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Abstract
Automatic International Classification of Diseases (ICD) coding plays a crucial role in the extraction of relevant
information from clinical notes for proper recording and billing. One of the most important directions for boosting the
performance of automatic ICD coding is modeling ICD code relations. However, current methods insufficiently model
the intricate relationships among ICD codes and often overlook the importance of context in clinical notes. In this
paper, we propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code
representations. Our approach, unlike existing methods, employs a dependent learning paradigm that considers the
context of clinical notes in modeling all possible code relations. We evaluate our approach on six public ICD coding
datasets and the experimental results demonstrate the effectiveness of our approach compared to state-of-the-art
baselines.
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1. Introduction

The International Classification of Diseases (ICD)
is a standard code system devised by the World
Health Organization (WHO), which has gained
widespread adoption in electronic health records
(EHR) and health insurance systems. Currently,
medical coders review medical records and other
relevant documents to extract information about
the patient’s conditions, the services provided, and
any procedures performed. They then translate
this information into standardized ICD codes. This
procedure is usually called ICD coding. However,
manually assigning ICD codes is not only time-
consuming but also error-prone.

To alleviate this issue, the concept of automatic
ICD coding has been proposed recently, which is
viewed as a multi-label text classification task (Mul-
lenbach et al., 2018). The model is required to
predict the probability distribution of ICD codes
based on clinical notes, such as discharge sum-
maries. Although various approaches (Xie et al.,
2019; Li and Yu, 2020; Cao et al., 2020; Vu et al.,
2020; Yuan et al., 2022; Yang et al., 2022b) have
been proposed to enhance the performance of
automatic ICD coding, they still have several limita-
tions in modeling relationships among ICD codes.
• Insufficiently Modeling Relations Among

ICD Codes: Existing methods typically utilize the
ICD code ontology (Xie et al., 2019) or the co-
occurrence graph (Cao et al., 2020) to model the
relationships among ICD codes. However, these
approaches only partially capture the code rela-
tions. The ontology solely encompasses the “child-
parent” relation, which aids in enhancing the rep-
resentation learning of rare ICD codes. On the

other hand, the co-occurrence graph can merely
indicate whether two codes appear together in the
training set’s ground truths. These two graphs are
insufficiently complex to encompass the intricate
relationships among ICD codes.

For instance, “696.0” (Psoriasis arthropathy ) has
been found to have a weak connection with “579.0”
(Celiac disease) (Sanchez et al., 2018). However,
they do not share a common parent code in the on-
tology and are not connected in the co-occurrence
graph, which makes the existing approaches inef-
fective in modeling this relationship. Furthermore,
both the co-occurrence graph and ICD code on-
tology fail to capture exclusive code relations be-
tween different code families, e.g., the relationship
between code “780.60” (Fever, unspecified) and
code “659.2” (Maternal pyrexia during labor un-
specified)1. Consequently, there is a need for a
novel and effective approach to model the intricate
relationships among ICD codes.
• Ignoring the Importance of Context: The

current approaches to ICD coding involve three
main steps: (1) ICD code representation learning,
(2) clinical note representation learning, and (3)
ICD code extraction based on the outputs from the
previous two steps. These approaches typically
rely on the ICD code ontology or the co-occurrence
graph to enhance the representation learning of
ICD codes, which is independent of the second
step. Consequently, the learned code relations
remain fixed across all clinical notes.

However, we contend that the context of clinical
notes plays a crucial role in ICD coding. For in-

1http://www.icd9data.com/2014/Volume1/780-
799/780-789/780/780.60.htm
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Figure 1: The Proposed CoRelation structure.

stance, codes belonging to the same sub-category,
such as “488.81” (Influenza A with pneumonia) and
“488.01” (Influenza, avian with viral pneumonia),
are generally mutually exclusive since patients typ-
ically contract only one type of influenza. Never-
theless, exceptions may arise if a patient contracts
both types of influenza simultaneously (Williams
et al., 2011), necessitating the assignment of both
codes. Therefore, it is imperative to consider the
context in order to learn contextualized and dy-
namic code relations for this task.

Our Approach: To overcome these limitations,
we propose a novel approach called CoRelation2,
which is a contextualized and flexible framework
designed to enhance the learning of ICD code rep-
resentations, as depicted in Figure 1. Unlike exist-
ing methods that simultaneously learn ICD code
and clinical note representations, our approach
employs a dependent learning paradigm.

In Step 1, CoRelation begins by learning contex-
tualized code embeddings based on the input clin-
ical note d and the multi-synonyms of ICD codes,
which follows (Yuan et al., 2022). These learned
code embeddings are then utilized to directly cal-
culate the prediction probabilities Pd and are sub-
sequently fed into the graph learning phase.

In Step 2, we construct a flexible and contextual-
ized bipartite graph G = (U ,V, E) for each clinical
note d, enabling all codes to communicate with
each other through an attention-based strategy. To
improve computational efficiency, we propose to
reduce the size of nodes in V by retaining only the
top K codes with the highest direct code probabili-
ties estimated in Step 1. Besides, we propose to

2Source code can be found in the sup-
plementary file https://github.com/
machinelearning4health/CoRelation.

use coarse-grained ICD code categories to substi-
tute the original codes in U . Most importantly, we
use the contextualized code embeddings learned
in Step 1 as initializations for the graph update pro-
cess. Thus, the learned relationship is dependent
on both the codes and the processed clinical note.
The updated code embeddings are then used to
calculate the relation code probabilities Pg.

In Step 3, we introduce a self-adaptive gating
mechanism that automatically combines the two
sets of probabilities, Pd and Pg, to obtain the ag-
gregated results for the final prediction. Experimen-
tal results on six datasets, including MIMIC-III-50,
MIMIC-III-Full, MIMIC-IV-ICD9-50, MIMIC-IV-ICD9-
Full, MIMIC-IV-ICD10-50, and MIMIC-IV-ICD10-
Full, demonstrate the effectiveness of CoRelation
compared to state-of-the-art baselines.

In addition, we also propose a novel selective
training strategy to reduce the computation cost
brought by relation modeling.

2. Methodology

The aim of automatic ICD coding is to extract a
specific set of ICD codes C = {c1, · · · , cN} from
the given clinical note d = [w1, · · · , wD]. Here, N
and D represent the number of ICD codes and the
word count of the clinical notes, respectively. Our
model, as depicted in Figure 1, comprises three
major steps: contextualized code embedding and
direct code prediction, contextualized code rela-
tion learning, self-adaptive aggregation, and the
selective training strategy. In the following subsec-
tions, we will provide detailed explanations of each
module.

https://github.com/machinelearning4health/CoRelation
https://github.com/machinelearning4health/CoRelation
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2.1. Contextualized Code Embedding
and Direct Code Prediction

2.1.1. Contextualized Code Embedding

Inspired by the recent work MSMN (Yuan et al.,
2022), we propose to use a synonym-based code-
wise attention framework to extract contextualized
code features from clinical notes by referring to
the ICD code synonym description at the initial
stage. Specifically, we employ the same text en-
coder to encode both the raw clinical note and the
code descriptions. Thus, we have the clinical note
embedding as follows:

[w1, · · · ,wD] = TextEncoder(d), (1)

where wk is the representation of the k-th word in
d. Each code ci ∈ C contains M synonym descrip-
tions Si = [si,1, · · · , si,M ], and each si,j consists
of L words. Similarly, for each code synonym, we
have [wsi,j1 , · · · ,wsi,jL ] = TextEncoder(si,j). We
then use the average pool to obtain the overall
synonym embedding as follows:

si,j = Pool([wsi,j1 , · · · ,wsi,jL ]). (2)

Next, we utilize a standard key-query attention
layer (Vaswani et al., 2017) to extract contextu-
alized code embeddings from the text embedding
sequence as follows:

ci,j = KeyQueryAttention(si,j , [w1, · · · ,wD]),
(3)

where ci,j represents the contextualized code em-
bedding. For each code, we use maximum pooling
to obtain an overall representation across all the
obtained synonym embeddings:

ci = Pool([ci,1, · · · , ci,M ]). (4)

2.1.2. Direct Code Prediction

Subsequently, we apply a fully connected layer
to obtain the prediction weight embedding αi for
code ci from the synonymy code embeddings
[ci,1, · · · , ci,M ] learned by Eq. (3):

αi = FCα(Pool([si,1, · · · , si,M ])). (5)

Finally, the direct code probability is calculated by
taking the inner product of the prediction embed-
ding and the extracted contextualized embedding,
followed by applying the sigmoid activation function
σ():

p̂i = σ(αi · ci). (6)

Pd = [p̂1, · · · , p̂N ] stands for the initial direct pre-
diction result, and we are going to use contextual-
ized code relation learning to improve it further.

Modify

Distance 0
Distance 1
Distance 2

(a) Original ICD tree graph (b) Flexible bipartite graph

Upper Level

Lower Level

Figure 2: We modify the original ICD ontology into
a directed flexible bipartite graph. There is an edge
for each code pair, and the edge type depends on
the distance between two codes on the original
ICD ontology.

2.2. Contextualized Code Relation
Learning

To enhance and streamline the ICD coding process,
we propose a novel contextualized code relation
learning module. This network aims to capture
the intricate relationships between ICD codes un-
der the context of the processed case, ultimately
improving the accuracy of code assignment.

2.2.1. Code Relation Graph Construction

Directly modeling the potential relations on the orig-
inal ICD ontology is complicated. As illustrated in
Figure 2 (a), c1 can directly exchange information
with cm1 . Although there is a path from c1 to c3, the
long path decreases the shared information signif-
icantly. As a result, the model cannot effectively
learn the relation between c1 and c3.

Bipartite Graph Construction. To address this
issue, we employ a simplified, flexible bipartite
graph G = (U ,V, E) to represent the code-to-code
connections, as depicted in Figure 2 (b), where
U = V = C denote all the ICD codes, and E de-
notes the edges. Here, we use the distance (i.e.,
the number of hops) between any pair of ICD codes
on the ontology to represent the edge type. Such
a design allows each code to communicate with all
the codes directly, preserves parts of ICD ontology
relations, and fully covers the relations used in the
co-occurrence graph. The updated embeddings of
the lower-level nodes (i.e., V) will be used to calcu-
late relation-enhanced probabilities in the following
subsection.

Bipartite Graph Simplification. Updating all ICD
codes in the constructed graph is time-consuming.
In the MIMIC-III-Full setting, the number of targeted
ICD codes is 8,922, which means there are a total
of 8, 922 × 8, 922 edges. To reduce the computa-
tional burden, we propose two tricks to reduce the
complexity.

Lower-level: Top-K Code Selection. Intuitively,
only the codes with higher probabilities calculated
by Eq. (6) will be helpful in the final prediction, and
the low-probability codes are less likely to affect
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the result. Thus, we can decrease the size of
V by selecting the top-K codes with the highest
probabilities from Pd = [p̂1, · · · , p̂N ], and we use
V ′
d = {c′d,1, · · · , c′d,K} denote the reduced lower-

level code set, where c′d,k is a selected ICD code.
Upper-level: Major Code Substitution. In the

ICD code ontology, each leaf code belongs to a
coarse-grained category. For example, “250.03
(Diabetes mellitus without mention of complication,
type I [juvenile type], uncontrolled)” belongs to the
category “250 (Diabetes mellitus)”, which is also
called the major code. To reduce the size of U ,
we propose to merge ICD codes belonging to the
same coarse-grained category and use the major
codes set U ′ = {cm1 , · · · , cmA } as the nodes, where
A is the number of the major codes.

Simplified Graph. Given the new nodes V ′
d and

U ′, we then update the edge set Ed between V ′
d

and U ′. Let E ′
d denote the new edges, where each

edge type eda,k is still the distance between a major
code cma and a select ICD code c′d,k. In such a
way, we can have a simplified bipartite graph G′

d =
(U ′,V ′

d, E ′
d). Note that the set of V ′

d is dependent
on the clinical note d, but for all clinical notes, the
major codes U ′ are the same. In such a way, the
simplified graph can be considered personalized.

2.2.2. Contextualized Relation Modeling

To update the node embeddings on the simplified
graph G′

d, we first initialize the node embeddings of
both V ′

d and U ′. For each selected node c′d,k ∈ V ′
d,

we can use the contextualized code embedding
learned by Eq. (4) as the initialization. For each
major code cma ∈ U ′, we use Eqs. (1-4) to calculate
the initialized embeddings. The edge type eda,k is
randomly initialized as a representation. Therefore,
the input of the relation graph is customized for
each processed note.

Next, we use the graph transformer (Dwivedi and
Bresson, 2020) to model the interaction between
codes on the simplified graph G′

d as follows:

{U∗,V∗
d,E

∗
d} = GraphTransformer(G′

d). (7)

The resulting enhanced embeddings V∗
d =

[c̃1, · · · , c̃K ] from the lower-level are then used to
estimate the relation enhanced code probabilities
Pg = [p̃1, · · · , p̃K ] as follows:

p̃i = σ(βi · c̃i), (8)

where βi is the prediction weight vector for relation-
enhanced code embedding, which is obtained as
follows:

βi = FCβ(Pool([si,1, · · · , si,M ])). (9)

2.3. Self-adaptive Aggregation

To combine the direct prediction probabilities Pd =
[p̂1, · · · , p̂N ] and the relation enhanced probabili-

ties Pg = [p̃1, · · · , p̃K ], we propose a novel self-
adaptive gating module to aggregate the two re-
sults. In detail, we use the raw activation result
(element-wise product ⊙ of αi and ci) from the
Section 2.1 to calculate the proportion value γi of
relation enhanced prediction p̃i, making the model
able to contextually decide the proportion of differ-
ent inference sources:

γi = σ(FCγ(αi ⊙ ci)). (10)

The final prediction result pi is the gated combina-
tion of two prediction results as follows:

pi = (1− γi)p̂i + γip̃i. (11)

For the codes that are not selected (i.e., not among
top K), we set the γi to 0 instead.

The training loss for the prediction results is:

LCE =
1

N

N∑
i=1

CrossEntropy(pi,gi), (12)

where gi is the ground-truth label. In the mean-
while, we use the following loss to encourage the
model to use less complex relation inference re-
sults by making the average proportion value γi as
a loss term as follows:

Lcomp =
1

N

N∑
i=1

γi. (13)

The final training loss is:

L = LCE + λLcomp, (14)

where λ is the hyper-parameters for controlling the
importance of Lcomp.

2.4. Selective Training Strategy

In ICD coding, the majority of codes possess a lim-
ited number of positive labels. The average positive
labels for each case under the MIMIC-III-Full set-
ting is 15. However, there are total of 8,922 labels.
Consequently, for full settings, most prediction re-
sults consist of negative labels. Despite contribut-
ing minimal gradients for model updates, these
negative labels still demand equal computational
resources during backpropagation. To circumvent
this computational inefficiency, we propose a se-
lective training algorithm, detailed in Algorithm 1.
Specifically, we initially choose the top Ks train-
ing codes based on the output of CoRelationwo

(steps 1-5) and then only perform backpropaga-
tion on these chosen codes (steps 6-8). Here,
CoRelationwo means directly predicting the results
without using contextualized code relation learning
in Section 2.2. This selective training algorithm
enables the model to focus on the most relevant
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Algorithm 1: Selective Training
Input: Code set C, dataset D, and model

parameter θ.
Output: Updated model parameter θ.
while Training not finished do

1. Sampling d, label set G from data set D
(d,G)← D
2. Perform forward propagation without code
relation to estimate the scores.
ˆPest = CoRelationwo(C, d)

3. Choose top Ks codes.
CKs = {· · · , ci, · · · }, i ∈ Top-Ks( ˆPest)
4. Adding additional Ks random codes, and

the ground-truth codes to form Cback.
Cback = {CKs , Cground, Crandom}
5. Select the labels of Cback from label set G.
Gback = {· · · ,gi, · · · }, ci ∈ Cback
6. Perform forward calculation for the
selected codes only.

Pback = CoRelation(Cback, d)
7. Calculate the loss L.
L = LossFunc(Pback,Gback)
8. Update model parameter θ.
θ = θ −∇L

codes during training, thereby reducing computa-
tional resources and avoiding the expenditure on
negative labels that provide minimal gradient infor-
mation.

3. Experiments

3.1. Experiment Settings

In this section, we introduce the experimental set-
tings, which include the datasets, baselines, imple-
mentation details, and evaluation metrics.

3.1.1. Datasets

To evaluate our method, we utilize the ICD cod-
ing datasets derived from the MIMIC-III (Johnson
et al., 2016) and MIMIC-IV (Johnson et al., 2020)
projects. Specifically, we follow the settings of (Mul-
lenbach et al., 2018; Yuan et al., 2022) to create
the MIMIC-III-50 and MIMIC-III-Full datasets, and
the settings of (Nguyen et al., 2023b) to create the
MIMIC-IV-ICD9-50, MIMIC-IV-ICD9-Full, MIMIC-IV-
ICD10-50, and MIMIC-IV-ICD10-Full datasets. The
50 setting focuses on evaluating the top 50 most
frequent ICD codes, and the Full setting focuses
on evaluating all potential ICD codes. The statistics
of the six datasets are presented in Table 1.

3.1.2. Baselines

We divide baselines into two classes based on
whether they utilize pre-trained language mod-
els (PLMs) as encoders: (1) Non-PLM meth-

Table 1: Statistics of the six datasets.
Database MIMIC-III MIMIC-IV
Code Version ICD9 ICD9 ICD10
Settings 50 Full 50 Full 50 Full
# of codes in C 50 8,922 50 11,331 50 26,096
Training size 8,066 47,723 170,664 180,553 104,077 110,442
Validation size 1,573 1,631 6,406 7,110 3,805 4,017
Testing size 1,729 3,372 12,405 13,709 7,368 7,851
Avg # of tokens 1,478 1,434 1,499 1,459 1,687 1,662

ods include CAML (Mullenbach et al., 2018), Mul-
tiResCNN (Li and Yu, 2020), HyperCore (Cao
et al., 2020), LAAT and JointLAAT (Vu et al., 2021),
MSMN (Yuan et al., 2022), and TwoStage (Nguyen
et al., 2023a); and (2) PLM methods include
KEPT3 (Yang et al., 2022b), HiLAT (Liu et al.,
2022a), and PLM-ICD (Huang et al., 2022a).

We obtain the results of baselines either from
the released trained models or the original papers
if the codes are unavailable. It is worth noting that
these models (Liu et al., 2022b; Ng et al., 2023;
Yang et al., 2022a; Niu et al., 2023; Zhang et al.,
2022) are not listed in baselines since they require
additional information, such as annotation data,
information source, and multiple retrieval stages.

3.1.3. Implementation Details

We implement our model in PyTorch, training them
on an Ubuntu 20.04 system with 128 GB of mem-
ory and four NVIDIA A6000 GPUs.

For our model, we employed a single-layer
LSTM with a hidden dimension of 512 as the
TextEncoder. Word embeddings are initialized us-
ing GLOVE pre-trained embeddings on MIMIC-III
notes, as described in the work (Vu et al., 2021).
The attention dimension of the KeyQueryAttention
and GraphTransformer component is configured to
256.

The top-K parameter K is set to 300 for all the
full settings. For the 50 settings, K = 50 is fixed.
For contextualized code relation learning, we use
all the major codes as the upper node set U ′ of the
relation graph for all the settings.

As for the optimizer, we use the Adam optimizer
with an initial learning rate of 5e-4, accompanied by
linear decay, and early stop is applied by checking
the Macro AUC score on the validation set. We
employed the R-Drop (Wu et al., 2021) regular-
ization technique, as introduced in the previous
work MSMN (Yuan et al., 2022). The remaining
parameters are summarized in Table 2.

3For KEPT, we only report the results of the 50 setting
since the Full setting results utilize multiple methods to
perform a multi-stage retrieval.
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Table 2: Hypere parameter settings.
Settings Train Epoch R-Drop factor Lcomp weight β Synonym number M

MIMIC-III-50 40 12.5 0.001 8
MIMIC-III-Full 30 5.0 0.01 8
MIMIC-IV-ICD9-50 15 5.0 0.001 8
MIMIC-IV-ICD9-Full 30 5.0 0.01 4
MIMIC-IV-ICD10-50 15 5.0 0.001 8
MIMIC-IV-ICD10-Full 30 5.0 0.01 4

Table 3: Results on the MIMIC-III-50 test set.
Category Method AUC F1 Pre

Macro Micro Macro Micro P@5 P@8

PLM
HiLAT 92.7 95.0 69.0 73.5 68.1 55.4
PLM-ICD 90.2 92.7 64.8 69.6 65.0 53.0
KEPT 92.6 94.8 68.9 72.9 67.3 54.8

Non-PLM

CAML 87.5 90.9 53.2 61.4 60.9 -
MultiResCNN 89.9 92.8 60.6 67.0 64.1 -
HyperCore 89.5 92.9 60.9 66.3 63.2 -
LAAT 92.5 94.6 66.6 71.5 67.5 54.7
JointLAAT 92.5 94.6 66.1 71.6 67.1 54.6
TwoStage 92.6 94.5 68.9 71.8 66.7 -
MSMN 92.8 94.7 68.3 72.5 68.0 54.8
CoRelation 93.3 95.1 69.3 73.1 68.3 55.6

3.1.4. Evaluation Metrics

Following previous studies (Mullenbach et al.,
2018; Vu et al., 2021; Yuan et al., 2022), we re-
port Macro & Micro AUC, Macro & Micro F1, and
Precision at K (P@K) metrics, where K = 5, 8, 15
for different settings. The Bold notation indicates
the best results among non-PLM techniques, while
Underline notation signifies the best results when
considering the PLM setting.

3.2. Results of the 50 Setting

In this section, we present the experimental out-
comes for the three 50 settings, emphasizing the
top 50 codes. In this setting, the size of V ′

d = 50 for
all data. A comprehensive comparison of method-
ologies on the MIMIC-III and MIMIC-IV settings is
provided in Table 3 and Table 4 respectively. Re-
sults reveal that our proposed model, CoRelation,
outperforms all non-PLM methods across all met-
rics within the 50 settings. Even when compared
to PLM methods, our method still demonstrates
state-of-the-art performance on every metric, ex-
cept for Micro F1 on the MIMIC-III-50 setting. Con-
sequently, our method’s advantage in the 50 set-
tings is considerably substantial.

3.3. Results of the Full Setting

Next, we examine the results of three Full settings
in Table 5 and Table 6. For the Full settings, only
one PLM method is included since other PLM meth-
ods cannot handle the huge potential label space
as illustrated in Table 1. CoRelation once again
outperforms existing non-PLM methods across a
majority of metrics within the MIMIC-III-Full, MIMIC-

IV-ICD9-Full, and MIMIC-IV-ICD10-Full contexts.
Concurrently, it is important to note that the im-
provement of CoRelation in Precision at K (P@K)
scores is particularly significant, demonstrating
that the proposed relation learning technique is ef-
fective in refining high-probability code predictions.
Compared to PLM methods, although PLM-ICD
exhibits superior performance in some P@K met-
rics, its underwhelming performance across other
metrics - including its poor results in the 50 settings
- renders it less competitive. Besides, our model
operates with considerably fewer parameters (22
Million vs. 120 Million) compared to PLM methods.
As such, the advantage of the CoRelation remains
evident.

3.4. Ablation Study

In this section, we present an ablation study to ex-
amine the contribution of each proposed module to
the overall performance of our model. The results
are summarized in Table 7. The following notations
represent different configurations of our model:

• W/O Relation: This notation signifies our pro-
posed model without the application of the
relation learning discussed in Section 2.2.

• W/O Flexible Relation Graph (W/O FRG):
This is the configuration where our proposed
flexible relation graph, described in Sec-
tion 2.2.1, is replaced with a fixed ICD on-
tology + co-occurrence graph, similar to (Cao
et al., 2020).

• W/O Context: This denotes a version of our
model that excludes the use of contextualized
code embeddings, as per Section 2.2.2. The
non-contextualized code description embed-
dings si,j are employed to initialize the relation
graph G′

d, similar to (Xie et al., 2019; Cao et al.,
2020).

• W/O Self-Adaptive Aggregation (W/O SAA):
This indicates our proposed model without the
integration of the self-adaptive aggregation
discussed in Section 2.3. The Pg is directly
employed as the final output.
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Table 4: Results on the MIMIC-IV-50 test sets.

Category Method
MIMIC-IV-ICD9-50 MIMIC-IV-ICD10-50

AUC F1 Pre AUC F1 Pre
Macro Micro Macro Micro P@5 Macro Micro Macro Micro P@5

PLM PLM-ICD 95.0 96.4 71.4 75.5 62.4 93.4 95.6 69.0 73.3 64.6

Non-PLM

CAML 93.1 94.1 65.3 69.2 58.6 91.1 93.2 64.3 67.6 59.6
LAAT 94.9 96.3 70.0 74.5 62.0 93.2 95.5 68.2 72.6 64.4
JointLAAT 94.9 96.3 69.9 74.3 62.0 93.4 95.6 68.4 72.9 64.5
MSMN 95.1 95.5 71.9 75.8 62.6 93.6 95.7 70.3 74.2 65.2
CoRelation 95.4 96.7 72.5 76.0 62.9 93.8 96.0 70.6 74.4 65.4

Table 5: Results on the MIMIC-III-Full test set.
Method AUC F1 Pre

Macro Micro Macro Micro P@5 P@8 P@15
PLM-ICD 92.5 98.9 8.4 58.0 83.9 76.7 61.1
CAML 89.5 98.6 8.8 53.9 - 70.9 56.1
MultiResCNN 91.0 98.6 8.5 55.2 - 73.4 58.4
HyperCore 93.0 98.9 9.0 55.1 - 72.2 57.9
LAAT 91.9 98.8 9.9 57.5 81.3 73.8 59.1
JointLAAT 92.1 98.8 10.7 57.5 80.6 73.5 59.0
TwoStage 94.6 99.0 10.5 58.4 - 74.4 -
MSMN 95.0 99.2 10.3 58.4 82.5 75.2 59.9
CoRelation 95.2 99.2 10.2 59.1 83.4 76.2 60.7

We initiate the comparison with W/O Relation
and the proposed model. Under both the 50 and
Full settings, the omission of the relation results in
a decline in most metrics, signifying the efficacy of
our proposed relation learning in managing both
frequent code settings and full code settings. Con-
currently, we individually substitute components
of the proposed contextualized relation learning
to evaluate the efficiency of each proposed mod-
ule. W/O FRG incurs the smallest decrease, yet
it does not suggest that the contribution of flexible
relation modeling is trivial. As the flexible relation
graph centers on intricate and weak relationships,
its enhancements are less apparent in quantita-
tive analysis. The case studies in Section 3.5 will
illustrate that the relations inferred within the flexi-
ble graph hold significant value. Finally, both W/O
SAA and W/O Context contribute to substantial
declines in the final performance. This underlines
the significance of contextualized relation model-
ing and self-adaptive aggregation. In conclusion,
all the proposed module contribute to the ultimate
performance.

3.5. Case Study on Learned Code
Relations

To better comprehend the efficacy of our proposed
flexible, context-aware code relationship learning
in facilitating code prediction, we conduct case
studies to elucidate the relationships inferred from
the code. The cases are depicted in Figure 3.
Based on our analysis, the inferred relationships
can be categorized into two types.

Type 1 relationships concentrate on differentiat-
ing similar codes by referencing codes that origi-

Type 1: Similar codes

Type 2: Codes with 
certain relations

584.9 (Acute 
kidney failure)

586 (Renal failure)

580 (Acute 
glomerulonephritis)

582 (Chronic 
glomerulonephritis)

Top 3 codes

Kidney 
disorder 
family

788.20 (Urinary 
retention)

280 (Iron deficiency 
anemias)

285 (Other 
unspecified anemias)

281 (Hereditary 
hemolytic anemias)

Top 3 codes

Associated 
with

Figure 3: Two typical learned code relation cases.

nate from the same family. For example, the top-3
referenced codes for the code “584.9” (Acute kid-
ney failure) are “586” (Renal failure), “580” (Acute
glomerulonephritis), and “582” (Chronic glomeru-
lonephritis). All these referenced codes, including
“584.9”, are part of the Kidney disorder family. The
model, by taking these analogous codes into con-
sideration, can make more precise predictions by
discerning subtle differences.

Type 2 relationships focus on referencing codes
that demonstrate specific associations. For in-
stance, the top-3 cited codes for “788.20” (Uri-
nary retention) are “280” (Iron deficiency ane-
mias), “286” (Other unspecified anemias), and
“281” (Hereditary hemolytic anemias), all falling
under the Anemia category. The incidence of Uri-
nary Retention is frequently associated with the
severity of anemia (Hung et al., 2015). By utilizing
flexible relationship learning, the model is capable
of recognizing such associations and employing
them to bolster prediction outcomes.

To summarize, the relationships inferred within
the flexible graph are highly interpretable and ex-
hibit a robust correlation with real-world medical
practices.

3.6. Evaluation of Top-K Code Selection

In this section, we evaluate the efficacy of the
top-K code selection strategy, delineated in Sec-



4004

Table 6: Results on the MIMIC-IV-Full test sets.

Category Method
MIMIC-IV-ICD9-Full MIMIC-IV-ICD10-Full

AUC F1 Pre AUC F1 Pre
Macro Micro Macro Micro P@8 Macro Micro Macro Micro P@8

PLM PLM-ICD 96.6 99.5 14.4 62.5 70.3 91.9 99.0 4.9 57.0 69.5

Non-PLM

CAML 93.5 99.3 11.1 57.3 64.9 89.9 98.8 4.1 52.7 64.4
LAAT 95.2 99.5 13.1 60.3 67.5 93.0 99.1 4.5 55.4 67.0
JointLAAT 95.6 99.5 14.2 60.4 67.5 93.6 99.3 5.7 55.9 66.9
MSMN 96.8 99.6 13.9 61.2 68.9 97.1 99.6 5.4 55.9 67.7
CoRelation 96.8 99.5 15.0 62.4 70.1 97.2 99.6 6.3 57.8 70.0

Table 7: Results of ablation experiments on the MIMIC-III datasets.
Dataset MIMIC-III-50 MIMIC-III-Full

Method AUC F1 Pre AUC F1 Pre
Macro Micro Macro Micro P@5 P@8 Macro Micro Macro Micro P@5 P@8 P@15

CoRelation 93.3 95.1 69.3 73.1 68.3 55.6 95.2 99.2 10.2 59.1 83.4 76.2 60.7
W/O Relation 93.1 95.0 69.0 72.6 68.1 55.2 95.2 99.1 9.3 58.9 82.8 75.7 60.5
W/O FRG 93.2 95.1 69.0 72.9 68.2 55.5 95.1 99.2 10.0 58.8 83.3 76.0 60.5
W/O Context 92.0 93.7 66.4 70.0 66.2 53.8 95.0 99.1 10.7 57.9 81.4 74.3 59.4
W/O SAA 92.5 94.7 68.6 72.2 67.9 55.0 95.0 99.1 9.7 58.8 82.9 75.9 60.1

Table 8: Evaluation of K values on the MIMIC-III-
Full.

K
AUC Pre MemoryMacro Micro P@5 P@8

300 95.2 99.2 83.4 76.2 9.15 GB
200 95.2 99.2 83.5 76.1 7.78 GB
100 95.2 99.2 83.1 75.8 6.41 GB
50 95.1 99.2 83.0 75.4 5.05 GB

Table 9: Evaluation of Major Code Substitution on
the MIMIC-III-50 dataset.

Method AUC P@5 Memory TimeMacro Micro
Complete 93.3 95.1 68.4 6.0 GB 0.23s

Major 93.3 95.1 68.3 1.5 GB 0.05s

tion 2.2.1. We manipulate K within a range of 50
to 300, and the corresponding performance met-
rics along with per-sample GPU memory costs are
compiled in Table 8. It is clear that escalating val-
ues of K bolster the performance of our model,
albeit at the cost of increased GPU memory con-
sumption. Nevertheless, the marginal performance
enhancement decelerates as K keeps surging, pre-
dominantly due to the dwindling influence of the
remaining low-probability codes, elucidated in Sec-
tion 2.2.1. This indicates that our proposed top-K
code selection strategy is potent, without compro-
mising the overall model performance.

3.7. Evaluation of Major Code
Substitution

We also assess the efficacy of the proposed major
code substitution strategy in Section 2.2.1, and the
results are shown in Table 9 on the MIMIC-III-50
dataset. The term Complete indicates the strategy

Table 10: GPU memory space comparison results
on the MIMIC-III-Full setting.

Method Memory
CoRelation Selective 9.15 GB

CoRelation W/O Selective 72.76GB

where the upper-level codes, denoted as U , are
not replaced with the major codes U ′. Conversely,
Major refers to the implementation of the major
code substitution strategy. The reported speed and
memory costs are the average per-sample metrics
observed during training. As can be deduced from
Table 9, employing the major code substitution re-
sults in a substantial decrease in memory usage
and computational time while sustaining a perfor-
mance level comparable to the complete approach.

3.8. Evaluation of the Selective Training

To prove the efficiency of the proposed selective
training method, we report the per-sample space
cost results in Table 10. From Table 10, we can
discover that our proposed selective training ap-
proach significantly reduces memory cost. By utiliz-
ing a more efficient training strategy that selectively
samples the code space, our method drastically
reduces GPU memory usage from 72.76 GB to
just 9.15 GB by nearly 12.5% of the original cost.

4. Related Work

The goal of automatic ICD coding is to infer and
assign ICD codes based on the textual clinical note.
Currently, a majority of automatic ICD coding tech-
niques, such as CAML (Mullenbach et al., 2018)
and MultiResCNN (Li and Yu, 2020), employ a
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dual framework for ICD code prediction. In partic-
ular, clinical notes and codes are independently
converted into embeddings. Then, a code-wise
attention framework is utilized to extract relevant in-
formation from the encoded clinical notes based on
code embeddings. Further enhancements to this
approach are proposed from multiple perspectives.

Some studies involve leveraging supplemen-
tary information or knowledge, for instance, us-
ing ICD code descriptions to initialize ICD code
embeddings (Dong et al., 2021; Zhou et al., 2021).
MSMN (Yuan et al., 2022) expands on this by incor-
porating synonym descriptions of ICD codes. Ad-
ditionally, there have been works to improve code
representations using ICD relation data. MSATT-
KG (Xie et al., 2019) and Teng et al. utilize ICD on-
tology to enrich the initial code embeddings, while
HyperCore (Cao et al., 2020) employs an extra co-
occurrence graph to enhance code embeddings.
However, as outlined in Section 1, those methods
fall short in effectively modeling code relationships.
Other research like LAAT (Vu et al., 2021) and
TwoStage (Nguyen et al., 2023a) propose to pre-
dict codes in a hierarchical manner to optimize
the final prediction outcomes. Concurrently, nu-
merous studies (Liu et al., 2022b; Ng et al., 2023;
Zhang et al., 2022; Wang et al., 2020) explore more
complex methodologies for incorporating external
knowledge. Nonetheless, despite these enhance-
ments, these techniques exhibit limited flexibility
when dealing with various ICD coding settings due
to their dependence on supplementary informa-
tion sources or resources. Besides the knowledge,
there are also studies (Yang et al., 2022a; Niu et al.,
2023) that recommend the use of multiple-stage
retrieval methods for performance enhancement.

The advent of pre-trained language models
(PLMs) has inspired many works to leverage PLMs
to enhance ICD coding performance (Huang et al.,
2022b; Michalopoulos et al., 2022; Ng et al., 2023;
Kang et al., 2023). However, these methods en-
counter drawbacks due to the substantial computa-
tional cost and the over-fitting problem of PLM mod-
els. Furthermore, these PLM-based methods fre-
quently under-perform when compared to simpler
baseline models, such as LSTM and CNN (Ji et al.,
2021; Pascual et al., 2021). Despite these draw-
backs, certain approaches, such as KEPT (Yang
et al., 2022b) and HiLAT (Liu et al., 2022a), have
succeeded in markedly improving the performance
of PLM-based methods. They achieve this through
the application of prompt-based prediction and hi-
erarchical encoding methods. Nevertheless, these
approaches still grapple with the issue of high com-
putational costs.

5. Conclusion

In this paper, we propose a novel contextualized
code relation-enhanced ICD coding model. The
proposed model, referred to as CoRelation, aims
to model the complex yet contextualized relations
among ICD codes. CoRelation delivers state-of-
the-art performance in comparison to current ad-
vanced ICD coding systems on six ICD coding
datasets, yet it does so while consuming fewer
computational resources without using pre-trained
language models. Furthermore, we have under-
taken an exploration of the learned code relation
within our proposed method. The evidence sug-
gests that our approach is also highly explainable.
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