETC decoder. The im-
pact of different choice of templates are detailed in
Section 5.4. All baseline results except QaNER (Liu
et al., 2022) are recorded in Hou et al. (2022). For
QaNER, we use their official codes6 and keep the
experimental setup consistent with other baselines.
We run all the experiments on a single NVIDIA v100
GPU.

5.1. Few-Shot Setting
Datasets Following Hou et al. (2022), we conduct
experiments on three few-shot datasets with only
in-domain data: MIT-Restaurant Review (Liu et al.,
2013), MIT-Movie Review (Liu et al., 2013) and MIT-
Movie-Hard Review7 . We conduct experiments
with K ∈ {10, 20, 50, 100, 200, 500} shots settings
to fully evaluate the performance of our method in
all three datasets. To overcome the randomness
associated with training set selection, we sample 10
different training sets for each K-shot setting and
report averaged results. All baselines are trained
and tested with the same data.

Baselines In our experiments, we compare with
some competitive baselines which can be grouped
into three categories: (1) conventional sequence
labeling methods: ExampleNER (Ziyadi et al.,
2020), Sequence Labeling BERT (Devlin et al.,
2018) and Sequence Labeling BART (Lewis et al.,
2020). ExampleNER uses large open-domain NER
datasets to train an entity-agnostic model to fur-
ther capture the correlation between support ex-
amples and a query. (2) metric-based methods:
Multi-Proto (Huang et al., 2020), NNShot and
StructShot (Yang and Katiyar, 2020). Multi-Proto
proposes multiple prototypes for each entity type
and pre-trained the model with the task of ran-
domly masked token prediction on massive cor-
pora. NNShot is an instance-level nearest neigh-
bor classifier for few-shot prediction, and StructShot
promotes NNShot with a Viterbi algorithm during
decoding. (3) prompt-based methods: Template-
based BART (Cui et al., 2021), EntLM (Ma et al.,
2021), QaNER (Liu et al., 2022) and Inverse

6https://github.com/dayyass/QaNER
7MIT-Movie Review has two datasets: a simple one

and a complex one. We denote the simple one as MIT-
Movie and combine both as MIT-Movie-Hard.

https://github.com/dayyass/QaNER
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Table 1: F1 scores (%) of 10, 20, 50, 100, 200, 500-shot problems over three benchmark datasets. +PT
denotes the model is pre-trained on additional datasets. We highlight the best results in bold.

Method MIT-Restaurant
10-shot 20-shot 50-shot 100-shot 200-shot 500-shot Average

ExampleNER + PT 27.6 29.5 31.2 33.7 34.5 34.6 31.9
Multi-Proto + PT 46.1 48.2 49.6 50.0 50.1 - -

Sequence Labeling BART + PT 8.8 11.1 42.7 45.3 47.8 58.2 35.7
Sequence Labeling BERT + PT 27.2 40.9 56.3 57.4 58.6 75.3 52.6

Template-based BART + PT 53.1 60.3 64.1 67.3 72.2 75.7 65.5
Sequence Labeling BERT 21.8 39.4 52.7 53.5 57.4 61.3 47.7

Template-based BART 46.0 57.1 58.7 60.1 62.8 65.0 58.3
QaNER 55.3 63.9 67.1 69.8 71.3 73.2 66.8

Inverse Prompt 52.1 61.5 66.8 71.0 74.0 76.4 67.0
ParaBART (ours) 59.71 67.45 71.22 74.58 76.14 78.94 71.34

Method MIT-Movie-Hard
10-shot 20-shot 50-shot 100-shot 200-shot 500-shot Average

ExampleNER + PT 40.1 39.5 40.2 40.0 40.0 39.5 39.9
Multi-Proto + PT 36.4 36.8 38.0 38.2 35.4 38.3 37.2

Sequence Labeling BART + PT 13.6 30.4 47.8 49.1 55.8 66.9 43.9
Sequence Labeling BERT + PT 28.3 45.2 50.0 52.4 60.7 76.8 52.2

Template-based BART + PT 42.4 54.2 59.6 65.3 69.6 80.3 61.9
Sequence Labeling BERT 25.2 42.2 49.6 50.7 59.3 74.4 50.2

Template-based BART 37.3 48.5 52.2 56.3 62.0 74.9 55.2
QaNER 56.5 62.3 66.1 68.7 70.2 72.4 66.0

Inverse Prompt 53.3 60.2 66.1 69.6 72.5 74.8 66.1
ParaBART (ours) 61.34 64.79 70.33 72.81 74.58 76.17 70.00

Method MIT-Movie
10-shot 20-shot 50-shot 100-shot 200-shot 500-shot Average

Sequence Labeling BERT 50.6 59.3 71.3 - - - -
NNShot 50.5 59.0 71.2 - - - -

StructShot 53.2 61.4 72.1 - - - -
Template-based BART 49.3 59.1 65.1 - - - -

EntLM 57.3 62.4 71.9 - - - -
QaNER 62.5 67.0 71.1 75.8 78.3 81.2 72.7

Inverse Prompt 59.7 70.1 77.6 80.6 82.6 84.5 75.9
ParaBART (ours) 70.34 75.28 81.91 83.52 84.35 86.17 80.26

Table 2: F1 scores (%) on 5-shot SNIPS dataset. We highlight the best results in bold.

Method 5-shot SNIPS
We Mu Pl Bo Se Re Cr Average

Bi-LSTM 25.44 39.69 45.36 73.58 55.03 40.30 40.49 45.70
SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96

TransferBERT 56.01 43.85 50.65 14.19 23.89 36.99 14.29 34.27
Matching Network 38.80 37.98 51.97 70.61 37.24 34.29 72.34 49.03

WPZ+BERT 69.06 57.97 44.44 71.97 74.62 51.01 69.22 62.61
TapNet+CDT 67.83 68.72 73.74 86.94 72.12 69.19 66.54 72.15
L-WPZ+CDT 78.23 62.36 59.74 76.19 83.66 69.69 71.51 71.62

L-TapNet+CDT 69.58 64.09 74.93 85.37 83.76 69.89 73.80 74.49
Inverse Prompt 70.63 71.97 78.73 87.34 81.95 72.07 74.44 76.73

ConVEx* 71.50 77.60 79.00 84.50 84.00 73.80 67.40 76.80
ParaBART (ours) 72.19 74.58 80.41 89.58 84.13 75.62 76.95 79.07

Prompt (Hou et al., 2022). Specifically, Template-
based BART is a prompt-based method that query
BART every possible span in a sentence if it be-
longs to a certain entity type. QaNER proposes a
refined strategy for converting NER problem into
the Question Answering (QA) formulation and gen-
erates templates for QA models. Inverse Prompt

introduces an inverse paradigm for prompting and
an iterative prediction strategy to improve the model
performance.

Results The results in few-shot settings on three
datasets are shown in Table 1. From the table,
ParaBART consistently outperforms all the base-
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Table 3: Ablation study: F1 scores (%) of 10,
20, 50, 100, 200, 500-shot problems over MIT-
Restaurant (MIT-R), MIT-Movie-Hard (MIT-MM)
and MIT-Movie (MIT-M) datasets. w/o CM denotes
removing conjoint module and w/o BE denotes re-
moving boundary expansion.

Method MIT-R MIT-MM MIT-M

10-shot
ParaBART 59.71 61.34 70.34

w/o CM 57.32 60.18 68.94
w/o BE 55.47 57.32 68.17

20-shot
ParaBART 67.45 64.79 75.28

w/o CM 65.33 61.87 73.19
w/o BE 62.97 60.13 73.65

50-shot
ParaBART 71.22 70.33 81.91

w/o CM 69.01 68.05 79.23
w/o BE 68.39 66.58 79.88

100-shot
ParaBART 74.58 72.81 83.52

w/o CM 72.78 69.32 81.01
w/o BE 72.11 69.98 81.14

200-shot
ParaBART 76.14 74.58 84.35

w/o CM 74.20 71.19 82.87
w/o BE 74.36 72.32 82.91

500-shot
ParaBART 78.94 76.17 86.17

w/o CM 76.59 74.82 84.18
w/o BE 77.54 74.77 85.12

lines by a large margin. For example, compared
with Inverse Prompt, ParaBART achieves 7.6% im-
provements in 10-shot setting on MIT-Restaurant
dataset. When compared against Template-based
BART, ParaBART leads by 14.8% in the average
F1 score on MIT-Movie-Hard dataset, which clearly
demonstrates that our model is very effective in im-
proving BART-based model. All these results show
that ParaBART can leverage information from lim-
ited labeled data more effectively.

5.2. Resource-Rich Setting
Datasets We also evaluate the model’s capabil-
ity in transferring knowledge from data-rich source
domains to unseen few-shot domains. We con-
duct experiments on SNIPS (Coucke et al., 2018)
dataset and use 5-shot SNIPS datasets provided
by Hou et al. (2022). The few-shot SNIPS dataset
consists of 7 domains with different label sets:
GetWeather (We), Music (Mu), PlayList (Pl), Rate-
Book (Bo), SearchScreenEvent (Se), BookRestau-
rant (Re), and SearchCreativeWork (Cr). Each
domain contains 100 few-shot episodes, and each
episode consists of a support set and a query set.

Baselines We provide competitive baselines in-
cluding: (1) traditional finetune-based methods: Bi-
LSTM (Schuster and Paliwal, 1997), SimBERT (Su,
2020), TransferBERT and ConVEx (Henderson
and Vulić, 2020); (2) few-shot learning methods:
Matching Network (Vinyals et al., 2016), WPZ (Frit-
zler et al., 2019), TapNet+CDT, L-TapNet+CDT,

L-WPZ+CDT (Hou et al., 2020) and Inverse
Prompt (Hou et al., 2022). ConVEx is a finetuning-
based method, which is pre-trained on Reddit data
and fine-tune on few-shot slot tagging data. It is
noted that the Reddit data is not used by our method
and other baselines during the experiments.

Results The results of cross-domain settings on
5-shot SNIPS dataset are shown in Table 2. From
the table, we see that our method outperforms all
the baselines on the average F1 score including
ConVEx which uses extra Reddit data in the cross-
domain 5-shot setting. Compared with Inverse
Prompt, ParaBART achieves 2.34% improvements
on the average F1 score. All these results clearly
show the generalizability of our model on cross-
domain few-shot NER task.

5.3. Ablation Study
We conduct an ablation study to understand
the characteristics of the main components of
ParaBART. As shown in Table 3, the conjoint mod-
ule brings consistent improvement across all the
datasets. This shows that the conjoint module can
effectively improve the model performance. When
removing boundary expansion, ParaBART has a
significant decline in all the datasets, especially
in low-resource settings. For example, ParaBART
drops 4.24% in 10-shot setting on MIT-Restaurant
dataset, which demonstrates that our proposed
boundary expansion strategy is highly effective in
few-shot settings. A detailed analysis of the bound-
ary expansion strategy is shown in Section 5.4.

5.4. Analysis
Attention Score We further illustrate an exam-
ple from the MIT-Restaurant dataset to visualize
the attention scores between the <CLS> token and
other tokens in the given sentence across all hidden
states (as shown in Figure 4). We observe that the
positions with lower attention scores correspond to
words with little semantic significance, such as “is”
and “a”. This demonstrate that it is reasonable to
utilize the attention scores to identify and replace
less important tokens.

Preliminary Experiment To verify the capabil-
ity of our model to detect entity boundaries, we
conduct an experiment following the experimental
setup of the preliminary experiment in the Section 1.
From Figure 5, we can see that our model achieves
a significant improvement (about 16%) on the ac-
curacy for O-entity spans, which clearly demon-
strates that our model has a huge advantage in
entity boundary detection. Moreover, when entity
boundaries are known, the accuracy of our model
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Table 4: The results of using different templates in 10-shot setting on MIT-Movie dataset.

TEBD TETC F1(%)
<candidate_span> is a <entity_type> entity 69.71

<candidate_span> is a named entity <candidate_span> belongs to <entity_type> category 72.11
<candidate_span> is not a named entity The entity type of <candidate_span> is <entity_type> 70.34

<candidate_span> should be tagged as <entity_type> 70.89
<candidate_span> is a <entity_type> entity 66.11

<candidate_span> belongs to named entity <candidate_span> belongs to <entity_type> category 62.32
<candidate_span> belongs to none entity The entity type of <candidate_span> is <entity_type> 64.51

<candidate_span> should be tagged as <entity_type> 62.29

Figure 4: Attention scores between the <CLS> to-
ken and other tokens in the sentence across all
hidden states.

(a)

91.5(+3.6)
89.2(+4.2)

87.0(+4.3)

81.1(+6.4)

(b)

Figure 5: Results of the preliminary experiment
introduced in Section 1. Our model outperforms
TemplateBART (Cui et al., 2021) by a large margin.

on entity type classification also increases by 4.6%
on average. All the results show that ParaBART
can perform reasonably well.

Influence of Templates There can be different
templates for expressing the same meaning. For in-
stance, “<candidate_span> is a person entity” can
also be expressed by “<candidate_span> belongs
to person category”. We investigate the impact
of manual templates using MIT-Movie dataset on
10-shot setting. Table 4 shows the performance im-
pact of different choice of templates. We observe:
(1) When TEBD is fixed, different choice of TETC

has little effect on the performance of the model.

(a) Entity Boundary Detection

95.1

92.8
93.5

91.0

88.1 87.5

83.4

91.3

(b) Entity Type Classification

Figure 6: Results of the preliminary experiment
introduced in Section 1. w/o BE denotes removing
boundary expansion.

(2) When TETC is fixed, different choice of TETC

has a great impact on the model. For instance,
when TETC is “<candidate_span> belongs to
<entity_type> category”, the two TEBD give
72.11% and 62.32% F1 score respectively, which
indicates the templates for entity boundary detec-
tion is a key factor of the model performance.

Analysis of Boundary Expansion To perform a
detailed analysis of the boundary expansion strat-
egy, we conduct an in-depth experiment following
the experimental setup of the preliminary experi-
ment in the Section 1. The results are shown in
Figure 6. From the figure, the boundary expansion
strategy has almost no impact on the model’s ca-
pability to detect entity boundaries (about 0.5%),
while significantly improving the model’s capability
of entity type classification (about 3.0% on average).
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This further supports our conclusion that the bound-
ary expansion mainly affects the performance of
entity type classification, but has marginal influence
on entity boundary detection.

6. Conclusion

In this paper, we first conducted a preliminary exper-
iment and found the key to the success of prompt-
based NER models is their capability in detecting
entity boundaries. Based on the observation, we
proposed ParaBART, which consists of a BART
encoder and a parabiotic decoder. The parabiotic
decoder includes two BART decoders and a con-
joint module. The two decoders are used for entity
boundary detection and entity type classification,
respectively. They are further linked with a conjoint
module. Moreover, we design a novel boundary ex-
pansion strategy to enhance the model’s capability
in entity type classification. Experimental results
show that ParaBART can achieve significant perfor-
mance gains over other state-of-the-art methods.

7. Ethics Statement

The proposed method has no obvious potential
risks. All the scientific artifacts used/created are
properly cited/licensed, and the usage is consis-
tent with their intended use. Also, we open up our
codes and hyper-parameters to facilitate future re-
production without repeated energy cost.
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