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Abstract
A common approach to interpreting multilingual language models is to evaluate their internal representations. For
example, studies have found that languages occupy distinct subspaces in the models’ representation spaces, and
geometric distances between languages often reflect linguistic properties such as language families and typological
features. In our work, we investigate whether geometric distances between language representations correlate with
zero-shot crosslingual transfer performance for POS-tagging and NER in three multilingual language models. We
consider four distance metrics, including new metrics that identify a basis for a multilingual representation space that
sorts axes based on their language-separability. We find that each distance metric either only moderately correlates
or does not correlate with crosslingual transfer performance, and metrics do not generalize well across models, layers,
and tasks. Although pairwise language separability is a reasonable predictor of crosslingual transfer, representational
geometry overall is an inconsistent predictor for the crosslingual performance of multilingual language models.

Keywords: multilinguality, explainability, evaluation methodologies

1. Introduction

Pre-trained multilingual language models represent
multiple languages in a single vector space, a fea-
ture which is hypothesized to enable their impres-
sive crosslingual transfer capabilities (Conneau
et al., 2020). Still, languages occupy distinct sub-
spaces in the common model embedding space
(Chang et al., 2022), and geometric distances be-
tween languages correlate with phylogenetic dis-
tances (Rama et al., 2020) and typological similari-
ties (Choenni and Shutova, 2022). Similarities and
differences between language geometries impact
downstream model performance for parallel sen-
tence retrieval (Libovický et al., 2020; Pires et al.,
2019) and raw language modeling performance
(Chang et al., 2022).

It is then natural to hypothesize that geometric
distances between languages might also correlate
with crosslingual transfer capabilities (e.g. fine-
tuning on language A and evaluating on language
B), which vary substantially across language pairs
in multilingual language models (Pires et al., 2019;
Wu and Dredze, 2019, 2020). Crosslingual transfer
capabilities correlate with features such as syntac-
tic, geographic, and genetic similarities between
languages (Karthikeyan et al., 2020; Philippy et al.,
2023), along with shared morphological systems
(Gerz et al., 2018) and writing systems (Fujinuma

*Equal second-authorship.

et al., 2022). However, the effects of geometric
distances on fine-tuned crosslingual transfer be-
tween languages have not been investigated.1 If
connections between representational geometry
and crosslingual transfer are established, then we
may better predict model performance on zero-shot
crosslingual transfer and potentially improve model
training for better performance.

Thus, we consider four geometric metrics to
quantify the distances between languages in three
multilingual language models, and we study their
correlations with crosslingual transfer performance
for part-of-speech (POS) tagging and named en-
tity recognition (NER). Although pairwise language
separability is a reasonable indicator for transfer
performance, geometric measures in general do
not consistently correlate with transfer performance
across all models, layers, or tasks. These results
suggest that geometric features are extremely noisy
signals for multilingual model performance.2

2. Related Work

Previous work has used geometric measures be-
tween languages in the representation space to ex-

1Philippy et al. (2023) quantify the evolution of lan-
guages’ representation spaces during fine-tuning, with-
out focusing on language distances before fine-tuning.

2Code is available at: https://github.com/Cheril311/
Crosslingual_geometry

https://github.com/Cheril311/Crosslingual_geometry
https://github.com/Cheril311/Crosslingual_geometry
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plain multilingual model behavior and to design bet-
ter cross-lingual transfer mechanisms. Nakashole
(2018) use the structure of word embedding spaces
for different languages to create neighborhood-
sensitive mappings for word translation. Simi-
larly, Alaux et al. (2019) align the word embedding
spaces for multiple languages into a single vector-
space. Chang et al. (2022) use subspace distances
and LDA-based analyses to study how information
in different languages is encoded along orthogonal
language-sensitive and language-neutral axes. Fi-
nally, Shah et al. (2023) use PCA to demonstrate
the separability of representation spaces for dif-
ferent language families, measuring distances be-
tween languages in semantic space. Our work
evaluates whether these geometric measures are
correlated with downstream crosslingual transfer
performance.

3. Method

We compute four metrics that capture different
types of distances between languages in three mul-
tilingual language models’ representation spaces.
We correlate these geometric metrics with crosslin-
gual transfer performance from English to 25 lan-
guages for POS-tagging and NER.

3.1. Models and Datasets

We extract representations and evaluate down-
stream crosslingual transfer performance for three
multilingual language models: mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020), and
mDeBERTa-V3 (He et al., 2023). Each model
has 12 Transformer layers; to extract representa-
tions, we input sentences from the OSCAR corpus
(Abadji et al., 2022) and the Universal Dependen-
cies dataset (Nivre et al., 2020), and we consider
the token representations after Transformer layers
3, 8, and 11. We use roughly 13K token representa-
tions per language. We consider 26 languages that
appear in the pre-training data for all the three mod-
els and that have both POS-tagging and NER data
available. We use the Universal Dependencies
dataset (Nivre et al., 2020) for POS-tagging and
the WikiANN dataset (Pan et al., 2017) for Named
Entity Recognition (NER).

3.2. Language Centroid Distances (D)

A common way to quantify distances between lan-
guages in a multilingual representation space is
to compute distances between representation cen-
troids (means; Libovický et al., 2020; Choenni and
Shutova, 2022). As in previous work, we define the
centroid cL ∈ Rd for a language L as the arithmetic
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Figure 1: Subspaces with high centroid distances
despite low separability (left), versus lower centroid
distances with high separability (right).

mean of the token representations in L:

cL =
1

nL

nL∑
i=1

xi (1)

Here, xi is the vector representation for an indi-
vidual token in context, and nL is the total number
of token representations in L. The centroid dis-
tance D between two languages is the Euclidean
distance between their centroids.3 We compute
these distances separately for layers 3, 8, and 11.

3.3. Subspace Distances (S)
D values assume that a language centroid effec-
tively represents the entire subspace spanned by
a language’s token representations. However, this
is often not the case for high-dimensional data (As-
sent, 2012). Thus, following Chang et al. (2022), we
compute the distance between representation co-
variance matrices KL1

,KL2
∈ Rd×d for languages

L1 and L2:

S(KL1 ,KL2) =

√∑
i

log2(λi) (2)

Here, λi are the d positive real eigenvalues of
K−1

L1
KL2

(Bonnabel and Sepulchre, 2009). This
metric captures dissimilarities in the shapes of the
two language subspaces, after mean-centering.

3.4. Computing a Basis in Order of
Language-Separability

While centroid and subspace distances (D and S)
allow us to quantify distances between language
subspaces, they do not necessarily provide infor-
mation about separations between the subspaces.
Subspaces with low centroid and subspace dis-
tances between them can still be highly separated.
For example, while the subspaces in Figure 1 (right)
are intuitively more separated than the subspaces
in Figure 1 (left), the centroid distance D in the left
plot is higher. A metric for separability must con-
sider differences between language centroids while
accounting for the subspace covariances.

3We find that cosine distances between language
centroids produce similar results to Euclidean distances.
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To approach the issue of language separability,
we compute a new orthonormal basis for a multilin-
gual representation space, where axes are sorted
by language-separability. First, we use linear dis-
criminant analysis (LDA) on our token represen-
tations for all languages (using source language
as a label) to obtain axes that maximally separate
languages (Liang et al., 2021). The first LDA axis
v0 is our initial most language-separable axis, and
it initializes our basis as V = v0 ∈ Rd×1.

Then, we repeat the following. We project all
token representations X ∈ Rd×n onto the existing
language-separable axes V , and we subtract the
projections from the original representations.

X − V V TX (3)
This sets the existing language-separable axes to
a fixed value across all representations, essentially
removing the information encoded by those axes.
We run LDA again on the adjusted representations.
Then, the first LDA axis vi is the most language-
separable axis after excluding the already-identified
axes. We orthonormalize vi relative to the existing
axes V , and we concatenate to update the basis.

V ←
[
V ,vi

]
(4)

We repeat until the basis V spans the entire repre-
sentation space (i.e. V ∈ Rd×d). Based on how we
define the axes, earlier axes are the most language-
separable (representations are maximally sepa-
rated by language along these axes) and later axes
are the most language neutral.

3.4.1. Separability Across Axes and Models

We quantify the language-separability of an axis v
in the new basis V by projecting all token represen-
tations onto v (i.e. each representation is projected
to a single scalar value) and then calculating their
one-way ANOVA F -statistic (i.e. variance between
languages divided by variance within languages).

Fv =

∑
L nL(cL − µ)2∑

L

∑nL

i=1(xL,i − cL)2
(5)

Here, nL is the number of representations in lan-
guage L, cL is the centroid for language L, and
µ is the centroid of all representations across all
languages. Individual representations in language
L are denoted xL,i. A high F -statistic indicates
higher language-separability.

To identify general trends in how languages are
separated across axes in different models, we plot
the F -statistics for the basis vectors identified in
§3.4 for each model (i.e. axes sorted by language-
separability). As shown in Figure 2, mBERT is the
most language-separable model for all tested lay-
ers in the initial axes (high F -statistics). XLM-R
also has relatively high F -statistics in layer three
for initial axes, but it is still almost half that of
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Figure 2: F -statistic curves using our new bases
that sort axes by language-separability. Higher
F -statistics indicate higher language-separability.
The horizontal line indicates where language sepa-
rability would be statistically significant for an axis
at p = 0.05 (not adjusted for multiple comparisons).
We consider all three models for layers 3 (top), 8
(middle), and 11 (bottom). All three models have
the same representation dimensionality (d = 768).

mBERT. However, in later axes (more language-
neutral axes), XLM-R is more language-separable
than mBERT. Based on this result, it may be that
mBERT more aggressively concentrates language-
specific information in fewer language-separable
axes, allowing other axes to be more language-
neutral; XLM-R may distribute language-specific
information more evenly across axes.

Language-separability in mDeBERTa-V3 ap-
pears low overall in layers three and eight (low F -
statistics), but high in the tail end of layer eleven;
based on this result, it may be that mDeBERTa-V3
concentrates language-specific processing in later
layers. These trends likely reflect differences in the
models’ pre-training strategies (e.g. mDeBERTa-
V3 uses ELECTRA’s discriminative pre-training
paradigm; Clark et al., 2020) or datasets. Differ-
ences in how language-specific information is dis-
tributed in different models may explain inconsis-
tent correlations between geometric measures and
downstream model performance in different multi-
lingual models (§4).

3.4.2. Language Isolation (I)

We use this new basis and corresponding F -
statistics to quantify the separability of individual
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POS NER POS NER POS NER
mBERT mBERT mDeBERTa-V3 mDeBERTa-V3 XLM-R XLM-R

Layer 3, D −0.65∗ −0.37 −0.04 −0.03 −0.40 −0.25
Layer 8, D −0.70∗∗ −0.55∗ −0.02 0.04 −0.48 −0.54

Layer 11, D −0.64 −0.31 −0.40 −0.32 −0.50 −0.54
Layer 3, S −0.53 −0.50 0.14 0.26 −0.28 −0.09
Layer 8, S −0.26 −0.07 0.09 0.08 −0.18 −0.04

Layer 11, S 0.08 0.26 −0.23 −0.27 −0.16 −0.10
Layer 3, I −0.47 −0.50 −0.18 −0.07 −0.60 −0.47
Layer 8, I −0.51∗ −0.55 −0.38 −0.18 −0.30 −0.22

Layer 11, I −0.56 −0.57∗ −0.56 −0.51 −0.16 −0.03
Layer 3, ψ −0.65∗ −0.60 −0.26 −0.17 −0.66∗ −0.58
Layer 8, ψ −0.66∗ −0.57 −0.30 −0.03 −0.60 −0.56∗

Layer 11, ψ −0.65 −0.64 −0.64 −0.37 −0.55 −0.49

Table 1: Pearson’s correlation coefficient r between crosslingual transfer performance and geometric
distance for each metric, model, and layer. An asterisk indicates p < 0.05, and two asterisks indicate
p < 0.01 after adjusting for multiple comparisons using Bonferroni correction.

language subspaces. First, we note that the sepa-
rability of an individual language will have an effect
on the sum of F -statistics (

∑
v Fv) over all axes in a

model. If a language L is highly isolated from other
languages, then the F -statistics (Fv,∼L) when re-
moving L will be lower. Thus for every language
L, we compute the area under the curve dividing
Fv (F -statistic including all languages) by Fv,∼L

(F -statistic removing L):

IL =
∑
v

Fv

Fv,∼L
(6)

A higher value of IL indicates that the language L
is more isolated from other languages in the multi-
lingual representation space.

3.4.3. Pairwise Separability (ψ)

Language isolation I is a metric for the isolation of
an individual language from all other languages. It
is also interesting to consider how languages are
separated from one another pairwise. Thus, we
consider F -statistics (Fv,L1,L2

) when including only
representations from a pair of languages L1 and L2.
These values are high when those two languages
are highly separable. We then calculate the area
under the curve:

ψ =
∑
v

Fv,L1,L2

Fv
(7)

When two languages are highly separable relative
to the overall language-separability, then ψ is high.

3.5. Downstream Task Performance
To quantify POS-tagging and NER performance,
we compute F1 scores after fine-tuning a model
without freezing any layers. We add only one fully
connected layer for task prediction, and we use
AdamW (Loshchilov and Hutter, 2019) with learn-

ing rate 5e-5 (Devlin et al., 2019). We fine-tune
each model on 3 epochs of 1K English sentences,
and we evaluate performance on 400 sentences in
each of the 25 non-English evaluation languages:
Afrikaans, Arabic, Basque, Bulgarian, Dutch, Es-
tonian, Finnish, French, German, Greek, Hebrew,
Hindi, Hungarian, Indonesian, Italian, Japanese,
Mandarin, Persian, Portuguese, Russian, Spanish,
Thai, Turkish, Urdu, and Vietnamese. The mean
F1 score across languages and models (zero-shot
transfer) is 0.69 for POS-tagging and 0.63 for NER.
We correlate crosslingual transfer performance with
each geometric distance metric between source
and target language (D, S, ψ) and the geometric
isolation of the target language (I).

4. Results and Discussion

Table 1 reports correlations between different ge-
ometric distance metrics and crosslingual trans-
fer performance for different models, layers, and
tasks. In general, higher distances between lan-
guages correlate with worse transfer performance,
but none of the metrics show a generalizable corre-
lation across all models and tasks. In 43 out of 72
cases (3 layers × 2 tasks × 3 models × 4 metrics),
correlations are less than r = 0.50.

Language centroid distances D correlate with
POS-tagging crosslingual transfer for all layers in
mBERT (r = −0.64 to−0.70), but the effect is much
weaker for NER (r = −0.31 to −0.55). This aligns
with results that POS information is encoded mul-
tilingually in multilingual language models across
most layers (Chang et al., 2022). However, D is
only moderately correlated with downstream per-
formance in XLM-R (r = −0.25 to −0.54), and it
is not correlated with downstream performance in
mDeBERTa-V3 until later layers (layer 11).

Subspace distances S (after mean-centering)
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have fairly low correlations with transfer perfor-
mance, with only 2 out of 18 correlations stronger
than r = −0.30. This suggests that differing sub-
space means impact crosslingual transfer moreso
than differing shapes (covariances).

Isolation of the target language I is moderately
correlated with crosslingual transfer for both tasks
in mBERT (r = −0.47 to −0.57; higher isolation cor-
relating with worse transfer), but this effect is not
observed across layers in XLM-R and mDeBERTa-
V3. When considering languages pairwise, the
separability ψ of source and target language is
moderately correlated with downstream task per-
formance in both mBERT and XLM-R and for both
tasks (r = −0.49 to −0.66), but the correlations
are weak for mDeBERTa-V3 except in later layers
for POS-tagging. In general, correlations between
geometric distances and transfer performance are
higher in later layers for mDeBERTa-V3, suggest-
ing that multilingual geometry may change more
across layers in mDeBERTa-V3 than in other mod-
els. In any case, the slightly more consistent corre-
lations for language separability ψ across models
and tasks (relative to other geometric metrics) sug-
gest that our language separability metrics encode
useful geometric properties that correlate moder-
ately with downstream crosslingual transfer.

5. Conclusion

We find inconsistent correlations between lan-
guages’ geometric distances in model represen-
tation space and crosslingual transfer performance
in multilingual language models. None of the eval-
uated geometric metrics correlate with transfer per-
formance across all models, layers, and tasks. Of
the evaluated metrics, pairwise separability of lan-
guages in late layers is a reasonable predictor for
crosslingual transfer performance, but correlations
are still only moderate. These results suggest that
while geometric distances can provide insights into
internal model mechanisms, better metrics may
better correlate with downstream performance.

Limitations

Although we consider three multilingual language
models, our work omits several larger and more
recent models such as BLOOM (Scao et al., 2022)
and XGLM (Lin et al., 2022) due to compute limita-
tions. We also only consider crosslingual transfer
from English to 25 languages. Future work could
focus on the properties of geometric measures in
more recent multilingual models and for a more
diverse set of languages. Additionally, future work
might consider metrics based on model parameters
themselves, or metrics based on language-specific

subnetworks that causally influence outputs (e.g.
Foroutan et al., 2022).
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Language Language Family
Hindi Indo-European (Indo-Iranian branch)
German Indo-European (Germanic branch)
Indonesian Austronesian (Malayo-Polynesian branch)
Russian Indo-European (Slavic branch)
Urdu Indo-European (Indo-Iranian branch)
French Indo-European (Romance branch)
English Indo-European (Germanic branch)
Basque Isolate
Greek Indo-European (Hellenic branch)
Hebrew Afro-Asiatic (Semitic branch)
Italian Indo-European (Romance branch)
Mandarin Sino-Tibetan (Sinitic branch)
Persian Indo-European (Indo-Iranian branch)
Afrikaans Indo-European (Germanic branch)
Hungarian Uralic (Finno-Ugric branch)
Spanish Indo-European (Romance branch)
Estonian Uralic (Finno-Ugric branch)
Dutch Indo-European (Germanic branch)
Turkish Turkic
Finnish Uralic (Finno-Ugric branch)
Portuguese Indo-European (Romance branch)
Thai Kra-Dai (Tai-Kadai branch)
Arabic Afro-Asiatic (Semitic branch)
Bulgarian Indo-European (Slavic branch)
Vietnamese Austroasiatic (Vietic branch)
Japanese Japonic

Table 2: Included languages and their language families.
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