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Abstract
Combining pre-trained language models (PLMs) and manual templates is a common practice for text classification
in zero-shot scenarios. However, the effect of this approach is highly volatile, ranging from random guesses to
near state-of-the-art results, depending on the quality of the manual templates. In this paper, we show that this
instability stems from the fact that language models tend toward predicting certain label words of text classification,
and manual templates can influence this tendency. To address this, we develop a novel pipeline for annotating and
filtering a few examples from unlabeled examples. Moreover, we propose a new method to measure model bias on
label words that utilizes unlabeled examples as a validation set when tuning language models. Our approach does
not require any pre-labeled examples. Experimental results on six text classification tasks demonstrate that the
proposed approach significantly outperforms standard prompt learning in zero-shot settings, achieving up to 19.7%
absolute improvement and 13.8% average improvement. More surprisingly, on IMDB and SST-2, our approach
even exceeds all few-shot baselines.
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1. Introduction

In recent years, fine-tuning pre-trained language
models (PLMs) with task-specific data has become
a standard practice for various NLP tasks (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019; Lewis et al., 2020; Bao et al., 2020), such as
text classification (Kowsari et al., 2019), machine
translation (Zhu et al., 2020), and natural language
inference (Bowman et al., 2015; Williams et al.,
2018). However, fine-tuning requires sufficient
downstream task data to train the extra random-
initialized parameters (e.g., the classification head
in text classification) that it introduces. This draw-
back limits the application of PLMs to tasks where
sufficient labeled data are unavailable and has
led to research on making PLMs perform better
in low-resource scenarios. Proposed by GPT-3
(Brown et al., 2020) and PET (Schick and Schütze,
2021a), prompt tuning has shown effectiveness
in low-resource scenarios by incorporating human
prior knowledge into the PLM’s input. Prompt tun-
ing does not need to introduce additional parame-
ters compared to fine-tuning because it transforms
the downstream task into masked language mod-
eling, a common task in pre-training. Thus, prompt
tuning utilizes the knowledge stored in PLMs in a
more direct manner, which is beneficial when suf-
ficient training data are unavailable to provide ad-
ditional knowledge.

The performance of prompt learning relies on
whether the PLMs can fill in the correct label word

at the [MASK] position. However, due to the dif-
ferent distributions between the pre-training cor-
pus and the task-specific data, PLMs show dif-
ferent propensities in predicting label words. An
intuitive thought is that PLMs tend to predict la-
bel words that occur more frequently in the pre-
training corpus (Zhao et al., 2021). Model bias
on label words can lead to severe performance
degradation on text classification in zero-shot set-
tings since model parameters are not updated. In
practice, we evaluate1 RoBERTa-large (Liu et al.,
2019) model bias on label words of AG’s News2

(Zhang et al., 2015), a four-class topic classifica-
tion dataset, with a manual template. As illustrated
in Figure 1(a) and Table 1(a), the model shows a
much higher tendency to predict “business” than
“politics”, which leads to a large number of exam-
ples with the true label “politics” being incorrectly
predicted as “business” (numbers underlined in Ta-
ble 1(a)). Furthermore, we repeat the experiment
by using another manual template. The results
are shown in Figure 1(b) and Table 1(b). Surpris-
ingly, manual template replacement greatly influ-
ences model bias on label words, which explains
the dramatic performance fluctuation when chang-
ing templates in prompt tuning.

In this work, we take model bias on label words

1The specific method is detailed in Section 3.2.
2AG’s News includes four categories of news: World,

Sports, Business, Sci/Tech. In the experiment, we use
“politics”, “sports”, “business” and “technology” as label
words of these four categories.
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Table 1: Results of classification on AG’s News with zero-shot prompt learning experiments under differ-
ent templates. (a) Template: A [MASK] news: x. (b) Template: x This topic is about [MASK]. The black
numbers are the number of examples being correctly classified, and the red numbers are the numbers
of examples being wrongly classified. The underlined numbers cause the most accuracy loss.

Label Word Prediction Label Word
politics sports business technology

politics 356 310 1217 17
sports 2 1876 22 0

business 14 15 1767 104
technology 20 90 699 1091

(a)

Label Word Prediction Label Word
politics sports business technology

politics 1214 80 240 366
sports 41 1774 22 63

business 212 17 885 786
technology 63 26 85 1726

(b)

(a) (b)

Figure 1: Illustration of RoBERTa-large model bias
on AG’s News label words under different tem-
plates. (a) Template: A [MASK] news: x. (b) Tem-
plate: x This topic is about [MASK].

into consideration and develop a novel pipeline for
annotating and filtering a few examples from un-
labeled examples. In this way, we switch tasks
from zero-shot scenarios to few-shot scenarios.
Specifically, our method contains two steps: bias-
based annotation and absolute probability refine-
ment. In bias-based annotation, we randomly sam-
ple several examples from the unlabeled exam-
ple set3 and evaluate model bias on these sam-
pled examples. For each sampled example, we
reformulate it with the manual template and uti-
lize model bias to calibrate the model prediction
at the [MASK] position as the basis of annota-
tion. To further improve the annotation accuracy,
we propose absolute probability refinement to ex-
clude examples with low probability on all label
words. Moreover, since much prior work on few-
shot learning uses a large validation set, which is
unavailable in true low-data settings, to select the
prompt and other model-specific hyperparameters
(Perez et al., 2021), we present unlabeled valida-
tion to measure and eliminate model bias on label
words while utilizing only unlabeled examples as a
validation set. It is worth noting that the proposed
approach does not require any pre-labeled exam-
ples, i.e., our method shows effectiveness in true
zero-shot settings.

Experiments on six text classification datasets
demonstrate that the proposed approach consis-
tently outperforms standard prompt tuning in zero-

3We use stochastic sampling to introduce random-
ness to simulate the unbalanced distribution of labels
in real-world scenarios.

shot settings, with up to 19.7% improvement and
13.8% average improvement. More surprisingly,
on IMDB and SST-2, our approach yields better
performance than all few-shot baselines, indicat-
ing that the proposed annotation strategy can ob-
tain high-quality training examples from unlabeled
data.

2. Related Work

Prompt Learning. GPT-3 (Brown et al., 2020)
demonstrates that large-scale PLMs can perform
well in low-data scenarios by in-context learning.
Specifically, instead of tuning any parameters, in-
context learning concatenates the task descrip-
tion, a few demonstration examples and the orig-
inal task input as a prompt to guide GPT-3 to pre-
dict the next word. To apply prompts on mod-
els smaller than GPT-3, such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), PET
(Schick and Schütze, 2021a) converts input exam-
ples into cloze questions and finetunes the model
on these reformulated examples. However, manu-
ally designing good templates is laborious and re-
quires domain knowledge. To reduce human la-
bor in template engineering, Shin et al. (2020) pro-
poses AUTOPROMPT to create templates auto-
matically based on a gradient-guided search. Gao
et al. (2021) proposes LM-BFF, which leverages
T5 to automate the search process of templates.
Searching templates over the entire vocabulary is
time-consuming and suboptimal. P-Tuning (Liu
et al., 2022), WARP (Hambardzumyan et al., 2021)
and DART (Zhang et al., 2022) treat templates as
tunable parameters and search templates in the
continuous space with backpropagation. In addi-
tion, some studies have focused on verbalizer con-
struction. KPT (Hu et al., 2022) utilizes external
knowledge bases to expand and to refine the label
word space of the verbalizer. DART (Zhang et al.,
2022) and WARP (Hambardzumyan et al., 2021)
tune the label word embeddings to achieve better
representations of the labels.
Instability in Prompt Tuning. Recent work
shows that the effectiveness of prompt tuning is
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highly volatile, ranging from random guesses to
near state-of-the-art depending on the prompt for-
mat. LAMA (Petroni et al., 2019) uses different
templates to query the same information in the
language models, demonstrating that the choice
of templates has an impact on query accuracy.
Jiang et al. (2020) reduces the instability by au-
tomatically generating diverse templates and as-
sembling predictions when the language model
uses different templates. Liu et al. (2021) shows
that changing a single word in templates can dras-
tically impact the results of prompt tuning. In
prior experiments, we provide insight into how the
prompt format impacts performance by influencing
model bias on certain words. In addition to the
template format, the choice of training data also
causes instability in low-data scenarios. Schick
and Schütze (2021b) finds that using different ran-
dom seeds to select training data can result in
significant performance fluctuations. Gao et al.
(2021) incorporates training examples as demon-
strations into the template and finds that the choice
of demonstration examples is crucial for the final
results. Zhao et al. (2021) observes that in GPT-
3’s input, the number and order of the demon-
stration examples corresponding to each label can
cause accuracy to vary from near chance to near
state-of-the-art. To enhance the stability of few-
shot training, we propose an annotation and refine-
ment strategy to obtain training examples with high
correlation to their classes from unlabeled data.

Calibration of Prompt Tuning. The language
models are usually trained with multiple large gen-
eral corpora of plain text. When applying the lan-
guage model to a specific downstream task, the
property of the model’s predicted probabilities is
typically not correlated with the correctness prob-
abilities, i.e., the language model is not calibrated
for the downstream task. Jiang et al. (2021) ob-
serve that the predicted probabilities of BART, T5,
GPT-2 are not calibrated on QA tasks and im-
prove the prediction accuracy by fine-tuning and
modifying the model’s output. Zhao et al. (2021)
consider three factors (common token bias, ma-
jority label bias and recency bias) leading to the
model bias on certain answers. To reduce the in-
fluence of model bias on correctness, Zhao et al.
(2021) concatenate meaningless strings into the
prompt to measure model bias, and then uses
model bias to adjust the model predictions on real
inputs. Holtzman et al. (2021) find that language
models divide the probability of the correct answer
into multiple answer’s synonyms when making pre-
dictions. To address this issue, Holtzman et al.
(2021) modify the predicted probabilities accord-
ing to answer’s prior likelihood within the context.
However, the above methods mainly focus on mod-
ifying the model output, and model bias still exists

since model parameters are untuned. Conversely,
we consider model bias while annotating examples
and propose unlabeled validation to measure and
eliminate model bias during training.

3. Our Approach

Our approach annotates examples with high qual-
ity from unlabeled examples based on prompt
tuning and uses unlabeled examples to measure
model bias on label words during training. The
overview of our approach is illustrated in Figure 2.
In this section, we first introduce the background
of prompt tuning (Section 3.1), then present the
process of annotating and refining examples (Sec-
tion 3.2, 3.3), and finally, we describe how unla-
beled examples can be used to eliminate model
bias (Section 3.4).

3.1. Problem Definition
Let M be a pre-trained language model and C
be its vocabulary. Given a text classification task
R, X = {x0, x1, ..., xn} is the original input text
set, where xi denotes the ith example to be clas-
sified and Y = {y0, y1, ..., ym} is the label space of
R. Tackling classification tasks with prompt tuning
can be roughly divided into two steps: defining a
verbalizer and designing a template. A verbalizer
is a function mapping y to a label word set V(y)4

that satisfies:

V(yi) ∩ V(yj) = ∅, ∀ 0 ≤ i < j ≤ m (1)

A template usually consists of a [MASK] token,
a placeholder for task input, and some human-
designed guiding text (e.g., A [MASK] news: x).
The template can reformulate the task input to
PLM’s input by filling the task input text into the
placeholder:

x̃i = [CLS] A [MASK] news : xi [SEP]

Then M gives the predicted probabilities at the
[MASK] token over the vocabulary:

p(w|x̃i) = p([MASK] = w|x̃i), w ∈ C (2)

The probability of xi being classified into each can-
didate class is computed as:

p(yj |x̃i) =
∑

w∈V(yj)

p(w|x̃i), 0 ≤ j ≤ m (3)

xi is classified into the class that obtains the high-
est probability.

4We set the size of V(y) to 1 for all classes in the
experiments.
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Figure 2: The framework of our approach applied to AG’s News (a four-class topic classification dataset,
we use “politics”, “sports”, “business” and “technology” as label words). We calibrate the PLM’s original
predictions on the unlabeled examples with model bias, and use calibrated predictions to annotate and
refine training examples.

However, as shown in the previous sections,
due to the model bias, certain label words con-
sistently obtain high probabilities, regardless of
the semantics of the PLM’s input, which leads to
many input texts being misclassified into their cor-
responding classes. To address this, we incorpo-
rate model bias into the data annotation process,
and we propose a method to measure model bias
during training with unlabeled examples.

3.2. Bias-based Annotation
The accuracy of data annotation dramatically im-
pacts the effectiveness of subsequent model train-
ing. A critical step in bias-based annotation is to
accurately measure model bias on label words in
zero-shot scenarios. Given an m-class text classi-
fication task, we randomly sample m×k examples
from task unlabeled data as the unlabeled valida-
tion set U . For each example, xi, in U , we reformu-
late it into PLM’s input format with the template and
then calculate the probability distribution pi over m
classes. We formalize model bias on label words
as follows:

pb =

∑m×k−1
i=0 pi
m× k

(4)

As demonstrated in Figure 1, the probabilities
on each label word vary greatly (e.g., in Figure
1(a), the probabilities of “politics” and “business”
are 0.06 and 0.46, respectively). This bias indi-
cates that the model is more likely to label exam-

ples as label words with high probability rather than
that with low probability, which leads to a drop in
annotation accuracy. To address this, we first cal-
ibrate the probability distribution of each example
by element-wisely dividing the model bias:

p̃i(j) =
pi(j)

pb(j)
, 0 ≤ i < m× k, 0 ≤ j < m (5)

where p(j) is the jth element of p. Then, we clas-
sify these examples according to the highest prob-
ability in the calibrated probability distribution. In-
side each class, we choose the top-n examples
with the highest probability as the training data T :

T =

m⋃
i=1

{top-n[Xi]} (6)

where Xi represents the examples categorized to
class i.

3.3. Absolute Probability Refinement

We call the probability of label words over the vo-
cabulary absolute probability and that over each
class relative probability. The annotation strategy
proposed in Section 3.2 is based on the relative
probabilities of the label words in both calibration
and top-n selection. However, solely relying on rel-
ative probability may incur mistakes when annotat-
ing examples with low absolute probabilities for all
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Figure 3: Left: The model’s prediction distribution
on the vocabulary for an example not fitting any
class. Right: The relative probability distribution of
the example over each class after normalization.

label words. As shown in Figure 3, although the ex-
ample does not fit into any class, the relative prob-
ability of class 1 is close to 1 after normalization,
putting it in the forward position in subsequent top-
n selection. To improve annotation accuracy, we
propose absolute probability refinement, which in-
troduces an additional condition to top-n selection.
Specifically, we set a probability threshold for each
class. During top-n selection, we filter out exam-
ples with absolute probability lower than the prob-
ability threshold of their class. By incorporating ab-
solute probability into the annotation, we enhance
the correlation between the selected training exam-
ples and their classes.

3.4. Unlabeled Validation

Previous work has shown that prompt engineering
is a crucial step in prompt learning. However, the
effectiveness of prompt learning varies consider-
ably even when modifying a word in a template
without changing the semantics. Some research
has used a large validation set to determine the
best template and when to stop training, which
is not applicable in true zero-shot scenarios. In
this work, instead of evaluating the model’s accu-
racy on a validation set, we measure whether the
model bias distribution on the unlabeled validation
set U is balanced over label words since the train-
ing objective is to eliminate model bias. Ideally,
the model bias on label words should be nearly
uniformly distributed:

{
pavg(i) = 1

m + σi , 0 ≤ i < m∑m−1
i=0 σi = 0

(7)

where σi is a randomly generated small number
that represents noise. Therefore, we use the dis-
tance between pb and pavg to represent model bias

on label words during training:

d =

√√√√m−1∑
i=0

(pb(i)− pavg(i))2 (8)

4. Experiments

We conduct experiments on six text classifica-
tion datasets to show the effectiveness of our ap-
proach. In this section, we first introduce statistics
for the six datasets, the experimental settings we
used, and the baselines for comparison with our
approach. Then, we present our main results and
provide possible insights into our method.

4.1. Dataset Statistics
We conduct experiments on six popular text clas-
sification datasets, including three topic classifica-
tion datasets: DBPedia (Lehmann et al., 2015),
AG’s News (Zhang et al., 2015) and Yahoo (Zhang
et al., 2015), and three sentiment classification
datasets: IMDB (Maas et al., 2011), Amazon
(McAuley and Leskovec, 2013) and SST-2 (Socher
et al., 2013). DBPedia, AG’s News and Yahoo con-
tain 14, 4 and 10 categories, respectively. All three
sentiment classification tasks have two polarities,
i.e., positive and negative. The statistics of the
datasets are shown in Table 2.

Table 2: The statistics of the datasets used in the
experiments.

Dataset Type # Class # Test Example
DBPedia Topic 14 70000

IMDB Sentiment 2 25000
Amazon Sentiment 2 10000
SST-2 Sentiment 2 872

AG’s News Topic 4 7600
Yahoo Topic 10 60000

4.2. Experimental Settings
Our experiments are built on Pytorch. We use
RoBERTa-large (Liu et al., 2019) as the base
model for all experiments and report the accuracy.
For prompt-based methods, we follow the setup
of KPT (Hu et al., 2022) with four manual tem-
plates and repeat the experiments with five differ-
ent random seeds for each template, which signif-
icantly eliminates the randomness in experiments
and makes our results convincing. For the fine-
tuning method, we use the same five seeds as
prompt-based methods for a fair comparison. For
bias-based annotation, we randomly selectm×200
examples for an m-class task from the task unla-
beled data as the unlabeled validation set U and
then annotate five examples per class as training
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data from U . For absolute probability refinement,
we evaluate the absolute probability of all exam-
ples in each class and take the median as the
probability threshold. We train the model for five
epochs with the learning rate set to 3e-5 and the
batch size set to 4 in all experiments. We evaluate
model bias on the unlabeled validation set every
epoch and choose the least biased checkpoint to
test.

4.3. Baselines
To put our results in perspective, we compared
our approach with the following baselines. Since
the proposed approach is under true zero-shot set-
tings, two zero-shot learning methods are included
in the compared baselines. In addition, given
that our method is based on few-shot annotation,
we compare it with three few-shot learning meth-
ods to demonstrate the precision of the annotation
method.

Fine-tuning (FT). The fine-tuning method adds
a random-initialized classification head on top of
the PLM. The classification head takes the last hid-
den states of the [CLS] token as input and makes
predictions. Fine-tuning updates the model param-
eters and the classification head parameters dur-
ing training.

Prompt-tuning (PT). Proposed by GPT-3
(Brown et al., 2020) and PET (Schick and
Schütze, 2021a), the prompt-tuning method
converts input examples into cloze questions and
maps PLM’s prediction words on the [MASK]
token to classes via the verbalizer. For a fair
comparison, all prompt-based methods use the
same templates and verbalizers.

Contextual Calibration (CC). Contextual cali-
bration is proposed by Zhao et al. (2021). They
first evaluate model bias on label words by con-
catenating a content-free text at the end of the
prompt as input to GPT-3. Then they calibrate
the model predictions by element-wisely dividing
model bias.

For our method, we conduct ablation experi-
ments to evaluate the effectiveness of each mod-
ule. -UV, -APR and -BA denote the absence of un-
labeled validation, absolute probability refinement
and bias-based annotation, respectively. In addi-
tion, we incorporate our proposed unlabeled vali-
dation into few-shot prompt-tuning to further illus-
trate its effect.

4.4. Main Results
As shown in Table 3, our approach outperforms
zero-shot PT by a large margin (on average
+13.8%), especially on DBPedia, Amazon and
SST-2, with improvements up to 19.7%, 18.3%
and 19.6%, respectively. Compared to zero-shot

(a) before calibration (b) after calibration

Figure 4: Model bias on four label words of AG’s
News before and after calibration.

PT+CC, our approach also consistently obtains
better performance with an improvement of 10.2%
on DBPedia, 7.9% on Amazon, and an average
improvement of 5.2% on all datasets. Thus, the
proposed approach exceeds all baselines in true
zero-shot settings. Moreover, on IMDB and SST-
2, our approach even outperforms all baselines in
few-shot settings. In this regard, our conjecture is
that the examples labeled by our annotation and
refinement algorithm are not only correct but also
more correlated with the classes compared with
the randomly selected examples used in few-shot
methods. Comparison between few-shot PT and
few-shot PT+UV demonstrates that unlabeled vali-
dation can boost the effect of prompt tuning in few-
shot settings without large validation sets. In terms
of stability, the standard deviation of our method is
smaller than other baselines in most cases, which
indicates that our method can maintain good per-
formance with different templates and can there-
fore reduce human labor in template engineering.
Our insight on this is that different templates cause
performance fluctuations by impacting model bias
on label words, while our approach can greatly
eliminate model bias during training.

In ablation experiments, we observe that the per-
formance of our approach decreases as we elim-
inate UV, APR, and BA in sequence, demonstrat-
ing the effectiveness of each module. Further-
more, we observe that the absence of bias-based
annotation causes the most performance loss, es-
pecially in tasks with more classes, such as DBPe-
dia and Yahoo. We find that without bias-based an-
notation, the accuracy of labeled examples drops
considerably, and in some situations, no examples
are annotated as classes corresponding to low-
probability label words due to model bias.

5. Analysis

5.1. Model Bias after Calibration
The performance of our approach shows a
substantial improvement compared to zero-shot
prompt tuning. To further demonstrate that the im-
provement stems from calibrating model bias on
label words, we first use the same dataset and
template as in Figure 1(a) and measure model
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Table 3: Results on classification tasks. †: the full training set is used; ‡: use K = 5 (per class) for
few-shot experiments; otherwise, no pre-labeled examples are used. For prompt-based method, we
report the mean and the standard deviation performance of four templates on five random seeds. For
fine-tuning, we report performance on five random seeds. Majority: majority class; FT: fine-tuning; PT:
prompt tuning. CC means contextual calibration; UV, APR and BA means unlabeled validation, absolute
probability refinement and bias-based annotation, respectively. bold: the best performance among zero-
shot methods; underline: the best.

Method DBPedia IMDB Amazon SST-2 AG’s News Yahoo
Majority† 7.1 50.0 50.0 50.9 25.0 10.0
Few-shot FT‡ 94.9 ± 1.9 64.4 ± 6.3 61.6 ± 9.4 54.3 ± 4.3 72.3 ± 7.7 20.6 ± 6.5
Few-shot PT‡ 96.4 ± 0.7 82.1 ± 13.3 90.7 ± 5.2 76.8 ± 13.3 82.2 ± 3.2 61.1 ± 1.7
Few-shot PT+UV‡ 96.4 ± 0.9 83.9 ± 14.4 94.0 ± 1.1 75.9 ± 12.9 84.7 ± 2.2 61.5 ± 1.7
Zero-shot PT 68.0 ± 3.4 84.3 ± 12.4 75.5 ± 11.5 68.3 ± 13.4 75.9 ± 5.1 47.5 ± 7.0
Zero-shot PT+CC 77.5 ± 6.2 89.3 ± 5.0 85.9 ± 3.9 82.4 ± 5.2 79.6 ± 2.5 56.4 ± 2.5
Ours 87.7 ± 5.9 92.2 ± 1.5 93.8 ± 1.3 87.9 ± 3.1 82.0 ± 2.6 58.4 ± 1.9

- UV 86.7 ± 5.4 89.2 ± 4.3 91.0 ± 2.5 84.8 ± 4.9 80.2 ± 2.9 57.6 ± 2.8
- UV - APR 86.3 ± 5.7 88.0 ± 4.8 90.9 ± 3.5 85.0 ± 4.3 79.4 ± 3.2 57.2 ± 2.8
- UV - APR - BA 69.7 ± 5.9 86.8 ± 3.9 87.9 ± 5.8 80.7 ± 6.7 72.6 ± 4.2 42.8 ± 2.6

Table 4: Results of classification on AG’s News us-
ing the same template as in Table 1(a).

Label Word Prediction Label Word
politics sports business technology

politics 1420 116 252 112
sports 10 1873 11 6

business 46 18 1491 345
technology 69 80 102 1649

Table 5: The average accuracy (%) of our ap-
proach on AG’s News under different sizes of un-
labeled data and training examples.

# Unlabeled Data K Training Examples
5 10 15 20

200 82.0 76.8 71.9 71.3
400 82.3 83.1 78.6 73.7
600 81.8 82.9 83.5 80.0
800 82.0 82.3 83.2 82.8

bias after training. The results are shown in Fig-
ure 4. Compared to the high probability of “busi-
ness” and the low probability of “politics” before
calibration, the probability distribution is more uni-
form across label words after training the model
with our approach. Then we tabulated the model’s
predictions on the test set on each label word, as
shown in Table 4. We find that the number of ex-
amples with the label word “politics”, which are in-
correctly predicted as “business”, drops from 1217
(underlined in Table 1(a)) to 252, contributing the
most to accuracy improvement. Thus, the pro-
posed approach can eliminate model bias on the
label words and can reduce the number of exam-
ples with low-probability label words being misclas-
sified as classes with high-probability label words.

5.2. Analysis of Unlabeled Data

In bias-based annotation, we find that the size of
unlabeled data has an impact on the precision
of measuring model bias, which consequently af-
fects the accuracy of data annotation and the size
of training set. In our previous experiments, we
use m × 200 examples as the unlabeled data for
an m-class task and annotate five examples for
each class as training data. However, the size of
unlabeled data is uncertain in real-world scenar-
ios. Thus we conduct experiments on AG’s News
to demonstrate the influence on the performance
of our approach when the size of unlabeled data
and training set are changed. As demonstrated
in Table 5, the best performance of our method
is achieved when ratio of the unlabeled data size
to the training data size is 40. When the ratio de-
creases, the accuracy drops considerably due to
the increase in the number of incorrectly annotated
training examples. Figure 5 shows that as the ratio
ofN (# unlabeled examples per class) toK (# train-
ing examples per class) decreases, the number of
mislabeled examples in the training set increases
rapidly, which leads to a decrease in the accuracy
of the model after training.

5XLNet-large is a decoder-only model, thus the
[MASK] in the template must be placed at the end.
BERT-large and ALBERT-xxlarge are encoder-only mod-
els, which have no restriction on the position of the
[MASK] in the template. To demonstrate that the model
bias does not vanish when changing templates, we
use a different template for BERT-large and ALBERT-
xxlarge.
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Table 6: Model bias on AG’s News before and after calibration. The template used in XLNet-large: x This
topic is about [MASK]. The template used in BERT-large and ALBERT-xxlarge: A [MASK] news: x5.

LLMs Model Bias
politics sports business technology

XLNet-large 0.28 0.11 0.21 0.40
BERT-large 0.30 0.42 0.10 0.18

ALBERT-xxlarge 0.19 0.33 0.21 0.27
(a) before calibration

LLMs Model Bias
politics sports business technology

XLNet-large 0.24 0.23 0.26 0.27
BERT-large 0.25 0.28 0.23 0.24

ALBERT-xxlarge 0.26 0.25 0.25 0.24
(b) after calibration

Figure 5: A lower ratio of N (# unlabeled exam-
ples per class) to K (# training examples per class)
results in an increase in mislabeled training exam-
ples.

5.3. Sensitivity to Templates and Label
Words

As shown in Figure 1 and Table 1, the effect of
prompt tuning is sensitive to different templates,
which makes it hard to design templates manu-
ally. One advantage of our approach is that it can
calibrate model bias on label words and thus re-
duce the sensitivity to prompts. We conduct a case
study on AG’s News using two templates6 with four
label word sets7. As shown in Figure 6, the accu-
racy of our approach maintains stability while con-
sistently outperforming Zero-shot PT.

5.4. Model Bias in Other LLMs
We use RoBERTa-large as the backbone in previ-
ous experiments. To verify whether model bias ex-
ists in other large language models, we measure
the model bias of XLNet-large (Yang et al., 2019),
BERT-large (Devlin et al., 2019), and ALBERT-
xxlarge (Lan et al., 2020) on the label words of
AG’s News. As shown in Table 6(a), model bias ex-

6Template 1: A [MASK] news: x. Template 2: x This
topic is about [MASK].

7Label word set 1: politics, sports, business, tech-
nology. Label word set 2: country, athletics, commerce
and science. Label word set 3: politics, sports, com-
merce and science. Label word set 4: country, athletics,
business, technology.

Figure 6: Accuracy of our approach and Zero-shot
PT on AG’s News using different combinations of
templates and label word sets.

Table 7: The impact of model bias in XLNet-large
on predicting the next word.

Next Word Prediction of Next Word
politics sports business technology

politics 1651 6 52 191
sports 255 623 118 904

business 129 27 1343 401
technology 54 2 16 1828

ists in all three models and different models show
various distributions of model bias. Moreover, af-
ter correcting the model bias with our approach, we
measure the model bias again on AG’s News using
the same unlabeled data and template. As shown
in Table 6(b), the model bias of all three models is
nearly uniformly distributed, which demonstrates
the effectiveness of our method.

5.5. Applicability beyond Classification

For text classification, model bias on label words
can directly affect the classification accuracy. For
other NLP tasks, such as text generation, we ar-
gue that model bias similarly affects model per-
formance. As demonstrated in Table 6(a), XLNet-
large shows large model bias on the label words
of AG’s News, which affects the probability of pre-
dicting the next word. Table 7 demonstrates that
model bias leads to incorrect prediction of the next
word.
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6. Conclusion

In this paper, we first show that model bias on la-
bel words can impact the performance of prompt
learning and that different templates lead to insta-
bility in prompt learning by affecting the model bias.
Then, we propose a data annotation and filtering
method that incorporates model bias in true zero-
shot settings. Finally, we use unlabeled data to
select the least biased model during training. The
experiments demonstrate that our approach can
calibrate model bias on label words and thus can
improve the accuracy of text classification tasks.
In the future, we intend to incorporate continuous
prompts and multi-verbalizers into our approach to
further reduce the impact of model bias on prompt
learning.
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