
LREC-COLING 2024, pages 3812–3824
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

3812

Context-Aware Non-Autoregressive Document-Level Translation
with Sentence-Aligned Connectionist Temporal Classification

Hao Yu1, Kaiyu Huang2∗, Anqi Zhao1, Junpeng Liu1, Degen Huang1

1School of Computer Science and Technology, Dalian University of Technology, China
2Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, China

yuhao_dlut@mail.dlut.edu.cn, kyhuang@bjtu.edu.cn

Abstract
Previous studies employ the autoregressive translation (AT) paradigm in the document-to-document neural machine
translation. These methods extend the translation unit from a single sentence to a pseudo-document and encode the
full pseudo-document, avoiding the redundant computation problem in context. However, the AT methods cannot
parallelize decoding and struggle with error accumulation, especially when the length of sentences increases. In
this work, we propose a context-aware non-autoregressive framework with the sentence-aligned connectionist
temporal classification (SA-CTC) loss for document-level neural machine translation. In particular, the SA-CTC
loss reduces the search space of the decoding path by fixing the positions of the beginning and end tokens for
each sentence in the document. Meanwhile, the context-aware architecture introduces preset nodes to represent
sentence-level information and utilizes a hierarchical attention structure to regulate the attention hypothesis
space. Experimental results show that our proposed method can achieve competitive performance compared with
several strong baselines. Our method implements non-autoregressive modeling in Doc-to-Doc translation man-
ner, achieving an average 46X decoding speedup compared to the document-level AT baselines on three benchmarks.

Keywords: Document-Level Machine Translation, Non-Autoregressive, Connectionist Temporal Classifica-
tion

1. Introduction

Document-level neural machine translation (NMT)
has attracted increasing attention in the past
years (Wang et al., 2017; Voita et al., 2019b; Zhang
et al., 2020; Ma et al., 2020; Bao et al., 2021;
Zhang et al., 2022, 2023). Due to the success
of sentence-level NMT (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2015; Xia et al., 2017; Vaswani et al., 2017), a
branch of studies encodes every sentence and its
context separately in a sentence-to-sentence man-
ner (Tiedemann and Scherrer, 2017; Wang et al.,
2017; Zhang et al., 2018; Maruf and Haffari, 2018;
Kuang et al., 2018; Miculicich et al., 2018; Maruf
et al., 2019; Zheng et al., 2020; Ma et al., 2020).
To reduce the redundant calculation of the con-
text, another branch of studies extends the transla-
tion unit from single-sentence to multi-sentences,
encoding both the context and the current sen-
tence in a document-to-document (Doc-to-Doc)
manner (Zhang et al., 2020; Junczys-Dowmunt,
2019; Liu et al., 2020; Bao et al., 2021).

These works adopt the autoregressive transla-
tion (AT) paradigm for document-level NMT and
decode token-by-token. However, the AT methods
will face two major challenges in the Doc-to-Doc
scenario: (1) decoding speed slowly and (2) the
accumulation of errors. The former is caused by
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token-by-token decoding of AT methods, while the
latter is caused by exposure bias.

Figure 1: Failure loss curve of the NAT models in
Doc-to-Doc scenario.

Fortunately, the Transformer-based non-
autoregressive translation (NAT) models (Saharia
et al., 2020; Qian et al., 2021; Bao et al., 2022)
can alleviate the issues of error accumulation
and slow decoding speed. Unlike AT models,
NAT models impose conditional independence
assumptions to support the parallel decoding of
sentences during inference. And some studies (Gu
et al., 2018; Qian et al., 2021; Bao et al., 2022)
use additional components to explicitly predict



3813

the length of the target sequence, while others
(Libovický and Helcl, 2018; Saharia et al., 2020)
implicitly predict the length of the target sequence
by upsampling. However, in the Doc-to-Doc
translation scenarios, both explicit and implicit NAT
methods for predicting the length of the target
sequence cannot effectively predict the length
of every sentence in the document, resulting in
sentence misalignment.

As shown in Figure 1, existing NAT models will
fail to train, and the loss falls into a local mini-
mum value that can not continue to decrease. In
the implicit prediction NAT methods, the sentence
misalignment results in excessively large search
space of decoding path for the model, which
hinders the practical training of the model. More-
over, existing mainstream NAT models adopt the
transformer-based architecture, and its attention
sublayers struggle with the excessively large at-
tention hypothesis space when processing long
target sequences (Bao et al., 2021).

To address these problems, we propose
CASA, a context-aware framework in a non-
autoregressive paradigm with the sentence-
aligned connectionist temporal classification (SA-
CTC) loss for document-level neural machine trans-
lation. The SA-CTC loss reduces the excessively
large search space of the decoding path based
on the intuitive sentence-aligned assumption that
the sentence number of the source document is
equal to the target document and the positions
correspond. By explicitly fixing the position of the
beginning and end tokens for each sentence in the
document, we effectively remove the wrong path
in the decoding path’s search space, which does
not conform to the sentence-aligned assumption.
Meanwhile, the CA architecture regulates the ex-
cessively large attention hypothesis space based
on a hierarchical attention structure that uses pre-
set nodes to represent sentence-level information.
To sum up, our contributions are as follows:

• We investigate the document-level NAT model
in a Doc-to-Doc manner and propose a novel
framework that consists of the SA-CTC loss
and the CA architecture.

• Our proposed method can effectively alleviate
the issue of NAT models that fail to train in
the Doc-to-Doc scenarios and achieve an av-
erage decoding speed of 46 times compared
with the document-level AT method on three
benchmarks.

• The experimental results demonstrate that our
method performs competitively compared to
several strong baselines in both AT and NAT
manners.

2. Background

2.1. Doc-to-Doc Autoregressive
Translation

For the sequence-to-sequence task of document-
level machine translation, given a source language
document X = {X1, X2, .., Xn} consisting of a se-
ries of sentences and predict a target language
document Y = {(Y1, Y2, ..., Yn}, where the Xi and
Yi represents the i-th sentence of document X and
Y. And Yi = {y[i,1], y[i,2], ..., y[i,m]}, which y[i,j] rep-
resents the j-th token of the i-th sentence Yi.

In Doc-to-Doc translation scenarios, traditional
autoregressive factorization factorizes PAT(Y |X)
with a series of conditional probabilities:

PAT(Y |X) =

n∏
i=1

P(Yi|Y<i, X[1:n])

=

n∏
i=1

m∏
j=1

p(y[i,j]|y[i,<j], Y[1:i−1], X[1:n])

(1)

where yi,<j = (y[i,1], y[i,2], ..., y[i,j−1]).

2.2. Sentence-level Non-Autoregressive
Translation

The autoregressive translation is predicted based
on prefix words for inference, which suffers from
error accumulation and slow decoding. To tackle
the above problems, Gu et al. (2018) first proposes
a sentence-level non-autoregressive translation,
introducing a non-autoregressive factorization as:

PNAT(Y |X) =

n∑
i=1

P(Yi|Xi)

=

n∑
i=1

m∏
j=1

p(y[i,j]|Xi)

(2)

where each word y[i,j] are modeled independently.
During inference, the NAT model can simulta-

neously decode all tokens of a target language
by:

y[i,j] = argmax p(y[i,j]|Xi) (3)

which significantly improves decoding efficiency.

3. Methodology

3.1. Doc-to-Doc Non-Autoregressive
Translation

Non-autoregressive machine translation methods
are widely studied in sentence-level scenarios,
ignoring inter-sentence relations and global con-
text information. Therefore, we propose a non-
autoregressive framework in a Doc-to-Doc transla-
tion manner, where the model’s input is the entire
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Figure 2: Illustration of our proposed framework (CASA). It consists of the SA-CTC loss and CA
architecture.

source document. The target translation probability
can be expressed as:

PNAT(Y |X) =

n∏
i=1

P(Yi|X[1:n])

=

n∏
i=1

m∏
j=1

P(Y[i,j]|X[1:n])

(4)

During inference, the NAT model can simultane-
ously decode all tokens of a target document by
Equation 3.

3.2. CASA Framework

The non-autoregressive framework, CASA is pro-
posed with a sentence-aligned connectionist tem-
poral classification loss and a context-aware archi-
tecture for the Doc-to-Doc scenarios. The frame-
work is illustrated in Figure 2.

3.2.1. Sentence-Aligned Connectionist
Temporal Classification (SA-CTC)

Based on the conditional independence assump-
tion, the connectionist temporal classification
(CTC) (Graves et al., 2006) implements frame-level
alignment between input X and output Y , predict-
ing conditional probabilities PCTC(Y |X) for all to-

kens based on all possible paths:

LCTC =PCTC(Y|X)

=
∑

A∈β−1(Y )

P(A|X)

=
∑

A∈β−1(Y )

T∏
t=1

P(αt|X)

(5)

A = {αt ∈ ν ∪ ε|t = 1, 2, · · · , T} (6)

where ν is the vocabulary, ε is the < blank > token,
the A is a path consisting of multiple vocabulary
tokens and the < blank > token, and the β−1(Y )
is the set of all possible paths A.

Existing CTC-based methods are unsuitable for
documents in Doc-to-Doc translation scenarios.
Since the prediction length is too large, the decod-
ing path’s search space of CTC-based methods
increases exponentially. We propose SA-CTC loss
that automatically interferes with predicted token
probabilities, leveraging sentence-level alignment
information in documents to reduce the decod-
ing path’s search space. The SA-CTC loss pre-
specifies the positions of the beginning and end
tokens in the decoding sequence according to the
length of each sentence in the source document.
Predicting conditional probabilities PSA−CTC(Y |X)
for all tokens based on all sentence-aligned possi-
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ble paths SA, the target probability can be formu-
lated as below:

LSA−CTC = PSA−CTC(Y |X)

=
∑

SA∈β̂−1(Y )

P(SA|X)

=
∑

SA∈β̂−1(Y )

T∏
t=1

P(αt|X)

(7)

where β̂−1(Y ) is a sentence-aligned path subset
of all possible alignment paths β−1(Y ).

β̂−1(Y ) ⊆ β−1(Y ) (8)

Given source language documents X and corre-
sponding translations Y , the document sequence
can be obtained by concated the sentences in the
document, expressed as follows:

X = B +X1 + E + ...+B +Xn + E

Y = B + Y1 + E + ...+B + Yn + E
(9)

The B/E is < BOS >/< EOS > token, which
means the beginning and end of the sentence.
The length of the target sequence SA is empir-
ically set to twice the length of the source se-
quence, |SA| = 2|X|. The conditional probability
P ∈ R2|X|×V ocabsize of SA is:

P = Decoder(SoftCopy(Encoder(X))) (10)

We assume that the length of each sentence in the
SA sequence is also twice that of each sentence
in the source sequence. Therefore, the position of
each sentence’s B/E token in the SA sequence is
defined as follows:

IndexB = {Ii = 1 if X[(i− 1)/2] = B

else 0}|2|X|
i=1

IndexE = {Ii = 1 if X[i/2] = E

else 0}|2|X|
i=1

(11)

“1” in IndexB/IndexE indicates that the current
position in the SA sequence of the B/E token.
Set the probability of token B/E at the position of
IndexB/IndexE with conditional probability P to
be positive infinity, thereby fixing the position of
token B/E in the target sequence SA. Meanwhile,
the tokens of each sentence will be fixed between
the B/E tokens of the corresponding sentences.

3.2.2. Context-Aware (CA) Architecture

Our model adopts the transformer architecture
(Vaswani et al., 2017) with an encoder, decoder,
and an additional predictor in Latent-GLAT (Bao
et al., 2022). The encoder is composed of a stack

of N = 6 identical blocks. Each block has two
sub-layers, the multi-head self-attention and the
position-wise fully connected feed-forward network
(FFN). The decoder and predictor comprise a stack
of N = 4 identical blocks.

Local Attention Following the previous work
(Bao et al., 2021), we introduce the group tag to
construct the local mask, formally expressed as:

GQ = {gp = t if Qp ∈ sentQt }|
|Q|
p=1

GK = {gp = t if Kp ∈ sentKt }||K|
p=1

LocalMaskij ∝ 1 if (GQ[i] = GK [j])

else 0||Q|,|K|
i,j=1,1

(12)

The GQ and GK are the group tags of a set of cor-
responding query vectors and key vectors, repre-
senting the position of the corresponding sentence
in the document. And the LocalMask ∈ R|Q|×|K|

represents the masking matrix of attention. I(GQ)
are constant vectors of 1 with the same dimension
as GQ.

LocalAttention(Q,K, V )

= Softmax(
QKT

√
dK

+ LocalMask · γ)V
(13)

The constant value γ can typically be −1e8 (nega-
tive infinity).

Context Attention We set the token at the begin-
ning and end of each sentence in the document as
the sentence-level node and the remaining nodes
as token-level nodes. The token-level node can
observe the sentence-level node to capture the
context information under the premise of a small
attention hypothesis space.

CQ = {cp = 1 if Qp ∈ {B,E} else 2}||Q|
p=1

CK = {cp = 1 if Kp ∈ {B,E} else 2}||K|
p=1

ContextMaskij ∝ 1

if (GQ[i] = GK [j] or CQ[i] = 1)

else 0|i∈{1:|Q|} j∈{1:|K|}

(14)

The CQ and CK represent the category tags of the
tokens corresponding to the query vector Q and
the key vector K in the document, where “1” repre-
sents a sentence-level node, and “2” represents a
token-level node. The context attention is formally
expressed as:

ContextAttention(Q,K, V )

= Softmax(
QKT

√
dK

+ ContextMask · γ)V
(15)
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Dataset Sentences Documents Instances

TED
Train 0.21M 1.70K 11.19K
Valid 9.06K 93 483
Test 2.29K 23 123

News
Train 0.24M 6.07K 18.46K
Valid 2.25K 81 172
Test 3.15K 155 263

Europarl
Train 1.78M 0.12M 0.16M
Valid 3.83K 240 346
Test 5.49K 360 498

Table 1: Statistical results of document En-De
datasets.

Sentence-Aligned SoftCopy Following the most
common practices in NAT models (Wei et al., 2019;
Li et al., 2019; Bao et al., 2022), we apply the soft-
copy method to initialize the decoder and predic-
tor input H = {h1, h2, ..., ht} with the encoder out-
put E = {e1, e2, · · · , es}. Based on the sentence
alignment assumption, we propose the sentence-
aligned softcopy method. The formulaic represen-
tation is as follows:

A =

α1,1 · · · α1,s

...
. . .

...
αt,1 · · · αt,s


αij ∝ exp[−(i− j · s

t
)2]

(16)

H = Softmax(A+ LocalMask · γ)E (17)

Hierarchical Attention Structure Based on hi-
erarchical modeling, we apply local attention in the
bottom sublayer to aggregate sentence-level infor-
mation and context attention in the top sublayer of
the model to capture document-level dependency
information, thereby reducing the excessively large
hypothesis space of the standard attention mecha-
nism in Doc-to-Doc translation scenarios.

4. Experiments

4.1. Datasets and Settings

Datasets We evaluate the CASA against widely
adopted benchmark datasets (Maruf et al., 2019),
including three English-German (En-De) transla-
tion domains: TED, News, and Europarl. En-De
benchmark data statistics are shown in Table 1.
We also conducted experiments in three translation
directions of IWSLT17. We preprocess the docu-
ment and split it into instances of approximately
512 tokens. The sentences were tokenized and
truecased using the MOSES (Koehn et al., 2007)
tool. Applying BPE (Sennrich et al., 2016) with
30,000 merging operations to encode words to
subwords.

Knowledge Distillation According to previ-
ous works (Qian et al., 2021; Saharia et al.,
2020), sequential distillation is essential for non-
autoregressive model training. Our experiments
use both the sentence-level and document-level au-
toregressive teacher model (SENTNMT (Vaswani
et al., 2017)/G-Trans (Bao et al., 2021)) (ran-
dinit/finetune) to distill the training dataset from the
raw corpus and obtain the sentence-level KD(sent-
KD)/document-level KD(doc-KD) (randinit/finetune)
corpus.

Parameters Settings Our model is implemented
based on Fairseq (Ott et al., 2019). Following the
settings of the previous work (Bao et al., 2022):
6 layers for the encoder and 4 for the decoder,
8 attention heads per layer, 512 model dimen-
sions, and 2048 hidden dimensions. We follow
the weight initialization schema from BERT (Devlin
et al., 2019). For the regularization, we set dropout
to 0.3/0.2/0.1 on the TED/News/Europarl7 data set,
respectively. We train batches of 16k tokens for
our model using Adam (Kingma and Ba, 2015) with
β = (0.9, 0.999) and ε = 10−6. The learning rate
warms up to 5e−4 within 4k steps and then decays
with the inverse square-root schedule. We train all
models for 50k steps, measure the validation loss
at the end of each epoch, and select the last check-
points to create the final model. And all models are
trained on 2 Nvidia A6000 GPUs.

Evaluation We report the tokenized BLEU (Pap-
ineni et al., 2002) of models, as reported in previ-
ous NAT work (Qian et al., 2021; Bao et al., 2022)
by the ScareBLEU evaluation script (Post, 2018).
Following the previous document machine trans-
lation works (Liu et al., 2020; Bao et al., 2021),
we report the sentence-level BLEU (s-BLEU) and
document-level BLEU (d-BLEU), respectively.

Baselines We compare our proposed CASA with
various representative methods in both AT and NAT
manner for document-level NMT. The baselines
can be listed as follows:

SENTNMT (Vaswani et al., 2017): We repro-
duce the Transformer model on the sentence-level
machine translation scenario using random initial-
ization settings.

G-Trans (randinit/finetune) (Bao et al., 2021):
We reproduce the document-level G-Transformer
model on Doc-to-Doc scenarios using random ini-
tialization settings or finetune on sentence-level
Transformer (SENTNMT).

GLAT/GLAT+CTC (Qian et al., 2021): We repro-
duce the GLAT and GLAT+CTC models on Doc-to-
Doc scenarios, which introduce a two-step glanc-
ing training strategy and sampling partial ground-
truth tokens for training NAT.
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Method Data TED News Europarl

s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU

autoregressive translation

SENTNMT (2017) raw 23.10 - 22.40 - 29.40 -
HAN (2018) raw 24.58 - 25.03 - 28.60 -
SAN (2019) raw 24.42 - 24.84 - 29.75 -
Hybrid Context (2020) raw 25.10 - 24.91 - 30.40 -
Flat-Transformer (2020) raw 24.87 - 23.55 - 30.09 -
G-Trans (randinit) (2021) raw 23.53 25.84 23.55 25.23 32.18 33.87
G-Trans (finetune) (2021) raw 25.12 27.17 25.52 27.11 32.39 34.08
Disco2NMT (2022) raw 24.60 - 23.25 - 29.36 -

SENTNMT (2017) † raw 25.00 27.32 25.26 26.78 31.50 33.19
G-Trans (randinit) (2021) † raw 23.84 26.14 23.44 25.00 31.95 33.65
G-Trans (finetune) (2021) † raw 24.98 27.17 25.50 27.09 32.54 34.22

non-autoregressive translation

GLAT (2021)† sent-KD - 0.00 - 0.00 - 0.94
GLAT+CTC (2021)† sent-KD - 8.05 - 0.00 - 0.00
GLAT-Latent (2022)† sent-KD - 0.75 - 0.93 - 16.77

CASA sent-KD 24.24 26.45 23.25 24.72 29.50 31.07
CASA-Latent sent-KD 24.04 26.28 23.78 25.92 29.75 31.33
CASA doc-KD(finetune) 24.16 26.24 23.47 25.00 29.49 31.12
CASA-Latent doc-KD(finetune) 23.88 26.00 23.09 24.68 29.85 31.44
CASA raw 22.44 24.61 19.16 20.55 25.47 27.06
CASA-Latent raw 22.50 24.78 18.55 19.94 26.31 27.85

Table 2: Results on three document benchmark datasets. The “Latent” means introducing discrete latent
variables in the CASA method like GLAT-Latent. The better score of each setting is highlighted in bold,
and the best score of all NAT models is underlined. The “0.00” represents the training failure. † means
that we reproduce the model and report the tokenized s-BLEU and d-BLEU.

One Instance Fully GPU Memory

TED News Europarl Avg. TED News Europarl Avg.

autoregressive translation on raw data

SENTNMT (2017) † 1.37x 1.36x 1.34x 1.36x 8.03x 8.40x 7.16x 7.86x
G-Trans(randinit) (2021) † 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Shadow(8+4) 1.27x 1.24x 1.23x 1.25x 1.09x 1.12x 1.14x 1.12x
Shadow(10+2) 1.91x 1.91x 1.87x 1.90x 1.31x 1.39x 1.33x 1.34x
2to2 0.97x 0.90x 0.93x 0.93x 3.15x 3.19x 2.78x 3.04x

non-autoregressive translation on sentence-level KD data

CASA-Latent 30.27x 29.90x 29.74x 29.97x 14.19x 20.85x 15.01x 16.68x
CASA 46.67x 44.21x 47.15x 46.01x 25.14x 32.33x 23.00x 26.82x

Table 3: Model accelerated evaluation with one instance setting. We use the decoding speed of the
document-level AT model G-Trans (randinit) on a single GPU and a single instance as the benchmark to
evaluate our models. The better performance of all models is highlighted in bold.

GLAT-Latent (Bao et al., 2022): In document-
to-document scenarios, we reproduce the GLAT-
Latent model, which has an additional discrete
latent variable predictor and a gating component.

4.2. Main Results

Results on Benchmarks As shown in Table 2,
we investigate the translation quality of AT and NAT
methods in Doc-to-Doc translation scenarios. Re-

sults show that existing NAT methods suffer from
training failures in Doc-to-Doc scenarios, exhibit-
ing near-zero d-BLEU values on three benchmark
datasets. The results also show that our CASA is
successfully trained on sentence-level/document-
level KD and RAW datasets. Meanwhile, the
model trained on the sentence-level/document-
level KD dataset achieved competitive performance
compared with the document-level AT method
(G-Trans(randinit)) on TED and News. On the
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Method Data Zh-En Ar-En Fr-En

s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU

autoregressive translation

SENTNMT (2017) † raw 24.08 28.47 32.52 36.19 38.92 42.00
G-Trans (randinit) (2021) † raw 21.88 26.02 31.58 35.32 36.32 38.48

non-autoregressive translation

GLAT (2021)† sent-KD - 0.00 - 0.00 - 0.00
GLAT+CTC (2021)† sent-KD - 0.57 - 0.00 - 12.38
GLAT-Latent (2022)† sent-KD - 1.74 - 1.36 - 5.82

CASA
raw 14.51 16.45 27.83 30.41 33.97 35.99

sent-KD 19.31 22.06 29.62 32.35 36.28 38.42
doc-KD(finetune) 18.67 21.14 29.75 32.22 36.50 38.55

Table 4: Results in IWSLT17 Datasets. The better score of CASA is highlighted in bold.

Method Data Deixis E_vp E_infl L_coh

autoregressive translation

SENTNMT (2017) † raw 50.00 26.20 51.60 45.87
CADec (2019b) raw 81.60 80.00 72.20 58.10
DocRepair (2019a) raw 91.80 75.20 86.40 80.60
LSTM-Trans (2020) raw 90.50 81.00 80.60 73.90
D-LM(PMI) (2021) raw 96.80 90.60 75.80 97.80
G-Trans (randinit) (2021) † raw 85.36 76.00 76.00 58.00
G-Trans (finetune) (2021) † raw 74.48 25.20 50.80 45.87

non-autoregressive translation

CASA raw 50.00 33.80 55.20 45.87
CASA-Latent raw 50.00 38.40 55.00 45.87
CASA sent-KD 50.00 19.40 50.40 45.87
CASA-Latent sent-KD 50.00 21.00 51.00 45.87
CASA doc-KD(randinit) 50.00 51.80 59.40 45.87
CASA-Latent doc-KD(randinit) 50.00 49.60 60.00 45.87
CASA doc-KD(finetune) 50.60 36.20 47.80 46.13
CASA-Latent doc-KD(finetune) 50.48 32.80 47.60 45.87

Table 5: Results on discourse phenomena. We only use the 1.5M document pairs from the OpenSubti-
tles2018 (Lison et al., 2018) dataset training model and testing in the human-labeled evaluation set (Voita
et al., 2019b). The SENTNMT and G-Trans (randinit/finetune) are trained on the raw dataset, and our
“CASA/CASA-Latent” are trained on both the raw and KD datasets.

Method TED News Europarl Avg.

s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU

SA CA non-autoregressive translation on sentence-level KD data

CASA-Latent
✓ ✓ 24.04 26.28 23.78 25.92 29.75 31.33 25.85 27.84
✓ × 0.00 0.00 0.00 0.00 29.90 31.49 9.97 10.50
× ✓ 23.09 23.61 0.00 0.00 29.81 31.38 17.63 18.33

CASA
✓ ✓ 24.24 26.45 23.25 24.72 29.50 31.07 25.66 27.41
✓ × 23.86 26.06 22.76 24.24 29.83 31.44 25.48 27.24
× ✓ 21.68 21.26 23.14 24.62 29.33 30.92 24.71 25.60

Table 6: Results on different strategies and modules for CASA and CASA-Latent. The better score of
each base model is highlighted in bold.

random initialization settings, our model CASA-
Latent achieves 0.2/0.34 percentage points higher

s-BLEU values than G-Trans (randinit) on TED and
News datasets. On the benchmark dataset Eu-
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Method TED News

s-BLEU d-BLEU s-BLEU d-BLEU

CASA 24.24 26.45 23.25 24.72
w/o context attn 23.98 26.09 22.97 24.39

w/o local attn 23.89 25.96 23.07 24.59
w/o SA softcopy 24.00 26.09 23.04 24.54

Table 7: Results on different strategies for CA mod-
ules. The best score is highlighted in bold.

Dropout TED News

s-BLEU d-BLEU s-BLEU d-BLEU

0.1 23.52 25.80 22.30 23.83
0.2 23.85 26.13 23.78 25.92
0.3 24.04 26.28 22.67 24.19
0.4 24.04 26.15 21.97 23.43
0.5 23.78 25.92 21.40 22.84

Table 8: Results on different dropouts. The best
score is highlighted in bold.

roparl, our method underperforms the AT method.

Model Acceleration Evaluation As is shown in
Table 3, we report the decoding speeds of our mod-
els and the baseline systems on three benchmark
datasets, respectively.

Shadow(8+4/10+2): We reproduce the deep en-
coder + shadow decoder model on Doc-to-Doc
scenarios based on G-Trans(randinit). 8+4 means
using an 8-layer encoder + 4-layer decoder.

2to2: We reproduce the context-aware model
based on G-Trans(randinit), using a setting of 2
source sentences and 2 target sentences.

Our method CASA/CASA-Latent respectively
achieves 46.01/29.97 times the average decod-
ing speed of the document-level AT method in
one instance setting and 16.68/26.82 times the
average decoding speed of the document-level AT
method in full gpu memory setting. The decoding
speed of our model is significantly better than the
existing document-level AT systems. Meanwhile,
the speed of the CASA-Latent model is inferior to
CASA, which is caused by the two-step decoding
process of GLAT-Latent.

Results in Other Language Directions To verify
that the proposed method is also effective in other
language directions, we conducted experiments on
the IWSLT17 document-level translation dataset in
Zh/Ar/Fr-En translation directions, and the exper-
imental results are shown in Table 4. Our model
performs better in the document-level KD dataset
for Ar-En/Fr-En language directions, with s-BLEU
values of 29.75/36.50, respectively, achieving com-
parable performance to the AT baseline system.
Therefore, it can be concluded that our method

Method TED News

s-BLEU d-BLEU s-BLEU d-BLEU

CASA-Latent 24.04 26.28 23.78 25.92
w/o source side 23.98 26.24 22.49 24.02
w/o target side 24.06 26.27 22.44 23.99

CASA 24.24 26.45 23.25 24.72
w/o source side 24.20 26.53 23.48 25.01
w/o target side 24.13 26.37 23.01 24.52

Table 9: Impact of Source-side and Target-side
Context.

can be effectively applied to other language direc-
tions.

Results on Discourse Phenomena To evaluate
the abilities of the AT and the NAT methods on dis-
course phenomena, we conducted experiments on
the English-Russian discourse evaluation dataset
(Voita et al., 2019b). We use the sentence-level
AT method “SENTNMT” and document-level AT
method “G-Trans” (randinit/finetune) as the teacher
model to obtain the corresponding KD datasets.
And our document-level NAT models are trained
on these KD datasets with random initialization.
We tested four discourse evaluation metrics Deixis,
E_vp, E_infl, L_coh on this evaluation dataset.

As shown in Table 5, the document-level G-Trans
(randinit) model has the best ability to model dis-
course phenomena. And the G-Trans (finetune)
model dropped significantly on four discourse met-
rics. Meanwhile, the NAT model trained on the
document-level KD (finetune) dataset also dropped
significantly in two discourse metrics, E_vp, E_infl.
The result shows that fine-tuning the sentence-
level SENTNMT model will decline the abilities of
discourse phenomena, lower the quality of the KD
dataset, and eventually deteriorate the abilities of
NAT for the discourse phenomena. Utilizing the
document-level teacher model G-Trans (randinit)
for sequence distillation is better.

4.3. Ablation Studies

Effect of Different Components As shown in
Table 6, we performed ablation studies with dif-
ferent components on two base models, “CASA-
Latent”. For the “CASA”, eliminating the SA-CTC
method leads to an average decrease of 0.18 per-
centage points in s-BELU and 0.17 percentage
points in d-BELU. Meanwhile, ablation of the CA
architecture leads to an average decrease of 0.95
percentage points in s-BLEU and 1.81 percentage
points in d-BLEU. For the “CASA-Latent”, ablating
the SA-CTC loss and CA architecture fails model
training on the News dataset. It is due to the Latent-
GLAT needs to train an additional predictor, which
is more susceptible to the problem of excessively
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large search space of decoding path and attention
hypothesis space. In addition, on the large-scale
dataset Europarl, only using the SA-CTC method
achieved 29.90/29.83 s-BLEU values, because the
larger dataset scale helps the model overcome the
excessively large attention hypothesis space. In
addition, we ablated the components of the CA
module in the basic model CASA. The experimen-
tal results are shown in the Table 7. The ablation of
the local attn component caused the s-BLEU value
to decrease by 0.35 percentage points on the TED
data set. The ablation of the context attn compo-
nent caused the s-BLEU value to decrease by 0.28
percentage points on the News data set. The ab-
lation of the component SA softcopy caused the
s-BLEU value to decrease by 0.24/0.21 percentage
points on the TED/News data set.

Results on Different Dropouts As shown in Ta-
ble 8, we investigate the effectiveness of different
dropout settings on the “CASA-Latent” in the TED
and News datasets with sentence-level kd. The
experimental results show that the datasets TED
and News achieve the best s-BLEU value and d-
BLEU when the dropout equals to 0.3 and 0.2, re-
spectively. When the corpus size is larger, smaller
dropout values are more beneficial. In contrast, we
can increase the dropout value for a small-scale
dataset.

Effect of Source-side and Target-side Contexts
As shown in Table 9, we ablate the source con-
text and the target separately and study the im-
pact of different contexts on the “CASA-Latent”.
From the experimental results, removing the tar-
get context leads to a decrease of 0.33 percent-
age points s-BLEU value in the TED dataset and
0.49 percentage points s-BLEU value in the News
dataset. Removing the source context decreases
the News dataset’s 1.1 percentage point s-BELU
value. Therefore, both source and target-side con-
texts positively influence our framework.

5. Related Work

Existing document-level MT works focus on ex-
panding the translation unit, conforming to the
Doc-to-Doc paradigm. Kalchbrenner and Blunsom
(2013) expands the translation unit from phrases to
sentences, which is purely based on a continuous
representation of words, phrases, and sentences.
Zhang et al. (2020) expands the translation unit
from single-sentence to multiple-sentences, chang-
ing the sentence-to-sentence translation paradigm
of previous context-aware work, which encodes ev-
ery sentence and its context separately. Bao et al.
(2021) further expands the translation unit from
multiple-sentences to pseudo-document, which

shows stable document-level BLEU scores for in-
puts containing 512 and 1024 tokens.

The above works adopt the autoregressive
paradigm, which has the problem of error accu-
mulation caused by exposure bias and the problem
of slow speed caused by token-by-token decoding.
Since Gu et al. (2018) introduces a NAT model
based on the Transformer network, prior works
(Lee et al., 2018; Ghazvininejad et al., 2019, 2020;
Qian et al., 2021; Bao et al., 2022) introduce var-
ious training strategies to reduce the model bur-
den of dealing with dependencies among output
words. Ghazvininejad et al. (2019) adopts an iter-
ative training strategy and uses multiple masking
and prediction methods to reduce training difficulty
but requires multi-step decoding, resulting in a re-
duced speedup. Qian et al. (2021) proposes a two-
step training strategy, introducing the ground-truth
token to help model training and realize single-step
decoding. Bao et al. (2022) employs the discrete
latent variables to capture word categorical infor-
mation, alleviating the multi-modality problem. An-
other branch of non-autoregressive (Libovický and
Helcl, 2018; Saharia et al., 2020) implicitly predicts
the length of the target sequence by introducing
various training losses. Libovický and Helcl (2018)
proposes a CTC-based model to predict the im-
plicit alignment of source and target sequences,
enabling variable-length predictions.

6. Conclusion

In this work, we investigate the failure of NAT model
training in Doc-to-Doc translation scenarios. To ad-
dress this, we propose CASA, a context-aware
framework in a non-autoregressive paradigm with
the sentence-aligned connectionist temporal clas-
sification (SA-CTC) loss for the excessively large
search space of decoding path and attention hy-
pothesis space in document-level neural machine
translation. The SA-CTC loss eases the search
space of the decoding path by fixing the position of
the beginning and ending tokens of each sentence
in a document. Meanwhile, the context-aware ar-
chitecture represents sentence-level information
through preset sentence-level nodes and uses a
hierarchical attention structure to regulate the ex-
cessively large attention hypothesis space. Exper-
imental results show that our method solves the
training failure problem of NAT methods in Doc-to-
Doc translation scenarios and achieves competitive
performance compared to the document-level AT
method on two benchmark datasets. Furthermore,
our method achieves fully non-autoregressive de-
coding, an average of 46 times faster than the
document-level AT baseline method.
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