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Abstract
Emotion recognition in conversation (ERC) is a crucial task in natural language processing and affective computing.
This paper proposes MultiDAG+CL, a novel approach for Multimodal Emotion Recognition in Conversation (ERC) that
employs Directed Acyclic Graph (DAG) to integrate textual, acoustic, and visual features within a unified framework.
The model is enhanced by Curriculum Learning (CL) to address challenges related to emotional shifts and data im-
balance. Curriculum learning facilitates the learning process by gradually presenting training samples in a meaningful
order, thereby improving the model’s performance in handling emotional variations and data imbalance. Experimental
results on the IEMOCAP and MELD datasets demonstrate that the MultiDAG+CL models outperform baseline mod-
els. We release the code for MultiDAG+CL and experiments: https://github.com/vanntc711/MultiDAG-CL.
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1. Introduction

Online social networks’ growing popularity has
sparked interest in capturing emotions in conversa-
tions. Emotion Recognition in Conversation (ERC)
has emerged as a critical task in various domains
such as chatbots (Ghosh et al., 2017), healthcare
(Li et al., 2019), and social media analysis (Polzin
and Waibel, 2000). In the field of ERC, researchs
can be broadly categorized into unimodal and mul-
timodal approaches. Unimodal approaches usu-
ally focus on using text as the main modality for
emotion recognition. Several models have been
proposed in the past to tackle unimodal ERC task.
DialogueRNN (Majumder et al., 2019) introduces
a recurrent network to track speaker states and
context during the conversation. DialogueGCN
(Ghosal et al., 2019) utilizes graph structures to
combine contextual dependencies.

Multimodal Emotion Recognition in Conversa-
tion (Multimodal ERC) classifies emotions in con-
versation turns using text, audio, and visual cues.
By incorporating multiple modalities, it provides a
comprehensive representation of emotional expres-
sions, including tone of voice, facial expressions,
and body language, resulting in improved accuracy
and robustness in emotion recognition compared
to traditional unimodal ERC approaches. Several
models have been proposed to address the task
of multimodal ERC. The MFN (Zadeh et al., 2018)
synchronizes multimodal sequences using a multi-
view gated memory. ICON (Hazarika et al., 2018)
provides conversational features from modalities
through multi-hop memories. The bc-LSTM (Poria
et al., 2017) leverages an utterance-level LSTM to
capture multimodal features. MMGCN (Hu et al.,
2021) uses a graph-based fusion module to cap-

ture intra- and inter-modality contextual features.
CTNet (Lian et al., 2021) utilizes a transformer-
based structure to model interactions among mul-
timodal features. CORECT (Nguyen et al., 2023)
leverages relational temporal GNNs with cross-
modality interaction support, effectively capturing
conversation-level interactions and utterance-level
temporal relations.

A Directed Acyclic Graph (DAG) is a directed
graph without any directed cycles, comprising ver-
tices and edges, where each edge is directed from
one vertex to another, ensuring no closed loops.
Building upon this concept, Yu et al. (2019) in-
troduced Directed Acyclic Graph Neural Network
(DAG-GNN). Additionally, Shen et al. (2021) pre-
sented DAG-ERC, a model combining graph-based
and recurrence-based neural architectures to cap-
ture information flow in long-distance conversa-
tions. However, DAG-ERC’s focus has been pri-
marily on unimodal text data, with limited explo-
ration in other modalities. Curriculum Learning
(CL), inspired by human learning, progressively
introduces more complex concepts starting from
a simple initial state. It establishes a sequence of
curricula where the best curriculum with the sim-
plest examples is used to train the classifier in
each learning round (Bengio et al., 2009; Soviany
et al., 2022). CL incorporates two key factors: a
difficulty measurer to assess the difficulty level of
training examples, and a training scheduler to de-
termine the order of example presentation during
training. The difficulty measurer assesses the diffi-
culty level of training examples, while the training
scheduler determines the order in which examples
are presented to the model during training. For the
ERC task, Yang et al. (2022) proposes a hybrid CL
framework specifically for the textual modality only.

https://github.com/vanntc711/MultiDAG-CL
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Figure 1: Overall structure of MultiDAG.

In this paper, we proposes MultiDAG+CL, a mul-
timodal model inspired by DAG-ERC (Shen et al.,
2021), designed to overcome the limitations of
text-based approaches. It integrates multimodal
features using DAG-GNN, enabling a comprehen-
sive understanding of emotions in conversations.
Leveraging Curriculum Learning, our model, Multi-
DAG+CL, addresses emotional shift issues and im-
balanced data, significantly enhancing ERC model
performance on IEMOCAP and MELD datasets.
Notably, we are the first to integrate multimodal
ERC models with Curriculum Learning strategy.

2. Methodology

Consider a conversation C having utterances
{u1, u2, . . . , uN} where N is the number of utter-
ances. An utterance is a coherent piece of informa-
tion conveyed by a single participant pm at a spe-
cific moment, where m ≥ 2. The task of Emotion
Recognition in Conversation (ERC) is to predict
emotion label of each utterance ui with predefined
emotion label set E = {y1, y2, . . . , yr}. Following
the multimodal approach, we represent an utter-
ance in terms of three different modalities: audio
(a), visual (v), and textual (l). The raw feature rep-
resentation of utterance ui is ui = {ua

i , u
v
i , u

l
i}.

MultiDAG+CL consists of two core components:
MultiDAG and Curriculum Learning-CL. The Mul-
tiDAG component represents the model that com-
bines multimodal features without CL integration.
The -CL component is where Curriculum Learning
is incorporated to enhance model performance.

2.1. Multimodal ERC with Directed
Acyclic Graph - MultiDAG

2.1.1. Modality Encoder

We use modality-specific encoders to generate
context-aware utterance feature encoding. For the

textual modality, a bidirectional LSTM network cap-
tures sequential textual context information, while
a Fully Connected Network is used for the acoustic
and visual modalities as follows:

ha
i = EncA(u

a
i );h

v
i = EncV (u

v
i );h

l
i = EncL(u

l
i)
(1)

where EncA, EncV , EncL are modality encoder
for audio, visual, textual modalities, respectively.
These encoders generate the context-aware raw
feature encodings ha

i , h
v
i , h

l
i accordingly. The multi-

modal feature vector for an utterance ui(mm) corre-
sponding to available modalities is:

H0
i(mm) = ha

i ⊕ hv
i ⊕ hl

i (2)

2.1.2. MultiDAG Construction

Each utterance in a conversation receives informa-
tion exclusively from past utterances. This one-
way information flow is effectively represented by
a Directed Acyclic Graph (DAG), where informa-
tion moves from predecessors to successors. This
characteristic allows the DAG to gather informa-
tion for a query utterance not only from neighbor-
ing utterances but also from more distant ones.
Following the multimodal representation input, we
initialize the Directed Acyclic Graph Gated Neu-
ral Network (DAG-GNN) (Yu et al., 2019). The
integration of both remote and local information is
executed in a manner analogous to the approach
undertaken in DAG-ERC by Shen et al. (2021). The
comprehensive architecture of MultiDAG is visually
represented in Figure 1.

At each layer l of the MultiDAG, the hidden state
of the utterances is continuously computed from
the first utterance to the last utterance. For each
utterance ui(mm), the attention weight between
ui(mm) and the preceding nodes is calculated by
using the hidden state of ui(mm) at layer l − 1 to
attend to the hidden states of the nodes at layer l:

alij(mm) = Sj∈Ni(mm)
(W l

α[H
l
j(mm)∥H

l−1
i(mm)]) (3)
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Here, S denotes the Softmax function; Ni(mm) rep-
resents the set of preceding nodes leading to ui,
W l

a is a trainable weight matrix, H l−1
i(mm) is the hid-

den state of ui(mm) at layer l − 1, and || denotes
concatenation.

The attention weight is further utilized in combi-
nation with edge relationships to aggregate infor-
mation.

M l
i(mm) =

∑
j∈Ni(mm)

aij(mm)W
l
rijH

l
j(mm) (4)

where W l
rij ∈ {W

l
0,W

l
1} are trainable parameters.

The 0/1 value represents the edge relationship,
distinguishing different or same speakers.

The aggregated information M l
i(mm) interacts

with the previous layer’s hidden state of ui(mm),
H l−1

i(mm), through a GRU to generate the final hid-
den state H̃ l

i(mm) at the current layer:

H̃ l
i(mm) = GRU l

H(H l−1
i(mm),M

l
i(mm)) (5)

where H l−1
i(mm), M

l
i(mm), and H̃ l

i(mm) represent the
input, hidden state, and output of the GRU network,
respectively. This step is the node information unit.
Another GRU serves as the context information
unit, modeling the flow of information from the his-
torical context through a layer. In this unit, the roles
of H l−1

i and M l
i in the GRU are exchanged, where

H l−1
i(mm) controls the propagation of M l

i(mm):

Cl
i(mm) = GRU l

M (M l
i(mm), H

l−1
i(mm)) (6)

The hidden states of ui from all layers are con-
catenated together to create final representation:

Hi(mm) = ∥Ll=0(H̃
l
i(mm) + Cl

i(mm)) (7)

This representation is then passed through a Feed-
Forward Network to perform emotion prediction.
The objective function used to train the model is
the cross-entropy loss function.

2.2. Curriculum Learning - CL

We design a Difficulty Measure Function (DMF)
based on the frequency of emotional shift in conver-
sations, and simultaneously construct a Training
Scheduler to implement the training process ac-
cording to the predefined learning curriculum.

2.2.1. Difficulty Measure Function (DMF)

When designing the difficulty measurement func-
tion for a conversation, it is essential to determine
what makes a conversation easier or more difficult
than others. Taking inspiration from Yang et al.
(2022), we constructed a function to calculate the
difficulty of a conversation based on the frequency

Algorithm 1 CL Training with DMF

Input: D - training dataset; M - training model
k - number of buckets in baby step scheduler
DIF - difficulty measure function
t - number of epochs; n - number of utterances
e - the emotion label of the utterances
p(ui) - the speaker’s corresponding utterance ui

S - Set containing the emotion sequence of
speakers; S[p][i] represents the emotion in the
i-th utterance of speaker p
Output: M∗ - the optimal model
S = ∅, Nes = 0
for i = 1 to n do
S[p[i]]← S[p[i]] ∪ {e[i]}

end for
Nsp = length(S)
for p ∈ S do

for i = 1 to length(S[p])− 1 do
if S[p[i]] ̸= S[p[i+ 1]] then
Nshift ← Nshift + 1

end if
end for

end for
DIF =

Nshift+Nsp

n+Nsp

D′ = sort(D,DIF)
D′ = {D1,D2, ...,Dk} where DIF(da) <
DIF(db), da ∈ Di, db ∈ Dj ,∀i < j
Dtrain = ∅
for i = 1 to t do

if i ≤ k then
Dtrain = Dtrain ∪Di

end if
TRAIN(M,Dtrain)

end for
return M∗

of emotional shift. Here, an emotional shift is de-
fined as occurring when the emotion expressed in
two consecutive utterances by the same speaker is
different. Specifically, e(ui) ̸= e(uk), p(ui) = p(uk),
∄j : i < j < k, p(ui) = p(uj) = p(uk). Here,
e(ui) and e(uk) is the emotions of two consecutive
utterances ui and uk, respectively. The more fre-
quent the emotional shift occur in a conversation,
the more it is considered difficult. Therefore, the
difficulty of i-th conversation ci is as follows:

DIF(ci) =
Nshift(ci) +Nsp(ci)

Nu(ci) +Nsp(ci)
(8)

where Nshift(ci) and Nu(ci) represent the number
of emotional shift in conversation ci and the total
number of utterances in ci, respectively. Nsp(ci) is
the number of speakers appearing in conversation
ci and acts as a smoothing factor. The algorithm
for calculating the difficulty of the conversation is
fully described in the Algorithm 1.
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Model IEMOCAP MELD
Happy Sad Neutral Angry Excited Frustrated Acc. (%) w-F1 (%) Acc. (%) w-F1 (%)

bc-LSTM (Poria et al., 2017) 33.82 78.76 56.75 64.35 60.25 60.75 60.51 60.42 59.62 57.29
MFN (Zadeh et al., 2018) 48.19 73.41 56.28 63.04 64.11 61.82 61.24 61.60 60.80 57.80

ICON (Hazarika et al., 2018) 32.80 74.40 60.60 68.20 68.40 66.20 64.00 63.50 58.20 56.30
DialogueRNN (Majumder et al., 2019) 32.20 80.26 57.89 62.82 73.87 59.76 63.52 62.89 60.31 57.66

DialogueGCN (Ghosal et al., 2019) 51.57 80.48 57.69 53.95 72.81 57.33 63.22 62.89 58.62 56.36
DAG-ERC (Shen et al., 2021) 47.59 79.83 69.36 66.67 66.79 68.66 67.53 68.03 61.04 63.66

MMGCN (Hu et al., 2021) 45.14 77.16 64.36 68.82 74.71 61.40 66.36 66.26 60.42 58.31
CTNet (Lian et al., 2021) 51.3 79.9 65.8 67.2 78.7 58.8 68.0 67.5 62.0 60.5

DAG-ERC+HCL (Yang et al., 2022) - - - - - - - 68.73 - 63.89
COGMEN (Joshi et al., 2022) - - - - - - 68.2 67.6 - -

MultiDAG (Ours) 49.65 79.83 66.40 67.59 71.78 67.90 68.30 68.45 64.29 63.87
MultiDAG+CL (Ours) 45.26 81.40 69.53 70.33 71.61 66.94 69.11 69.08 64.41 64.00

Table 1: Performance of approaches on IEMOCAP and MELD datasets. Bold indicates the highest perfor-
mance, and underlining denotes the second-highest. “-” represents missing values due to unavailability
in original papers.

2.2.2. Training Scheduler

The training scheduler is used to organize and
schedule the training process by arranging conver-
sations. Specifically, the dataset D is divided into
multiple different bins {D1, . . . ,Dk}, where conver-
sation with similar difficulty are grouped into the
same bin. The training process starts with the
easiest bin. After training for a certain number
of epochs, the next bin is mixed into the current
training dataset. Finally, once all bins have been
mixed and used, additional epochs of training are
performed.

3. Experimental Setup

3.1. Datasets and Baselines

We evaluate our approach on the following two
ERC datasets: IEMOCAP (Busso et al., 2008) and
MELD (Poria et al., 2019). The detailed statistics
of the datasets are reported in Table 2. For the
data processing, we use the same split as the
work in (Hu et al., 2021). We compare our method
against several state-of-the-art baselines, includ-
ing unimodal and multimodal learning approaches.
(Due to the space limit, they are brief described in
Section 1). The evaluation metrics used are Accu-
racy (Acc.) and weighted average F1-score (w-F1).

Datasets Conversation Utterances Avg.
utterancesTrain Valid Test Train Valid Test

IEMOCAP 120 31 5810 1623 66.8
MELD 1038 114 280 9989 1109 2610 9.57

Table 2: Dataset statistics

3.2. Implementation Details

We perform hyperparameter tuning for our pro-
posed model on each dataset using hold-out vali-
dation with separate validation sets. For the IEMO-
CAP dataset, the hyperparameter configuration

includes a learning rate of 0.0005, a dropout rate
of 0.4, 30 epochs of training, and 4 layers of Multi-
DAG+CL. For the MELD dataset, the hyperparam-
eter configuration for the MultiDAG+CL model is
as follows: a learning rate of 0.00001, a dropout
rate of 0.1, 60 epochs of training, and 2 layers of
Multi-DAG.

4. Results and Analysis

4.1. Comparision with Baselines

We conducted a comprehensive comparison of our
proposed approach with SOTA multimodal ERC
methods, and the results are summarized in Ta-
ble 1. Due to space constraints, we only report
Acc. and w-F1 for the MELD dataset. Our ap-
proach, MultiDAG+CL, which combines the Mul-
tiDAG model with a curriculum learning strategy,
achieves SOTA performance on both the IEMO-
CAP and MELD datasets. MultiDAG+CL outper-
forms previous SOTAs by 1.05% (DAG-ERC on
IEMOCAP) and 0.34% (DAG-ERC on MELD), re-
spectively. Specifically, our models achieve im-
provements in individual emotion recognition tasks
in most cases, especially for the Sad, Neutral and
Angry emotions. In the meantime, we find Happy,
Sad, and Angry emotions can be confused with the
Neutral emotion in some cases (as shown in Fig.
2). Such phenomenon is related to imbalanced
class distribution.

4.2. Effect of Modality

Table 3 compares the performance of MultiDAG
and MultiDAG+CL under various multimodal set-
tings on both benchmark datasets. In IEMOCAP,
the textual modality performs best among the uni-
modal settings, while the visual modality shows the
lowest results due to noise from factors like camera
position and environmental conditions. In bimodal
settings, the combination of textual and acoustic
modalities performs the best, while the combina-
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tion of visual and acoustic modalities yields the
lowest result. Similar observations are made in the
MELD dataset.

Modality MultiDAG MultiDAG+CL
IEMOCAP MELD IEMOCAP MELD

T 68.17 63.66 67.12 63.47
A 49.37 40.27 50.58 40.17
V 33.79 31.27 36.69 31.27

T + A 68.42 63.61 68.45 63.56
T + V 67.56 63.69 67.40 63.62
A + V 52.40 40.54 51.86 39.99

T + V + A 68.45 63.87 69.08 64.00

Table 3: Results of MultiDAG and MultiDAG+CL
under different modality settings. T, A, V represent
the text, audio, visual modality, resepectively.

4.3. Effect of Curriculum Learning

The MultiDAG+CL model demonstrates notable
performance improvement by incorporating cur-
riculum learning for both the IEMOCAP and MELD
datasets. The effectiveness of curriculum learning
relies on factors like the difficulty measure design
and training strategy, including the number of buck-
ets in the training set. We perform experiments
to select the optimal number of buckets in the CL
training scheduler. The results shown in the Table
4, indicate that for the IEMOCAP dataset, the op-
timal number of buckets is 5, while for the MELD
dataset, it is 12. These findings suggest that the
CL strategy is effective in improving the perfor-
mance of the MultiDAG model on both datasets,
with the specific number of buckets tailored to each
dataset’s representations. In summary, our pro-
posed MultiDAG+CL model with curriculum learn-
ing, significantly contribute to the achieved results.

IEMOCAP MELD
Number of buckets w-F1 Number of buckets w-F1

4 68.05 5 63.94
5 69.08 8 63.83
7 68.84 10 63.89

10 68.38 12 64.00
15 68.36 14 63.96

Table 4: Results of MultiDAG+CL for different num-
ber of buckets in CL training scheduler.

4.4. Performance for Emotion-shift

From the confusion matrices of the MultiDAG and
MultiDAG+CL models (Figure 2), it can be ob-
served that the prediction accuracy for the “Happy”,
“Neutral”, “Sad”, and “Angry” labels is improved
when CL is incorporated into the model. Particu-
larly, the misclassification rate of the “Neutral” label
as “Disgust” decreases significantly from 19.3% in
the MultiDAG model to only 12.3% in MultiDAG+CL.

However, the prediction accuracy for the “Disgust”
and “Happy” labels decreases.
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Figure 2: The confusion matrices on the IEMOCAP.

5. Conclusion

This paper proposes MultiDAG+CL, a novel ap-
proach for Multimodal Emotion Recognition in Con-
versation that leverages Directed Acyclic Graphs
to integrate textual, acoustic, and visual features
within a unified framework. The incorporation of
Curriculum Learning (CL) addresses challenges
related to emotional shifts and data imbalance, en-
hancing the model’s performance. Through exten-
sive experiments, we evaluate the performance of
both the proposed MultiDAG+CL models. Future
work includes exploring alternative training sched-
ulers for Curriculum Learning and incorporating a
learning-based approach to model emotion label
similarity.
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