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Abstract
We study the communication of concepts at different levels of abstraction and in different contexts in an agent-based,
interactive reference game. While playing a concept-level reference game, the neural network agents develop a
communication system from scratch. We use a novel symbolic dataset that disentangles concept type (ranging from
specific to generic) and context (ranging from fine to coarse) to study the influence of these factors on the emerging
language. We compare two game scenarios: one in which speaker agents have access to context information
(context-aware) and one in which the speaker agents do not have access to context information (context-unaware).
First, we find that the agents learn higher-level concepts from the object inputs alone. Second, an analysis of
the emergent communication system shows that only context-aware agents learn to communicate efficiently by
adapting their messages to the context conditions and relying on context for unambiguous reference. Crucially,
this behavior is not explicitly incentivized by the game, but efficient communication emerges and is driven by the
availability of context alone. The emerging language we observe is reminiscent of evolutionary pressures on human
languages and highlights the pivotal role of context in a communication system.
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1. Introduction

Referring to things in the world is crucial to effec-
tive communication. When choosing a referring ex-
pression, speakers recur to what they know about
the referent’s underlying concept and choose to
communicate the concept at a level of abstraction
that fits well with their communicative intentions.
For example, a reference to the object in Figure 1
can be made at various levels of abstraction, rang-
ing from the more specific concept ‘watermelon’ to
the more generic concept ‘food’. When commu-
nicating a more generic concept, speakers and lis-
teners need to abstract away from properties of the
individual objects and focus on what all objects be-
longing to a concept have in common. By choos-
ing the utterance ‘fruit’, for example, a speaker ab-
stracts away from irrelevant properties (the size,
color etc. of the specific object) and stresses the
properties that watermelons share with other items
belonging to the concept ‘fruit’, for example that
they are edible.

Crucially, the concepts speakers choose to com-
municate also depend on the situational context:
While in a coarse context (Figure 2A) the referring
expression ‘melon’ is sufficient to discriminate the
target object, a fine context (Figure 2B) requires
a more specific reference such as ‘watermelon’ to
resolve ambiguity (e.g., Graf et al., 2016; Hawkins
et al., 2018; Winters et al., 2015).

In this contribution, we focus on the immediate,
or situational, context, which is defined as “the sit-
uational information that is relevant for producing

Figure 1: Example referring expressions at differ-
ent levels of abstraction.

Figure 2: Example referring expressions in differ-
ent contexts.

and comprehending an utterance” (Winters et al.,
2018). Previous research has shown that the im-
mediate context influences the way humans com-
municate at different timescales ranging from the
situational use of a referring expression in a spe-
cific context to the emergence of a communica-



3832

tion system. Regarding the former, research on
context-based pragmatic phenomena has found
that humans usually tailor their utterances to the
immediate context. For example, Sedivy et al.
(1999) found a referential contrast effect for items
belonging to the same category such as a ‘glass’.
In contexts with two glasses present, participants
were more likely to modify their expression with an
adjective, e.g., ‘tall glass’ to discriminate the target
object from a contrast object that belonged to the
same category, e.g. a short glass (see also Se-
divy, 2005, 2003). Regarding the latter, artificial
language learning studies with human participants
have investigated how context shapes an emerg-
ing language (e.g., Winters et al., 2015; Hawkins
et al., 2018). Winters et al. (2015), for example,
manipulated the specific dimensions which were
relevant for discrimination in situational utterances
and found that emerging languages encode specif-
ically these dimensions. In other words, if par-
ticipants were presented with contexts in which
the target object differed from the distractor ob-
ject in the shape dimension during most iterations,
the emerging language would encode shape, but
no irrelevant dimensions. Hawkins et al. (2018)
found context to shape an artificial language be-
tween humans when they had to communicate hi-
erarchically organized stimuli with novel expres-
sions. Contextual pressures shaped the emerg-
ing lexicon in a way that when participants were
presented with mostly fine contexts, each word
was paired with a single meaning. In contrast,
when participants communicated in coarser con-
texts, polysemous meanings emerged, allowing a
word to have more than one object as a referent.
In other words, the number of words referring to
several objects was shown to be higher for par-
ticipants in the coarse context condition (Hawkins
et al., 2018). These findings are in line with Grice’s
maxim of quantity which predicts that speakers
should choose utterances that are optimally infor-
mative for the listener.

However, experimental evidence shows that
speakers’ use of referring expressions is not al-
ways straightforward: Over- and underinforma-
tive expressions are frequent in natural con-
versation, and the focus of ongoing research
(e.g., Degen et al., 2020; Tourtouri et al., 2019;
Rubio-Fernandez, 2021; Rubio-Fernández, 2016).
These studies with human participants shed light
on their behavior, but the question of which com-
municative strategies speakers follow when re-
ferring to concepts at different levels of abstrac-
tion remains unanswered until now. We use an
agent-based model with systematic manipulations
to study under which circumstances a specific be-
havior is beneficial to communicative success.

We investigate the role of pragmatics in the com-

munication of concepts at different levels of ab-
straction and in different contexts with an emergent
communication paradigm using a reference game.
Reference games, where a speaker describes a
target and a listener has to identify the correct
target among a set of distractors, are ideal for
studying references at different levels of abstrac-
tion because they allow for systematic manipula-
tion of the context (e.g., Frank et al., 2016; Hawkins
et al., 2018; Graf et al., 2016; Degen et al., 2020).
More recently, this game setup has been adapted
to computational studies of emergent communica-
tion between deep neural network agents (e.g.,
Lazaridou et al., 2018, 2017; Ohmer et al., 2022;
Mu and Goodman, 2021). Such computational
methods allow for rigorous manipulations, and for
simulating language on various time scales from
evolution to situational use. They are therefore in-
creasingly used to answer questions in the field of
pragmatics (e.g., Monroe et al., 2017; White et al.,
2020; Ohmer et al., 2021; Fang et al., 2022; Hu
et al., 2022; Yuan et al., 2021; Andreas and Klein,
2016; Kang et al., 2020). Going beyond previous
work, we systematically study the influence of con-
cept and context type on the choice of referring ex-
pressions during emergent communication.

2. Method

2.1. General Setup

A speaker and a listener agent develop a commu-
nication system while playing a concept-level refer-
ence game (see Figure 3). Other than in a classi-
cal reference game (Lewis, 1969), the speaker has
to communicate not a single but multiple targets
belonging to the same concept (Mu and Goodman,
2021). The neural network agents are trained
in a Reinforcement Learning paradigm with the
Gumbel-Softmax relaxation (Jang et al., 2017) and
are rewarded when the listener picks the correct
target objects after having decoded a message
generated by the speaker. A similar setup has
been used in previous related work (Ohmer et al.,
2022; Mu and Goodman, 2021).

2.2. Dataset

We train the agents on a novel symbolic dataset
that disentangles concept type, ranging from spe-
cific to generic, from context type, ranging from
fine to coarse. The most specific concept is de-
fined by target objects where all attributes have
a fixed value (e.g., ‘blue circle’). Objects that de-
fine the most generic concept have only one fixed
attribute (e.g., ‘circle’). Distractors in a fine con-
text share more attributes with the target concept,
whereas distractors in a coarser context condition
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Figure 3: Schematic illustration of the concept-
level reference game with the specific target con-
cept “blue circle” (fixing both shape and color at-
tributes) and a fine context condition (distractors
share one attribute, either shape or color, with the
target concept). Note that the objects that sat-
isfy the concepts can differ between agents, in
this case, they have different sizes. The speaker
knows which objects are the targets (here dis-
played in the green box) and the listener receives
a shuffled input from which it has to select the ob-
jects that satisfy the target concept.

share fewer attributes with the target concept. Fol-
lowing previous work (e.g., Ohmer et al., 2022),
the concepts are represented by an object vector
that has n attributes which can each take k values,
and a concept-defining, binary vector d⃗ ∈ {0, 1}n
that specifies which attributes are fixed to a spe-
cific value (1) and which can vary (0). To gener-
ate a dataset, we sample all possible concepts
(restricted by the number of attributes and val-
ues) ranging from the most specific concept with
a concept-defining vector consisting only of ones
to the most generic concept, where the concept-
defining vector is a one-hot vector, which fixes ex-
actly one attribute value. We then sample all possi-
ble context conditions for these concepts by chang-
ing between one (fine context) and n − 1 (coarse
context) attributes relative to the target concept.
For instance, if objects are defined by n = 3 at-
tributes (color, shape, scale) and the target con-
cept is defined as “blue circle” (two out of three
attributes fixed), in the fine context condition, the
distractors would differ in only one of the fixed di-
mensions (e.g., “blue square” or “green circle”, see
Figure 3). Note that this procedure is only used
for constructing the dataset. The speaker and lis-
tener agents are trained on the target and distrac-
tor objects alone and have to figure out the con-
cepts from these inputs.

2.3. Concept-level Reference Game
Following Mu and Goodman (2021) and Ohmer
et al. (2022), we define a communication game
between speaker S and listener L as a communi-
cation game G = (TS , DS , TL, DL), where TS =
{tT1 , ..., tTg } is a set of game size g target objects
presented to the speaker, DS = {dS1 , ..., dSg } is a
set of g distractor objects presented to the speaker,
and TL and DL are defined analogously for the
listener. The concept-level reference game is de-
fined as a game where TS ̸= TL and DS ̸=
DL. This setup has been shown to increase sys-
tematicity in the emerging communication proto-
col and the agents’ ability to generalize compared
to the standard reference game (Mu and Good-
man, 2021). Each round, S receives both tar-
gets TS and distractors DS in an ordered fash-
ion. Based on this input, S generates a message
m = (sj)j≤M , where sj is a symbol from vocab-
ulary V and M is the maximal message length.1
L receives m and their own set of targets TL and
distractors DL shuffled together (hereafter XL =
{xL

1 , ..., x
L
i }, where i = 2 · g, because L does not

know which are the targets and which are the dis-
tractors). Based on these inputs, L predicts a label
yLi ∈ {0, 1} (0: distractor, 1: target) for each object
xL
i in its input.

2.4. Architecture and Training

Our implementation2 makes use of the EGG
framework for emergent communication games
(Kharitonov et al., 2019). Both agents are im-
plemented as single-layer Gated Recurrent Units
(GRUs) (Cho et al., 2014) as in previous related
work (Mu and Goodman, 2021; Ohmer et al.,
2022). Typically, either GRUs or LSTMs are
used in the emergent communication paradigm
because on the one hand, such recurrent neu-
ral networks are a better choice for modeling lan-
guage than simple feed-forward neural networks
because they can deal with sequential input of any
length (Jurafsky and Martin, 2024), and on the
other hand, they have a simpler architecture and
are thus easier to train than, for example, Trans-
formers (Vaswani et al., 2017). The speaker in-
put is processed by two dense layers that embed
the targets and distractors separately, and a third
dense layer that concatenates both embeddings.
The listener input is also embedded with a dense
layer. After having decoded the message from the
speaker, the listener returns the dot product be-

1The end-of-sequence symbol 0 can be used to ter-
minate a message before M is reached.

2All code and analysis scripts are available
at https://github.com/kristinakobrock/
context-shapes-language.

https://github.com/kristinakobrock/context-shapes-language
https://github.com/kristinakobrock/context-shapes-language
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tween the received message and each of the em-
bedded input objects. We jointly train a speaker-
listener pair to maximize the listener’s likelihood of
selecting the correct targets. We train with binary
cross entropy loss allowing the listener to predict a
label yi ∈ {0, 1} (0: distractor, 1: target) for each
object xi. The loss is

LBCE(S,L,G) = −
∑
i

log pL(yLi |xL
i , m̂),

where m̂ ∼ pS(m|TS , DS) and pL(yLi |xL
i , m̂) =

σ(GRUL(m̂) · embed(xL
i )). We use the straight-

through Gumbel-Softmax trick (Jang et al., 2017)
with temperature τ = 2 and a decay rate of 0.99 for
training to ensure differentiability for backpropaga-
tion. We split the data in training (60%), validation
(20%) and test (20%) datasets. All splits contain
different concepts, i.e. unique object- and concept-
defining vector combinations, and all possible con-
text conditions for these concepts. We evaluate
performance on the validation dataset after each
training epoch and on the test dataset once after
training. We train five runs for both game settings
on six datasets for 300 epochs using the Adam op-
timizer. We conducted a grid search to find hyper-
parameters that led to a high performance on the
validation sets of all datasets.3 We train with batch
size 32, learning rate 0.001 and game size 10, i.e.,
there are ten target and ten distractor objects in
a game. Agents have an embedding layer with
64 units and a hidden layer with 128 units. The
maximum message length M is set to the num-
ber of attributes in a dataset plus the End of Se-
quence (EOS) symbol 0. The vocabulary size for
each dataset is determined by the number of at-
tribute values in the dataset. We define a minimal
vocabulary size for each dataset as the number
of attribute values plus one additional symbol to
encode additional information like position or rele-
vance. The vocabulary size is calculated by mul-
tiplying this minimal vocabulary size with a factor
f = 3 according to previous work (Ohmer et al.,
2022).

2.5. Game Scenarios and Hypotheses
We implement two game scenarios to investigate
the agents’ communicative strategies, and specif-
ically, whether they develop and use pragmatic
behavior in the sense of context-based pragmat-
ics (e.g., Sedivy, 2003). The basic setup involves
speaker and listener agents which learn to com-
municate about concepts ranging from specific to
generic in all context conditions. We compare two

3The grid search was conducted for the smallest
dataset D(3,4), the one with the highest number of at-
tributes D(5,4), and the one with the highest number of
values D(3,16).

game settings: In the context-unaware setting, the
speaker agent only has access to the target ob-
jects and the listener has access to both targets
and distractors. In the context-aware setting, on
the other hand, both speaker and listener agents
have access to the target concept and to the con-
text defined by distractor objects. The distractor
objects that the listener receives can be different
from those that the speaker receives, but they sat-
isfy the same context condition. Similarly, the tar-
get objects may be different between speakers
and listeners, as long as they satisfy the same tar-
get concept. We expect the speakers to use differ-
ent production strategies depending on the game,
as well as the concept and context type.

We formulate the following (non-exclusive) hy-
potheses mapping to the two games described
above:

• H1: Context-unaware literal agents (L)
have to communicate concepts on the most
specific level of abstraction to be successful,
thus may be overinformative (non-pragmatic
baseline).

• H2: Context-aware literal agents (L-aware)
can communicate concepts on other than the
most specific level of abstraction and can rely
on the context to resolve ambiguities (context-
based pragmatics).

In our setup, overinformative communication is
defined as mentioning specific concepts in coarse
contexts, e.g. saying “green circle” in a context
where no other circles are present.

3. Evaluation

We report training, validation and test accuracies
as a proof of concept that the agents are trained
successfully to communicate in the concept-level
reference game. We use entropy-based metrics
to measure information contained in the emerging
messages. The Normalized Mutual Information
(NMI) quantifies the degree to which messages
and concepts have a one-to-one correspondence.
It is calculated as follows:

NMI(C,M) =
H(M)−H(M |C)

0.5 · (H(C) +H(M))
,

with C being the set of concepts and M being the
set of messages. If the NMI score is maximal (1.0),
then each message in the emerged lexicon of the
agents corresponds to exactly one concept and
this concept is only referred to with this message.
Additionally, we report efficiency and consistency
scores as defined in Ohmer et al. (2022). The con-
sistency score measures whether the agents con-
sistently use the same messages to refer to the
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same concepts and is calculated as follows:

consistency(C,M) = 1− H(M |C)

H(M)
.

The effectiveness score measures whether agents
effectively use messages that uniquely identify the
target concept and is calculated as follows:

effectiveness(C,M) = 1− H(C|M)

H(C)
.

The datasets are implemented as described
above and named by the number of attributes
(think ‘shape’, ‘color’, etc.) and values (think
‘square’, ‘circle’, etc.) an object in this dataset can
take. For example, ‘D(3,4)’ means that objects
in this dataset have three attributes that take four
values each. We run simulations for six datasets
that span a range of three to five attributes and
four to 16 values (see Table 1). We report means
and bootstrapped 95% Confidence Intervals (CIs)
from five simulations per dataset and 300 training
epochs. To statistically analyze the relevant con-
trast between context-aware and context-unaware
agents for evaluating our hypotheses, we per-
formed a Bayesian analysis of the NMI scores be-
tween these conditions. Specifically, we evaluate
NMI scores in the edge cases of concept and con-
text conditions, i.e. the most specific and most
generic concepts and the finest and coarsest con-
texts.

k = 4 k = 8 k = 16

n = 3 D(3, 4) D(3, 8) D(3, 16)
n = 4 D(4, 4) D(4, 8)
n = 5 D(5, 4)

Table 1: Datasets with n attributes and k values,
labeled as D(n, k).

We additionally conducted a small qualitative
analysis of the messages. For this, we randomly
sampled one specific concept from the last interac-
tion of training on the D(4,4) dataset. We report all
unique messages that the agents used to describe
this concept for each context.

4. Results

4.1. Performance
We calculate accuracy as the average number
of correct predictions by the listener, rather than
the average number of games without any mis-
takes. As a result, the agents can achieve high
accuracies when the listener correctly identifies
most objects per game. First, we observe very
high training and validation accuracies for all game

settings and datasets (mean training and valida-
tion accuracies across runs > 0.96 for all datasets
and both settings).4 Mean test accuracies across
runs on concepts that the agents have never en-
countered during training are 0.89 (SD=0.07) for
context-unaware and 0.87 (SD=0.11) for context-
aware agents. This suggests that the agents learn
to successfully communicate about concepts on
various levels of abstraction and in various context
conditions.5

To get a better understanding of the agents’
strategies and where communication is especially
(un)successful, we performed an additional anal-
ysis of the errors, i.e. those cases where the lis-
tener agents predict some of the labels wrongly.6
We find that most errors occur when targets and
distractors share many attributes, making it more
likely that they are confused with each other. In
other words, most mistakes happen in the fine con-
text conditions.7

4.2. Qualitative communication analysis
Second, we use a qualitative analysis of the mes-
sages to see whether we can observe differences
between context-unaware and context-aware set-
tings. Tables 2 and 3 show the results of our qual-
itative analysis on the D(4,4) dataset for context-
unaware and context-aware, respectively. We re-
port all unique messages for a randomly chosen
specific concept ([0, 0, 0, 3], all attributes fixed) and
each context condition. Context-unaware agents
tend to use the same messages in all context
conditions (in this case, “[11, 1, 11, 14, 0]” is used
consistently across contexts). On the other hand,
context-aware agents use a larger set of mes-
sages (four unique messages over all games), and
they tend to vary the messages more depending
on context. In coarser contexts, the set of mes-
sages used to describe the target concept is larger
than in the finest context, where the best strategy
is to communicate the most specific concept. We
observe the same pattern for other randomly se-
lected concepts across different datasets.8

4It is important to note that achieving such high
scores is intentional. Only with a high success score
does the rest of the evaluation become meaningful. This
ensures that the language we analyze can be assumed
to effectively communicate what is intended in the refer-
ential game.

5Detailed accuracy scores can be inspected in Table
4 in Appendix A.

6Plots for these analyses can be inspected in Ap-
pendix B.

7Additional plots of the distribution of false positive
and false negative errors can be found in Appendix B.2
and B.3.

8More examples are given in Appendix C to show that
these are not cherry-picked.
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Object Context
(# Shared
Attributes)

Unique
Messages

[0, 0, 0, 3]

0 “[11, 1, 11, 14, 0]”
1 “[11, 1, 11, 14, 0]”
2 “[11, 1, 11, 14, 0]”
3 “[11, 1, 11, 14, 0]”

Table 2: Context-unaware: Unique messages
used to refer to a randomly picked specific concept
in the D(4,4) dataset over different context condi-
tions.

Object Context
(# Shared
Attributes)

Unique
Messages

[0, 0, 0, 3]

0 “[6, 2, 10, 14, 0]”
“[6, 2, 14, 10, 0]”

1 “[6, 2, 10, 14, 0]”
“[6, 2, 14, 10, 0]”

2
“[6, 2, 10, 1, 0]”
“[6, 2, 10, 14, 0]”
“[6, 2, 10, 5, 0]”

3 “[6, 2, 10, 5, 0]”

Table 3: Context-aware: Unique messages used
to refer to a randomly picked specific concept in the
D(4,4) dataset over different context conditions.

4.3. Quantitative communication
analysis

Mappings between concepts and messages
Third, we use information-theoretic scores and
compare the context-unaware to the context-
aware setting to quantify the results we obtained
from our qualitative analysis. In the context-
unaware setting, we observe high overall informa-
tion scores (NMI scores ranging from 0.94 [0.9,
0.98]9 for D(5,4) to 0.97 [0.96, 0.98] for D(3,8)).
This suggests that concepts and messages tend
to have one-to-one mappings. While the mutual
information between messages and concepts is
also relatively high for context-aware agents, it
is slightly lower than for context-unaware agents
(NMI scores ranging from 0.86 [0.78, 0.92] for
D(3,16) to 0.9 [0.88, 0.93] for D(3,8)). This could
mean that context-aware trained agents adapt to
the context, making strict one-to-one mappings im-
practical.

Figure 4 shows for the context-unaware setting
how the mutual information varies when it is cal-
culated for all concept and context conditions for
dataset D(4,4).10 Here, we observe two patterns:
On the one hand, the NMI increases with the

9The intervals reported here are bootstrapped 95%
Confidence Intervals.

10Plots for all datasets are available in Appendix D.

number of fixed attributes. In other words, the
more specific the concepts are, the more one-to-
one mappings between concepts and messages
emerge. On the other hand, the NMI scores
stay relatively constant across different numbers
of shared attributes. This suggests that context-
unaware trained speaker agents adapt their choice
of reference to a concept’s levels of abstraction,
but not to the context (of which they are not aware).

Figure 4: Context-unaware: Mean NMI scores
across all datasets for different concept (# fixed
attributes) and context conditions (# shared at-
tributes). From top to bottom context becomes
finer and from left to right concepts become more
specific.

When looking at the NMI for the context-aware
setting in Figure 5, we observe the opposite pat-
tern: While changes in the concept level (i.e., the
number of fixed attributes) are not reflected in
changing NMI scores, we do observe increasing
NMI scores with an increasing number of shared
attributes. In other words, the finer the context, the
more one-to-one mappings between concepts and
messages can be found in the agents’ communica-
tion system.

Effect of the level of abstraction We will now
look first at the effect of a concept’s level of ab-
straction and then at the effect of the context on the
emerging language in more detail. The effect of a
concept’s level of abstraction on the emerging lan-
guage is visualized in Figures 6 and 7 which plot
the entropy-based scores over different concept
levels aggregated over all datasets and simulation
runs for context-unaware and context-aware, re-
spectively. In Figure 6, we observe that the NMI is
largely constant for more specific concepts (three
fixed attributes and more) and slightly drops to-
ward more generic concepts with one or two fixed
attributes. This effect is largely driven by a cor-
responding drop in the consistency score when it



3837

Figure 5: Context-aware: Mean NMI scores
across all datasets for different concept (# fixed
attributes) and context conditions (# shared at-
tributes). From top to bottom context becomes
finer and from left to right concepts become more
specific.

comes to more generic concepts, which suggests
that more than one unique message is used to re-
fer to the same generic concept. We can think of
two reasons for this: One reason might be that
the agents are overly specific when referring to the
generic target concept, for example, they might
use “red circle” or “blue circle” to refer to “circle”.
Another reason is that the emerging language con-
tains more synonymous words that refer to more
generic concepts, for example the invented mes-
sages “1, 1, 2” and “2, 3, 4” both mean “circle”.

Figure 6: Context-unaware: Mean entropy
scores across all datasets for different concept
levels indicated by the number of fixed attributes.
From left to right concepts become more specific.
Error bars indicate bootstrapped 95% confidence
intervals.

Figure 7 shows that we observe a drop in the
consistency score when it comes to more generic
concepts also for languages developed by context-
aware agents. Additionally, we find that con-
sistency decreases again for more specific con-
cepts (i.e., when the number of fixed attributes is

larger than three). This can be explained by the
availability of context in the context-aware setting:
For more specific concepts with three or more at-
tributes, there are more context conditions possi-
ble, i.e. n − 1 context conditions. Thus, context-
aware trained speakers adapt to use different mes-
sages to refer to the same concepts when they
take context into account. The butterfly shape
we observe in Figure 7, where effectiveness in-
creases for specific and for generic concepts and
consistency, on the other hand, decreases for spe-
cific and for generic concepts, can thus be ex-
plained by the two factors that the agents take into
account when constructing messages, both con-
cept specificity and context.

Figure 7: Context-aware: Mean entropy scores
across all datasets for different concept levels indi-
cated by the number of fixed attributes. From left
to right concepts become more specific. Error bars
indicate bootstrapped 95% confidence intervals.

We used Bayesian estimation to statistically an-
alyze these observed differences between con-
ditions across all five runs, following Kruschke
(2013). We find no substantial difference in NMI
scores between the context-unaware (M=0.92,
CrI=[0.9, 0.93]11) and the context-aware (M=0.89,
CrI=[0.88, 0.91]) setting for generic concepts with
an estimated difference in means of M=0.023
(CrI=[-0.003, 0.048], pd=95.9%12, 6% in ROPE13).
The difference for specific concepts between the
context-unaware (M=0.94, CrI=[0.92, 0.97]) and
the context-aware (M=0.87, CrI=[0.84, 0.91]) set-
ting on the other hand is substantial with an esti-
mated difference in means of M=0.07 (CrI=[0.026,

11Credible Intervals (CrIs) were computed on the pos-
terior via the Highest Density Intervals.

12The probability of direction (pd) can be interpreted
as the probability that a parameter’s posterior distri-
bution is strictly positive or negative (Makowski et al.,
2019).

13The Region Of Practical Equivalence with zero
(ROPE) was calculated by using one-tenth of the stan-
dard deviation of the response variable around the null
following recommendations by (Kruschke, 2018): ROPE
= [-0.004, 0.004].
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0.109], pd=99.4%, 0% in ROPE). While these ef-
fects are rather small, we do find reliable differ-
ences. These results are in line with our observa-
tions above, specifically that specific concepts can
appear in a wider range of contexts (coarse to fine).
Thus, context-aware agents use a wider range of
messages to refer to the same specific concept
than context-unaware agents because they can
make use of the context.

Effect of the context The effect of the context
on the emerging language is especially evident
when we compare Figure 8 and Figure 9 which
plot the entropy-based scores over different con-
text conditions for context-unaware and context-
aware settings. In the context-unaware setting,
the NMI stays at a constant level across different
context conditions. We observe a small drop in
consistency and an increase in effectiveness for
fine contexts (i.e., for 3 or 4 shared attributes) in
the datasets with at least 4 attributes. These re-
sults are in line with the hypothesis that context-
unaware speakers communicate concepts on the
most specific level in all contexts, including coarser
contexts. This behavior can be referred to as over-
informative from the listener’s perspective. For ex-
ample, in a coarse context where no other circles
are present, communicating a specific concept like
“red circle” is considered overinformative.

Figure 8: Context-unaware: Mean entropy
scores across all datasets for different context
conditions indicated by the number of shared at-
tributes. From left to right context becomes finer.
Error bars indicate bootstrapped 95% confidence
intervals.

When agents are trained context-aware, on
the other hand, we observe that the information-
theoretic scores differ more between context con-
ditions (see Figure 9). Specifically, we observe
a pattern where the coarser the context (i.e., the
fewer shared attributes), the lower the NMI and the
finer the context (i.e. the more shared attributes),
the higher the NMI. When agents develop fewer
one-to-one mappings between messages and con-
cepts in the coarse context conditions, this might

indicate that they adapt more to the context which
makes one-to-one mappings impractical. The rea-
son for this might be that in coarse contexts, both
more and less specific messages can be success-
ful (e.g., “circle” can mean ‘red circle’, ‘blue circle’
etc.) because when less specific messages are
used, the target concept can still be disambiguated
by the context. In fine contexts, on the other hand,
the messages need to contain more information on
more specific levels of abstraction to be sufficiently
discriminative in the context, which intuitively re-
sults in more one-to-one mappings (e.g., a more
specific utterance like “red circle” is only used for
the more specific concept ‘red circle’).

Figure 9: Context-aware: Mean entropy scores
across all datasets for different context conditions
indicated by the number of shared attributes. From
left to right context becomes finer. Error bars indi-
cate bootstrapped 95% confidence intervals.

In line with these observations, we find a sub-
stantial difference in NMI scores between the
context-unaware (M=0.95, CrI=[0.94, 0.96]) and
context-aware setting (M=0.89, CrI=[0.87, 0.9])
only for coarse contexts with a difference in
means of M=0.064 (CrI=[0.046, 0.811], pd=100%,
0% in ROPE). For fine contexts, the differ-
ence in NMI scores between the context-unaware
(M=0.95, CrI=[0.94, 0.97]) and the context-aware
setting (M=0.95, CrI=[0.92, 0.97]) is not significant
(M=0.008, CrI=[-0.026, 0.041], pd=70.1%, 20% in
ROPE).

Looking at effectiveness and consistency scores
in the context-aware setting, we observe higher
consistency and lower effectiveness scores for
coarse contexts and higher effectiveness and
lower consistency scores for fine contexts. This
means that agents tend to consistently use the
same messages to refer to the same concepts (i.e.
no synonyms) in coarser contexts and that agents
tend to effectively use messages that uniquely
identify the target concept (i.e. non-polysemous
expressions) in finer contexts. This makes sense
because the finer the context gets, the more it is
necessary to distinguish the target concepts from
the distractors.
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5. Discussion

With our interactive agent-based model, we were
able to generate three main insights about concept
communication in various contexts and how this
setup shapes an emerging language.

First, we show that artificial agents can learn to
communicate successfully about concepts at dif-
ferent levels of abstraction and in different con-
texts in a concept-level reference game. Previ-
ous work has explicitly encoded concept informa-
tion in the form of relevance vectors (Ohmer et al.,
2022) or prototype embeddings (Mu and Good-
man, 2021). For humans, however, abstracting
the relevant concept, or level of reference, hap-
pens without such explicit information. Here, we
show that agents can learn higher-level concepts
from the object inputs alone, providing a more nat-
ural model for the emergence of abstraction.

Second, we find that only context-aware agents
learn to communicate efficiently by adapting their
messages to the context conditions. While context-
unaware agents use the same messages to re-
fer to concepts in all context conditions, context-
aware agents adapt their messages successfully
to the context. Overinformative communication,
in the sense that specific concepts are commu-
nicated also in coarse contexts where they con-
tain more information than necessary for disam-
biguation, is reduced in the context-aware game
scenario. This might indicate that context-aware
agents communicate more efficiently (Piantadosi
et al., 2012). It should be noted, though, that these
agents do not share the same biases as humans.
Future work should focus on the biases and pres-
sures that shape the emerging language between
artificial agents towards the kind of efficient overin-
formative communication we often observe in hu-
mans (e.g., Degen et al., 2020; Rubio-Fernandez,
2021; Tourtouri et al., 2019; Kreiss et al., 2017).

Third, we conclude that the availability of context
alone shapes the emerging language towards be-
ing more efficient (i.e. less overinformative) with-
out additional pressures. The agents were not
explicitly incentivized to use the context but they
share the same architecture and training proce-
dure with the context-unaware agents, the only
difference being that they also receive distractor
objects as input. Because we have not incen-
tivized the context-aware agents to use context,
they could follow the same strategy as context-
unaware agents and be maximally specific all the
time. Instead, we find that the agents develop a
strategy that makes use of the context in which
they communicate. Although the differences we
observe between the context-aware and context-
unaware settings are rather small, they are reliable
and they do indicate that the mere presence of con-

text already drives its use in communication. Fu-
ture work can investigate whether pressures, such
as increasing cognitive load for longer messages,
would even intensify these differences.

Our results are in line with previous work on how
an emerging vocabulary depends on the contexts
in which the targets are presented. Hawkins et al.
(2018) found a similar pattern in an artificial lan-
guage learning paradigm with human participants:
The finer the context, the more one-to-one map-
pings are established in an emerging language,
and the coarser the context, the more synonyms
can be found. Further, they also found that an
emerging language contains more words that re-
fer to only one concept and fewer that refer to
more than one concept when participants only en-
counter fine contexts.

Our modeling results add to this evidence and
highlight the role of context from a different angle.
We treat neural network models as testbeds for hy-
potheses on human cognition. Here, we show that
context in itself is a pressure that drives efficiency
in an evolving language. Even though our neu-
ral network agents lack human cognitive biases,
they develop more efficient protocols when they
can (but do not have to!) access information about
the context compared to when they cannot. This
finding demonstrates that the presence of context
alone may drive aspects of pragmatic communica-
tion without any additional pressures and cognitive
prerequisites. We can take this as evidence for
the role of external factors such as context for the
emergence of an efficient communication system.
In line with that, Piantadosi et al. (2012) argue that
ambiguity, as we see it in the emerging communi-
cation system in the context-aware setting, makes
a language efficient because it can usually be re-
solved by context. Our simulations provide evi-
dence for this hypothesis.

In conclusion, the here presented models and
analyses contribute to our understanding of ref-
erential communication and the role of pragmat-
ics in communicating concepts through a system-
atic manipulation of communicative needs. Our re-
sults show that the speaker’s access to the context
shapes the emerging communication system, re-
producing a pattern that was observed in humans
(e.g., Hawkins et al., 2018; Winters et al., 2018,
2015). These findings have implications both for
linguistics research with the questions of how hu-
man language evolved and how we make use of
language efficiently, as well as for emergent com-
munication research with the question of how we
can build artificial models that communicate in a
human-like way. More generally, our work illus-
trates how language emergence simulations with
neural network agents can be used to explore
questions about human cognition.
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A. Accuracy scores across all datasets

Datasets Condition Accuracy
training validation test

D(3,4) context-unaware 0.995 (0.002) 0.99 (0.003) 0.84 (0.036)
context-aware 0.993 (0.003) 0.983 (0.004) 0.784 (0.035)

D(3,8) context-unaware 0.993 (0.003) 0.989 (0.003) 0.778 (0.068)
context-aware 0.984 (0.006) 0.977 (0.006) 0.686 (0.061)

D(3,16) context-unaware 0.981 (0.007) 0.979 (0.008) 0.896 (0.005)
context-aware 0.969 (0.005) 0.968 (0.006) 0.874 (0.007)

D(4,4) context-unaware 0.992 (0.002) 0.989 (0.002) 0.922 (0.028)
context-aware 0.995 (0.003) 0.993 (0.005) 0.942 (0.048)

D(4,8) context-unaware 0.961 (0.011) 0.961 (0.011) 0.943 (0.012)
context-aware 0.984 (0.004) 0.982 (0.006) 0.976 (0.007)

D(5,4) context-unaware 0.98 (0.011) 0.979 (0.012) 0.964 (0.014)
context-aware 0.985 (0.007) 0.984 (0.008) 0.979 (0.01)

Table 4: Accuracy means for agents trained in the context-unaware and context-aware setting averaged
over five runs with standard deviations.

B. Errors across all datasets

B.1. Errors per game round
These plots show the errors on the validation dataset across all datasets for different concept (# fixed
attributes) and context conditions (# shared attributes). Game rounds in which at least one object was
incorrectly classified count as errors and are normalized with the number of occurrences of the specific
condition in the dataset. This means that a value of 1.0 indicates that listeners incorrectly classified at
least one object in each game round in this condition.

Figure 10: Context-unaware: Most errors occur on the diagonal from top left to bottom right, i.e. in the
finest possible context conditions.
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Figure 11: Context-aware: Most errors occur on the diagonal from top left to bottom right, i.e. in the
finest possible context conditions.

As can be seen in the figures, errors occur mostly in fine context conditions, i.e. where the maximally
possible number of attributes is shared between targets and distractors. Some of these errors are false
positives, i.e. distractors are incorrectly classified as targets, and some of these errors are false nega-
tives, i.e. targets are incorrectly classified as distractors. We find that false negative errors occur mainly
with more generic concepts and fine contexts. This is probably due to the target concepts being very het-
erogenous and thus, harder to discriminate against distractors. False positive errors, on the other hand,
occur in the finest contexts when the concept is very specific. This can be explained by the distractors
being very similar to the targets in these conditions. In other words, false positive errors might indicate
that the learned target concept is a bit too wide, and false negative errors might indicate that the learned
target concept is a bit too narrow.

B.2. False negative errors
Here, we plot object-based false negative errors on the validation dataset across all datasets for different
concept (# fixed attributes) and context conditions (# shared attributes). Errors are calculated object-
based, i.e. the higher the score the more objects have been incorrectly classified in one game round.
These scores are again normalized with the number of occurrences of the specific condition in the dataset.
A value of 1.0 indicates that listeners incorrectly classified one target as a distractor in each game round
on average in this condition.
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Figure 12: Context-unaware: Most false negative errors occur in the top left, i.e. in conditions where
generic concepts need to be discriminated in fine contexts.

Figure 13: Context-aware: Most false negative errors occur in the top left, i.e. in conditions where
generic concepts need to be discriminated in fine contexts.

B.3. False positive errors
Here, we plot object-based false positive errors on the validation dataset across all datasets for different
concept (# fixed attributes) and context conditions (# shared attributes). Errors are calculated object-
based, i.e. the higher the score the more objects have been incorrectly classified in one game round.
These scores are again normalized with the number of occurrences of the specific condition in the dataset.
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A value of 1.0 indicates that listeners incorrectly classified one distractor as a target in each game round
on average in this condition.

Figure 14: Context-unaware: Most false positive errors occur in the bottom right, i.e. in conditions
where specific concepts have to be discriminated in a fine context.

Figure 15: Context-aware: Most false positive errors occur in the bottom right, i.e. in conditions where
specific concepts have to be discriminated in a fine context.
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C. Examples for qualitative results across datasets

C.1. Dataset D(3,4)

Object Context
(# Shared
Attributes)

Unique
Messages

[3, 2, 3]
0 “[13, 6, 6, 0]”
1 “[13, 6, 6, 0]”
2 “[13, 6, 6, 0]”

Table 5: Context-unaware: Unique messages used to refer to a randomly picked specific concept in the
D(3,4) dataset over different context conditions.

Object Context
(# Shared
Attributes)

Unique
Messages

[3, 2, 3]

0 “[15, 15, 10, 0]”
“[15, 15, 8, 0]”

1
“[15, 15, 10, 0]”
“[15, 2, 10, 0]”
“[15, 2, 6, 0]”

2 “[15, 2, 10, 0]”

Table 6: Context-aware: Unique messages used to refer to a randomly picked specific concept in the
D(3,4) dataset over different context conditions.



3847

C.2. Dataset D(5,4)

Object Context
(# Shared
Attributes)

Unique
Messages

[3, 0, 2, 1, 3]

0 “[5, 4, 12, 7, 2, 0]”
1 “[5, 4, 12, 7, 2, 0]”
2 “[5, 4, 12, 7, 2, 0]”
3 “[5, 4, 12, 7, 2, 0]”
4 “[5, 4, 12, 7, 2, 0]”

Table 7: Context-unaware: Unique messages used to refer to a randomly picked specific concept in the
D(5,4) dataset over different context conditions.

Object Context
(# Shared
Attributes)

Unique
Messages

[3, 0, 2, 1, 3]

0

“[2, 14, 14, 14, 9, 0]”
“[2, 14, 2, 14, 9, 0]”
“[2, 14, 7, 14, 9, 0]”
“[3, 2, 14, 14, 9, 0]”

1

“[2, 14, 14, 7, 9, 0]”
“[2, 14, 7, 14, 9, 0]”
“[2, 14, 8, 14, 9, 0]”
“[3, 2, 14, 14, 9, 0]”
“[3, 2, 8, 14, 9, 0]”

2

“[13, 8, 14, 14, 9, 0]”
“[2, 14, 14, 14, 9, 0]”
“[2, 14, 2, 14, 9, 0]”
“[3, 2, 8, 14, 9, 0]”

3 “[13, 2, 8, 14, 9, 0]”
“[3, 2, 8, 14, 9, 0]”

4 “[13, 8, 8, 14, 9, 0]”
“[3, 2, 8, 14, 9, 0]”

Table 8: Context-aware: Unique messages used to refer to a randomly picked specific concept in the
D(5,4) dataset over different context conditions.
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D. Mean NMI scores for different concept and context conditions across all
datasets

Figure 16: Context-unaware: Mean NMI scores across all datasets for different concept (# fixed at-
tributes) and context conditions (# shared attributes). From top to bottom context becomes finer and
from left to right concepts become more specific.

Figure 17: Context-aware: Mean NMI scores across all datasets for different concept (# fixed attributes)
and context conditions (# shared attributes). From top to bottom context becomes finer and from left to
right concepts become more specific.
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