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Abstract
High-quality training data for Task-Oriented Dialogue (TOD) systems is costly to come by if no corpora are
available. One method to extend available data is data augmentation. Yet, the research into and adaptation
of data augmentation techniques for TOD systems is limited in comparison with other data modalities. We
propose a novel, causally-flavored data augmentation technique called Counterfactual Dialogue Mixing (CDM) that
generates realistic synthetic dialogs via counterfactuals to increase the amount of training data. We demonstrate
the method on a benchmark dataset and show that a model trained to classify the counterfactuals from the
original data fails to do so, which strengthens the claim of creating realistic synthetic dialogs. To evaluate the
effectiveness of CDM, we train a current architecture on a benchmark dataset and compare the performance with
and without CDM. By doing so, we achieve state-of-the-art on some metrics. We further investigate the exter-
nal generalizability and a lower resource setting. To evaluate the models, we adopted an interactive evaluation scheme.
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1. Introduction

Chatbots or dialogue systems have undergone ex-
tensive research as a tool for human-computer in-
teraction. Depending on the targeted use case,
dialogue systems can be roughly separated into
two types: chat-oriented and Task Oriented (Yan
et al., 2022). The latter aim to serve as a personal
assistant and, through the usage of external ser-
vices, fulfill tasks, e.g., book a restaurant. Such a
TOD system can be interpreted as an user inter-
face to these (possibly multiple) external services.
As such, it has to work in three dimensions: Natu-
ral Language Understanding, Policy Planning and
Dialogue Generation (He et al., 2022). While mod-
els for all three dimensions could be constructed
and trained separately, end-to-end models incor-
porating all three aspects are gaining increasingly
widespread acceptance (e.g., Peng et al., 2021;
Lin et al., 2020; He et al., 2022). This paradigm
shift can be attributed to the general prevalence
of (Large) Language Models based on the trans-
former architecture (Vaswani et al., 2017) and the
publication of large datasets, e.g., the MultiWOZ-
Dataset (Budzianowski et al., 2018), that enable
the usage of Deep Learning methods.

In this work, we investigate a data augmenta-
tion technique to increase the amount of training
data and thus improve model performance for ap-
plications in which only a small amount of data is
available. The method can be seen as a synthetic
oversampling algorithm. We mount the method
in the research field of Causality to motivate the
generation of realistic, synthetic dialogs.

To study the effect of the proposed data augmen-
tation method, we train and compare two models

of the MTTOD (Lee, 2021) architecture. We do
this both on the full dataset and a lower resource
setting. To evaluate the models, we adopt the in-
teractive evaluation framework proposed by Cheng
et al. (2022). Based on the low resource setting, we
qualitatively analyzed errors that occurred during
evaluation. The usage of CDM boosted the metrics
by up to 5 points in the normal setting and 15 points
in the low resource setting.

Our main contributions are:

1. We introduce CDM, a new methodology to sys-
tematically generate synthetic conversational
data in order to mitigate the effort of construct-
ing representative corpora.

2. We compare a model trained with this ex-
tended data to the baseline data in an in-
teractive evaluation setting on the MultiWOZ
dataset.

3. We simulate a lower resource setting and eval-
uate CDM in this scenario.

4. We show that the model generalizes better to
a different dataset from the same domain.

2. Motivation

The gold standard to generate realistic training
multi-turn TOD data is the Wizard-of-Oz (WOZ)
technique (Kelley, 1984), in which two humans in-
teract with each other, each thinking that they are
talking to a machine. Depending on the domains
or the goals of the dialogs, this can be done in
a crowdsourcing setting without the need for ex-
perts, as was the case in the generation of the Mul-



4079

tiWOZ dataset (Budzianowski et al., 2018). Still,
the need to generate problem-specific data with
limited possibilities of using open-source data ren-
ders the compilation of datasets and their labeling
a time-consuming and expensive task. To the best
of our knowledge, none of the current state-of-the-
art works on end-to-end dialogue systems for the
MultiWOZ dataset use data augmentation. Instead,
they, for example, add auxiliary tasks (Lee, 2021),
insert subtask-specific prompts (Su et al., 2022),
or perform semi-supervised pretraining on a large
dataset (He et al., 2022).

We therefore argue in favor of data augmentation
to make the most of the collected data, placing our
work in the lineage of data-centric AI. Thus, the goal
is to generate dialogs that, even though they did not
happen, are still just as realistic as those that were
actually collected by WOZ. To this end, we adopt
the idea of counterfactuals for data augmentation.

3. Related Work

Data Augmentation. In Computer Vision literature
and practice, data augmentation is widely used,
and multiple methods exist, e.g., geometric trans-
formations, color space transformations and mixing
images (Shorten and Khoshgoftaar, 2019). The
data augmentation both acts as a regularization
method and increases the amount of training data
(Lewy and Mańdziuk, 2023).

In the field of Natural Language Process-
ing (NLP), augmentation methods are classified
as either paraphrasing-based, noising-based or
sampling-based and include, e.g., backtranslation,
word-level swapping and rule-based sampling (Li
et al., 2022).

Task-Oriented Dialogue systems and Data
Augmentation. While classic approaches opted
for a modular system to solve the TOD subtasks
(Natural Language Understanding, Policy Planning
and Dialogue Generation) (Young et al., 2013),
most current systems rely on one pretrained lan-
guage model (LM) to handle all subtasks in an end-
to-end fashion (e.g., Lin et al., 2020; Peng et al.,
2021; He et al., 2022). Different data augmentation
techniques have been used for TOD systems. Xu
et al. (2021) increase their training data by leverag-
ing external datasets and formulate this as a type
of data augmentation. Gritta et al. (2021) propose
to construct graphs that represent the dialogue
states as nodes and the transitions between them
as edges. Based on the graph, they generate new
data by following the most frequent outgoing edge
as observed in the original data. Kulhánek et al.
(2021) use backtranslation with 10 languages as
a data augmentation technique. While they found
this to improve their model’s performance, they did
not consequently outperform other models that did

not use backtranslation. So while data augmen-
tation has been investigated for TOD systems in
general, to the best of our knowledge, none of the
current or recent SOTA models on the MultiWOZ
benchmark dataset have adopted it. Moreover, to
the best of our knowledge, the mixing of dialogues
controlled by the domains of subtasks has not been
proposed in literature before.

Interactive Evaluation. Cheng et al. (2022) pro-
pose an interactive evaluation scheme for TOD sys-
tems. They argue that due to a policy mismatch dur-
ing traditional evaluation, the tested models might
appear weaker than they actually are. This policy
mismatch arises because the utterances that are
obtained from the dialogue system are evaluated
against the annotated data without regard for the
dialogue history. Thus, without taking correct but
different policies into account. For example, the di-
alogue system might try to fill the slots in a different
order than in the annotated data. They train a user
simulator that, given the goals, generates the user
utterances and therefore can simulate an interac-
tion between the user and the dialogue system.

Causality and NLP. Interdisciplinary research
on Causality and Machine Learning has recently
gained increased attention. We use the term
Causality as a collective term for research trying
to incorporate causal inference and causal think-
ing into classical statistical work, but focus on the
framework proposed by Pearl (2009). A key con-
cept in this framework is the counterfactual. These
are hypothetical facts, i.e., situations that would
have arisen if some circumstances changed in a
specific way.

Regarding the subfield NLP, the integration of
Causality and Machine Learning has been com-
paratively limited (Feder et al., 2022). Feder et al.
(2022) identified two main directions. On one hand,
causal inference is practiced with text (e.g., Wood-
Doughty et al., 2018; Veitch et al., 2020). On the
other hand, causal concepts are used to improve
NLP models, e.g., focusing on robustness (Wang
and Culotta, 2021) or explanations (Feder et al.,
2021). With counterfactuals as hypothetical facts,
we hope that a causally flavored method will lead
to realistic counterfactuals, which in turn improve
the model’s performance.

4. Method

The term counterfactual refers to a hypothetical situ-
ation that would have arisen if (at least) one element
of the original situation were consciously changed
while all other elements stayed the same. A stan-
dard example is the question "Would my headache
have gone away had I not taken medicine?" Coun-
terfactuals have recently been in the focus of the
Explainable AI literature (Guidotti, 2022) as well as



4080

in the field of Causality (Pearl, 2009). In the follow-
ing, we present how a counterfactual is generally
generated in the Causality framework by means of
an example from Pearl and Mackenzie (2018):

Say we want to investigate the relationship be-
tween Salary (S), Education (ED) and Experience
(EX). We define ED and EX as having a causal
influence on S. Everything else that might have
influenced S is not measured, i.e., is exogenous,
and is represented by the variable US . With this,
we define the structural equation to calculate the
salary as

S = 65000 + 2500 ∗ EX + 5000 ∗ ED + US . (1)

It is called structural because we defined EX and
ED as causal parents of S. Using the observations
of one individual’s S, ED and EX, we can solve
for his US . US now incorporates every factor other
than experience and education that led to the con-
crete salary. We can then perform so-called do-
interventions, i.e., enforcing certain values for the
endogenous variables. Say for one individual we
observe S = 72000, EX = 2 and ED = 0. We
calculate US = 2000.

Now we can ask the question "What if she/he had
higher education?", i.e., do(ED = 1). We calculate
the counterfactual

S̃ = 65000 + 2500 ∗ 2 + 5000 ∗ 1 + 2000

= 77000.
(2)

The collection of all structural equations is called
the Structural Causal Model (SCM) (Pearl and
Mackenzie, 2018). However, in real-world appli-
cations, we usually do not have a fully specified
SCM. Without equations like (1), generating real-
istic counterfactuals is notoriously hard, especially
for textual data (Feder et al., 2021).

With CDM we take up the concept of counterfac-
tuals and transfer the idea to a causally-flavored
data augmentation technique in which the counter-
factuals serve as additional training data.

Since we do not have a fully specified SCM, we
cannot generate counterfactuals as shown above
but have to approach the problem practically while
keeping the causality theory in mind. Instead, we
implicitly assume the simple SCM

X := fX(UX)

Y := fY (X) + UY

with X being the user utterances, Y the system
responses. Thus, fX(UX) is the mechanism by
which the user generated the text based on the la-
tent, exogenous variable UX . We therefore regard
the user’s state of mind, which in the context of the
multi-turn TOD is best approximated by his current
goal within the dialog, as the exogenous variable
U . As demonstrated by the example above, one

+ =

Figure 1: Visualization of the dialogue mixing proce-
dure from the view of conversational graphs. Each
node represents one topic and contains multiple
utterances. Best viewed in color.

crucial step in generating counterfactuals in the
framework proposed by (Pearl, 2009) is to fix the
exogenous variables U . To perform an equivalent
step in CDM, we have to fix UX , which we refer-
enced to the user’s goal, and account for this by
only selecting text patches with matching topics.
Thus, the idea of performing an intervention on a
variable while keeping everything else the same is
realized by having matching topics when replacing
the utterance.

In the MultiWOZ dataset, each dialogue contains
multiple domains. We make use of this annotated
information to generate synthetic dialogs by mixing
two real dialogs from the dataset. That is, we take
two dialogs that share a topic change and copy the
corresponding utterances (and their annotations)
from the second into the first dialog. We regard
these synthetic dialogs as counterfactuals, in which
the goals of the user stayed the same but the way
she/he expresses her/himself, i.e., the utterances,
changed.

The method can also be seen from the perspec-
tive of conversational graphs. In the work of Gritta
et al. (2021), the authors chose to model dialogue
states as nodes and the transitions between them
as edges in a graph. Our method is the equiv-
alent of constructing a graph with the topics (or
subtasks) τm as nodes, with their transitions be-
ing represented as edges. And the mixing itself
would be represented as swapping the node that
this transition leads to from Di into Dj . Fig. 1 visu-
alizes the CDM approach from the perspective of
conversational graphs.

4.1. Formalized CDM Approach

Let Di = u0
i , s

1
i , ..., u

n−1
i , sni be a dialogue in the

training data of length n made up of user utterances
ui and system responses si, both called turns.
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Since the MultiWOZ dataset spans multiple do-
mains, each dialogue will usually have multiple do-
mains or topics τi (e.g., hotel, taxi). Let t(Di) be
the m element sequence of topics, which we no-
tate as [τ0i , ..., τ

m
i ] = t(Di). These topics are the

equivalent of patches for image mixing. Each τ is
confined to a certain sequence of user-system ut-
terance pairs. Topics are allowed to arise multiple
times within a conversation.

Analogously, let Dj = u0
j , s

1
j , ..., u

l−1
j , slj be a sec-

ond dialogue with [τ0j , ..., τ
k
j ] ∈ Dj . The annotation

of the dataset contains information about the topic
each turn belongs to. Therefore, we know for τi the
range of utterances in the dialogue Di in which it
is being talked about.

We argue that it is feasible to generate a plau-
sible counterfactual by a form of data mixing, i.e.,
combining existing data. Thus, for Di we first ran-
domly choose one topic change (τ ci , τ

c+1
i ). Then

we randomly choose one Dj from all Dj , j ̸= i that
contain the same topic change. Thus, our selection
criterion is (τ ci , τ

c+1
i ) = (τvj , τ

v+1
j ). From the point

of view of dialogue graphs, this is analogous to
having equal transitions. The new counterfactual
dialogue D̃i will be constructed by replacing every
turn in τ c+1

i with the turns from τv+1
j . We see this

as an intervention-like action, in which the value for
the intervention, i.e., the turns in τv+1

j , is randomly
drawn from the training data. The structural char-
acter is taken into consideration by fixing the user’s
goal.

Let |τ | be the number of turns contained within a
topic. D̃i will then have the length n−

∣∣τ c+1
i

∣∣+∣∣τv+1
j

∣∣.
The process is visualized in Fig. 2.

While the general "thanks" and "bye" turns can
be regarded as topics, we exclude them from the
candidates for the mixing operation since these
phrases are usually at the end of the dialogue and
offer extremely limited variance, thus creating coun-
terfactuals from which little can be learned.

Note that both Di and Dj must not be part of the
develop or test data split to avoid any leakage into
the training data.

4.2. Possible Problems due to Mixing

At first glance, one might think that the mixing of di-
alogs might lead to problems, since the consistency
could be impaired. We can divide this concern into
two main points: inconsistency regarding i) the dia-
logue flow and ii) the entities. The integrity of the
dialogue flow will, in general, be kept intact. This is
the result of a turn comprising only one topic. More-
over, a topic often ends with the dialogue system
providing further assistance with phrases along the
lines of "is there anything else I can do for you?"
and/or the user starts a new topic with, e.g., "I also
need to". Speaking in the graph analogy, the node

Figure 2: Visualization of the dialogue mixing pro-
cedure. Best viewed in color.

[USR]: Yes I need a restaurant. [...]

[SYS]: Unfortunately, there aren't any Indian restaurants in the south side
of town [...]

[SYS]: [...] Is there anything else I can assist you with?
[...]: [...]

[...]: [...]
[USR]: Indian food is my favorite! What's the adress for the best one?

[USR]: Yes I'd like to try some Polynesian food.

[SYS]: There are six restaurants [...]

[SYS]: [...] Is there anything else I can assist you with?
[...]: [...]

[SYS]: I'm sorry there are no polynesian restaurants. Would you like a
different type of food?

[USR]: Can you try an indian place instead? And something in the west

C
D

M

Figure 3: Example dialogue without CDM (top) and
the dialogue generated through CDM (bottom).

selection process makes sure that the transitions
remain sensible after the mixing. If we were to
mix single turns within a topic, this would be more
difficult to ensure.

Due to the mixing, the entities within a counter-
factual conversation will, in general, not be consis-
tent. For example, say the user is looking for an
attraction in the northern part of the city. The dia-
logue system provides the information and offers
further service. The user then asks for a restaurant
nearby. Say in the counterfactual dialog, the restau-
rant topic was replaced. Now we have to expect
that the mixed-in restaurant will not be close to the
attraction from the earlier part of the dialog. An
example of this is given in Fig. 3. It is apparent that
due to the mixed-in restaurant topic, the location
moved from the south to the west side of town. As
a side effect, the original dialogue mentions that
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there are no indian restaurants nearby, while the
counterfactual states that there are six of them.

This inconsistency depicted by the example is
unproblematic since they are only of concern in
the lexicalized dialogs, that contain information on
entities. During the training of the dialogue sys-
tem, analogous to (Cheng et al., 2022), we use the
delexicalized data that only contains placeholders
instead of concrete values (cf. Fig. 4). This would
be a common approach for real-world applications
as well, since the entities to replace the placehold-
ers would be provided by the external services and
need to use real time, e.g., train information.

5. Experiments

To evaluate the benefit of the CDM data augmen-
tation, we performed multiple experiments. If not
specified otherwise, we use the MultiWOZ data
(Budzianowski et al., 2018) with its official train-test
split, to be able to compare the results to those
reported in (Cheng et al., 2022). Firstly, we in-
vestigate if a LM can discern between original di-
alogues and those created by CDM to determine
if the dialogs are realistic. Secondly, we train two
MTTOD (Lee, 2021) models in different settings,
once on the base dataset and once on the dataset
augmented with CDM to evaluate the effect the
extended training data has on the test set perfor-
mance. In another experiment, we simulate a lower
resource setting, to investigate the effect of CDM
in a scenario that can be seen as more realistic for
different applications where fewer data is available.
Lastly, we evaluate both models that were trained
on the MultiWOZ data on the restaurant domain of
the SGD (Rastogi et al., 2020) test data to assess
the generalization capability.

We performed one round of CDM, that is, one
iteration over all dialogs in the training data, and
tried to construct a counterfactual. Due to the sam-
pling process of CDM, where we randomly draw a
patch to be replaced, it is possible that for some
dialogs Di there is no matching Dj to generate the
counterfactual D̃i. This procedure increased the
training data by roughly 76%.

5.1. Classification of counterfactual
dialogs

The first experiment evaluates if a language model
is capable of discerning between the original di-
alogs and the counterfactuals generated by CDM.
To this end, we train a DistilBERT (Sanh et al., 2019)
model as a binary classifier that takes as input all
the dialogue turns at once, evaluating each dia-
logue as a whole. We perform a train-val-test split
with 70%, 10% and 20% of the data, respectively.
We train the model for up to 50 epochs or until con-

[USR]: I am looking for a moderately priced turkish restaurant
[SYS]: There are [value_choice] [value_pricerange] [value_food]
restaurants. Do you have a preference on area of town?
[USR]: No, I don't have a preference. I need a table for 1 at 14:00 on
monday.
[SYS]: I have booked you at [value_name]. The table will be reserved for
15 minutes. Reference number is [value_reference].

[USR]: I am looking for a turkish restaurant
[SYS]: [value_name] is a [value_pricerange] [value_food] restaurant in the
[value_area]. Would you like me to book it for you?
[USR]: Yes, please. I need a table for 1 person at 14:00 on monday.
[SYS]: Booking was successfull. The table will be reserved for 15 minutes.
Reference number is [value_reference]. Is there anything else I can help
you with?

C
D

M

Figure 4: Example of a delexicalized dialogue with-
out CDM (top) and the delexicalized dialogue gen-
erated through CDM (bottom).

Augment 
data with 

CDM

Train user 
simulator, 

dialog 
system

Train 
scoring 
models

Interact to 
create 
dialogs

Calculate 
scores for 
the dialogs

Figure 5: Overview of the training and evaluation
process with its different components and steps.

vergence, stopping when the validation accuracy
does not improve for five epochs. In this scenario,
the model did not improve after the first epoch. The
model reached an accuracy of 55.4% on the test
set. This is not better than chance, since due to
the sampling method, there is a slight imbalance
between the two classes. The real dialogs make
up for 56.7% of the whole dataset.

Seeing as the model is not better than chance
at the binary classification task, we argue that the
generated counterfactuals are realistic enough to
aid in model training by increasing the amount of
available data.

5.2. Evaluation on MultiWOZ
We use the official code published by Cheng et al.
(2022) to train a T5-based (Raffel et al., 2020) dia-
logue system in multiple settings. In a first step, a
user simulator model is trained that, based on the
predefined goal state of the dialog, generates user
utterances. This sequence-to-sequence model is
trained by identifying, based on the dialogue his-
tory, which goals have been achieved already and
which are not yet finished. Once all goals in the
predefined state are achieved, the dialogue is ter-
minated.

To further improve the simulated dialogue interac-
tion, Cheng et al. (2022) incorporate Reinforcement
Learning where the generation of a token is inter-
preted as an agent action. Thus, we also adopt this
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additional training step. Depending on the configu-
ration, different scores are used as the reward. We
optimize the user simulator jointly for the genera-
tion of the user action and user utterance, and the
dialogue system is jointly optimized for the genera-
tion of the belief state, action and utterance. Since
Cheng et al. (2022) reported possible instability due
to unfortunate seeds, note that we use their default
seed of "1998".

The sequence of actions to train the models, gen-
erate dialogs and evaluate them is depicted in Fig-
ure 5. The components consist of the user simu-
lator and the dialogue system that will perform the
interactions, and the sentence and session score
models that will score them.

The evaluation of the models follows the interac-
tive setting (Cheng et al., 2022) to avoid a potential
policy mismatch distorting the evaluation results.
The metrics used are the standard inform and suc-
cess scores. Instead of the BLEU score, which
cannot be used in the interactive evaluation, we re-
port the sentence and session scores as proposed
by Cheng et al. (2022).

The sentence score measures the quality of the
language generation for a single sentence and is
defined as

Sent = −
L∑

i=1

1

L
log p(yi|y<i, θ), (3)

where yi is the i-th token and y<i are the previous
tokens in a sequence of length L generated by a
fine-tuned GPT-2 (Radford et al., 2019).

The session score measures the coherence of
the whole conversation. To this end, a BERT-base
model is trained as a binary classifier by randomly
sampling system responses to create negative ut-
terance pairs. The session score is then calculated
as the average softmaxed confidence over all utter-
ance pairs, both starting with a user utterance and
with a system utterance.

Metric Base Base+CDM
Sentence Score 1.44 1.43
Session Score 0.89 0.92

Table 1: Evaluation of the sentence score and ses-
sion score Model. For the sentence score lower is
better and for session score higher is better.

The evaluation of the sentence and session score
model are listed in Table 1. The models trained with
CDM outperform the standard models in both cases
by a small margin.

The performance of the dialogue systems as
measured by inform, success, sentence and ses-
sion scores is shown in Table 2. Analogously to
Cheng et al. (2022), we evaluate different settings
of reinforcement learning. wRL-Succ only uses

the success as a reward, RL-Sent uses sucess
and sentence score and RL-Sess uses success
and session score. The model trained with CDM
systematically outperforms the model trained on
the standard data on three out of the four metrics
while only producing worse sentence scores. More-
over, to the best of our knowledge, the inform and
success of 99.1 achieved by the RL-Succ model
improve the state of the art.

Fig. 4 shows examples for dialogs created by the
model without and with CDM, respectively. Notice
that both models were evaluated on the same dia-
logue from the test set (SNG01608) but differ in the
user utterances due to the interactive evaluation
scheme.

5.3. Lower Resource Evaluation
Furthermore, we investigate a lower resource (LR)
setting by randomly sampling 20% of the training
dialogs and using them to either train directly or
to perform one round of CDM before training. We
argue that this is a more realistic scenario for real-
world applications, where the collected datasets
might not be as large as MultiWOZ.

The results in Table 3 show that in this scenario,
increasing the amount of training data via CDM
significantly increases the model’s performance,
especially in its ability to complete the task. Inter-
estingly, while the experiments on the base dataset
showed that CDM led to systematically better ses-
sion scores but worse sentence scores, this behav-
ior is flipped in the LR scenario.

5.4. Qualitative Analysis of Errors
Since the models, even without CDM, achieve a
high level of task completion in the base scenario,
we focus on the LR setting to analyze the errors
qualitatively and better understand where the mod-
els fail. We found that while the architecture with
a user simulator and interactive evaluation allevi-
ates the problem of underestimating performance
due to policy mismatches, it also introduces a new
possible source of error.

That is, the user simulator might fail to produce
user utterances that are a sufficient input for the
dialogue system. The user simulator tries to gen-
erate utterances that correspond to the dialog’s
predefined goals. However, if the user simulator’s
performance is not sufficient, this will generate a
mismatch of its own: The conversation might read
as if all goals were achieved based on the utter-
ances, despite not fulfilling all predefined goals.
Analogously to the term "policy mismatch" we name
this "goal mismatch". This might arise, e.g., if the
user simulator does not request all needed informa-
tion and the dialogue system consequently does
not provide all of it. Thus, during evaluation, errors
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Inform Success Sentence Session
Model Base Base+CDM Base Base+CDM Base Base+CDM Base Base+CDM

RL-Succ 95.9 99.1 93.9 99.1 0.799 0.812 0.876 0.957
RL-Sent 94.6 98.6 89.4 97.6 0.746 0.834 0.953 0.959
RL-Sess 95.6 96.7 90.3 96.6 0.73 0.799 0.957 0.962

Table 2: Evaluation of the MTTOD model trained either on the base dataset, or the extended dataset with
CDM.

Metric LR LR+CDM
Inform 73.5 88.1

Success 69.5 77.9
Sentence Score 1.01 0.90
Session Score 0.92 0.82

Table 3: Result of a RL-Succ model on the test data,
trained in the lower resource setting.

that are due to the user simulator will impair the
metrics that should measure the performance of
the dialogue system.

We found that the interaction of the user simula-
tor and the RL-Succ model trained on the LR data
without CDM produced multiple dialogs that are
deemed errors due to the lack of sufficiency of user
utterances. For example, the user simulator pro-
duced the same question "What is the address?"
for five consecutive turns, even though the dialogue
system correctly answered each time. Moreover,
we found multiple instances where the user simu-
lator was not specific enough, i.e., it did not fill all
slots the predefined goal state dictates.

The application of CDM reduced these errors.
For instance, the model without CDM produced the
utterance "I am also looking for a place to go" when
the predefined goal state demanded information
on an attraction of the type of entertainment. The
dialogue system correctly interprets the utterance
as a request for an attraction of whatever type, and
not of the attraction type. On the other hand, the
model trained with CDM is more specific and di-
rectly demands an entertainment attraction when
asking for the same test data dialog: "I am also
looking for an entertainment attraction."

We conclude from this error analysis that a signifi-
cant part of the increased performance is due to the
improvements to the user simulator that benefited
from the additional training data.

5.5. External Evaluation
One of the goals of data augmentation in general
is to improve the generalization of the model by
increasing the size of the training dataset (Lewy
and Mańdziuk, 2023). Therefore, we perform an
external evaluation on dialogues that are in the
same domain but from a different dataset. Mul-
tiple task-oriented dialogue datasets have been

Metric Base Base+CDM
Inform 17.93 17.93

Success 17.93 17.93
Sentence 1.19 1.16
Session 0.70 0.84

Table 4: Result of the external evaluation with the
RL-Succ model.

proposed in the literature, e.g., CamRest676 (Wen
et al., 2016), SGD (Rastogi et al., 2020), and Mul-
tiWOZ (Budzianowski et al., 2018). However, it
remains hard to use multiple datasets combined,
since they differ in, e.g., their domains, labels and
usage of databases. Harmonizing these datasets
has been studied in the literature, but concessions
have to be made (Hudeček et al., 2022).

To perform the external evaluation, we use the
dialogs in the restaurant domain of the schema-
guided SGD test data, based on the DIASER
(Hudeček et al., 2022) unified presentation, in which
a database usage that was not part of the original
dataset has been emulated. We transform the data
to fit the preprocessing of the previously used sys-
tem and add the entries to the MultiWOZ database.
Without further finetuning, we evaluate the RL-Succ
model on this test data.

The results in Table 4 show that while both mod-
els fail in generalizing on achieving the task (low
inform and success), the model trained with CDM
produces more coherent language (better sentence
and session score). That is, its language general-
ization abilities were improved.

6. Conclusion

We propose CDM, a new method for textual data
augmentation that increases the amount of training
data by strategically mixing two dialogues. The
comparison of a model trained with CDM to one
without it showed promising results. This is true
as well when using the whole dataset, as in a LR
setting, where the improvement was even clearer.
One of the models trained on the CDM enhanced
data improves the state of the art on the inform and
success metrics for the MultiWOZ dataset. Dur-
ing the external evaluation, the model with CDM
showed better language generation capabilities
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than that without. Still, the generalization of task
performance remains unsatisfying for both models.

Cheng et al. (2022) suggest that MultiWOZ is
a solved dataset since their interactive evaluation
reveals high inform and success values. However,
data augmentation with CDM to increase the train-
ing data still lead to small improvements when using
all available data and significant improvements in
the lower resource setting. Moreover, the experi-
ments revealed that while the interactive evaluation
scheme alleviates policy mismatches that distort
the evaluation results, it also introduces the risk of
a goal mismatch. This can be due to an insufficient
user simulator and will lead to the same problem the
interactive evaluation set out to solve: concealing
the true performance of the dialogue system.

While Cheng et al. (2022) argue that we need
more complex datasets, we think that a more
promising direction would be to start with a unified
data representation (e.g., Hudeček et al., 2022) of
multiple data sources and try to improve external
generalization. CDM can be studied in this setting
in future work by using external data as the basis
for the mixed in dialogs. Moreover, an accurate
but automatic evaluation of the dialogue systems
remains a challenging task, as shown by the newly
identified possible goal mismatch.

Ethics Statement

Current research into TOD systems is decisively
enabled by the availability of large datasets. How-
ever, especially for low resource languages, this
assumption will not be met in general when trying to
develop real world applications. The proposed data
augmentation method can reduce the amount of
required training data, making TOD systems more
achievable with lower resources.

Moreover, a common way to collect data is via
paid crowdsourcing. If, during this process, one
does not ensure that the workers get paid at least
the minimum wage for their on-demand task solv-
ing, the data collection has ethical problems. Thus,
reducing the necessity for this controversial pro-
cess through data augmentation can be seen as a
positive aspect.

Nevertheless, as is true for any technological
advancement, we cannot keep bad actors from
using it. Possible malicious use cases include using
the data augmentation method to create chatbots
that are part of fraud schemes or spread fake news.
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