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Abstract
Voice-driven software systems are in abundance. However, language models that power these systems are
traditionally trained on fluent, written text corpora. Hence there can be a misalignment between the inherent
disfluency of transcribed spoken content and the fluency of the written training data. Furthermore, gold-standard
disfluency annotations of various complexities for incremental training can be expensive to collect. So, we propose
in this paper a Disfluency Augmented Curriculum Learning (DACL) approach to tackle the complex structure of
disfluent sentences and generate fluent texts from them, by using Curriculum Learning (CL) coupled with our
synthetically augmented disfluent texts of various levels. DACL harnesses the tiered structure of our generated
synthetic disfluent data using CL, by training the model on basic samples (i.e. more fluent) first before training it
on more complex samples (i.e. more disfluent). In contrast to the random data exposure paradigm, DACL focuses
on a simple-to-complex learning process. We comprehensively evaluate DACL on Switchboard Penn Treebank-3
and compare it to the state-of-the-art disfluency removal models. Our model surpasses existing techniques in
word-based precision (by up to 1%) and has shown favorable recall and F1 scores.

Keywords:Disfluency, Fluent Text Generation, Curriculum Learning

1. Introduction

“Hey Siri, uh I mean, hey Alexa, what is the
weather like today?” – any breaks in the regu-
lar flow of speech, such as false starts, correc-
tions, repeats, and filled pauses, are referred to
as disfluencies. Disfluencies are common in ev-
eryday speech (Shriberg, 1994). Disfluent speech
has three distinct parts: the reparandum, the in-
terregnum, and the repair (Shriberg, 1994). In Fig-
ure 1, we show an example from and Jamshid Lou
and Johnson (2020b) from the Switchboard Cor-
pus (Mitchell et al., 1999; Godfrey and Holliman,
1997). The reparandum in this instance – “The
first kind of invasion” – is replaced by the repair
part “the first type of privacy”. The interregnum
“uh I mean” consists of a filled pause “uh” and
a discourse marker “I mean”. Fluent speech is
obtained from the disfluent speech by removing
the reparandum and interregnum (Shriberg, 1994;
Jamshid Lou and Johnson, 2020b).
It is important to remove disfluencies from tran-
scribed speech. Jones et al. (2003) find that
humans have trouble reading and parsing Au-
tomated Speech Recognition (ASR) outputs that
contain disfluencies and lack punctuation. Also,
data which does not contain disfluencies is ben-
eficial for performance on downstream tasks for
conversational systems, summarization, and ma-
chine translation systems (Rao et al., 2007; Cho
et al., 2014;Wang et al., 2010; Hassan et al., 2014;
Teleki et al., 2024).

Figure 1: An example used by Jamshid Lou and
Johnson (2020b) from the Switchboard corpus,
annotated in the Shriberg (1994) disfluency struc-
ture.

Switchboard1 (Mitchell et al., 1999; Godfrey and
Holliman, 1997) is a commonly used disfluency
corpus for the disfluency removal task, how-
ever, it does not reflect various levels of dis-
fluency in a systematic way. Thus, we pro-
pose DACL, a Disfluency Augmented Curriculum
Learning method to generate fluent text directly
from disfluent text. Our method consists of two

1In the Switchboard treebank corpus (Mitchell et al.,
1999; Godfrey and Holliman, 1997), the reparanda,
filled pauses, and discourse markers are made of the
nodes labeled EDITED, INTJ, and PRN, respectively as
shown in Figure 1 (Jamshid Lou and Johnson, 2020b).
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modules – disfluency augmentation (DA) and cur-
riculum learning (CL). First, in DA, we use a syn-
thetic disfluency amplification process that pro-
duces progressive versions of the original text with
varying degrees of disfluency to simulate the wide
spectrum of disfluent speech (as some speak-
ers may be more disfluent than others, for exam-
ple, in the case of speakers with a fluency disor-
der) (American Speech-Language-Hearing Asso-
ciation, 2023). Next, we pair the tiered structure
of our synthetically augmented disfluent texts (DA)
with CL – a process that dictates the order of train-
ing samples in machine learning (Bengio et al.,
2009). This aligns with our synthetic disfluency
augmentation process to build a curriculum for our
model, as DACL uses the tiered structure of our
generated synthetic disfluent data: basic samples
(i.e. more fluent) are fed to the model before more
complex samples (i.e. more disfluent). This con-
trasts a random data exposure paradigm, focus-
ing instead gradually increasing the “difficulty” of
our data. This incrementally increases the ability
of DACL to identify which phrases are disfluencies
in subsequent stages in a controlled manner, lead-
ing to higher precision. Higher precision ensures
that the model is careful when identifying phrases
as disfluencies andminimizes false positives. This
lowers the risk that valid sections of the speech will
be incorrectly eliminated which can lead to infor-
mation loss, resulting in poor-quality transcriptions
with relevant parts of the sentences missing.

Our CL phase has 6 training stages on the
augmented datasets with increasing disflu-
encies. Then, we have a final fine-tuning
phase on the target dataset so that the model
can learn about any new disfluencies in the
target dataset that are not included in our aug-
mentations. We make the code available at
https://github.com/Rohan-Chaudhury/Generating-
Fluent-Text-through-Curriculum-Learning-And-
Disfluency-Augmentation.

Our contributions are:

• We propose a new training methodology –
DACL – to train a sequence-to-sequence gen-
eration model that generates fluent text di-
rectly from disfluent text.

• We evaluate the performance of DACL
against the Switchboard Penn Treebank-3
test set and compare it to the leading parsing-
based and translation-based disfluency re-
moval models. DACL obtains state-of-the-art
results in word-based precision scores, and
also obtains favorable word-based recall and
F1 scores.

2. Related Work
2.1. Modeling Approaches
There are two main types of modeling approaches
for removing disfluencies from the text: parsing-
based models and translation-based models.
Most of these models use labeling, wherein they
categorize each word as either fluent or disfluent,
to generate fluent text from disfluent text.
Parsing-Based Models. Recent parsing-based
models tend to all follow a similar pipeline, intro-
duced in Kitaev and Klein (2018). Initially, the
input text is segmented into spans. Every span
from index i to index j, where i ≤ j, is then pro-
cessed using a language model to extract embed-
dings. Next, a classifier is applied to the embed-
dings to identify the suitable label for each span in
the parse tree, and the optimal parse tree is con-
structed. Within the set of parse tree labels, some
labels are designated as representing disfluency,
and the respective words or spans are removed to
form the parallel fluent span.
In recent studies, a variety of embedding mod-
els have been employed: Jamshid Lou et al.
(2018) proposes a convolutional neural network
(CNN) to obtain embeddings, while in a different
study, Jamshid Lou et al. (2019) apply ELMo (Pe-
ters et al., 2018) to procure embeddings. On a
similar note, Sarzynska-Wawer et al. (2021), and
Jamshid Lou and Johnson (2020b) made use of
BERT (Devlin et al., 2019) to derive embeddings
that were subsequently used as input for the label-
ing classifier. As noted inWang et al. (2017), these
models are powerful in their ability to process in-
formation related to disfluencies in the context of
the entire span, but they suffer from the computa-
tional burden of needing to carry out the parsing
task as well.
Translation-BasedModels. Several papers have
investigated translation-based models for disflu-
ency detection and elimination. Chen et al. (2022)
introduces a streaming BERT-based sequence
tagging model along with a novel training ob-
jective, capable of real-time disfluency detection
while maintaining a balance between accuracy
and latency. Wang et al. (2023) propose a multi-
scale self-attention mechanism (MSAT) for dis-
fluency detection, coupled with contrastive learn-
ing (CL) loss to retain a rough copy and sus-
tain semantic consistency. Tian et al. (2022) ap-
proach disfluency detection as a sequence label-
ing problem, employing Bi-LSTM and attention
mechanisms to cater to long-distance dependen-
cies. Jamshid Lou and Johnson (2020a) explore
end-to-end speech recognition and disfluency re-
moval, with the aim of training an ASR model to
independently generate fluent transcripts, without
relying on a separate disfluency detection model.

https://github.com/Rohan-Chaudhury/Generating-Fluent-Text-through-Curriculum-Learning-And-Disfluency-Augmentation/
https://github.com/Rohan-Chaudhury/Generating-Fluent-Text-through-Curriculum-Learning-And-Disfluency-Augmentation/
https://github.com/Rohan-Chaudhury/Generating-Fluent-Text-through-Curriculum-Learning-And-Disfluency-Augmentation/
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2.2. Disfluency Augmentation
In this paper, we introduce additional disfluencies
into the text for our curriculum learning process. In
a similar spirit, Wang et al. (2020a) use disfluency
augmentation as a pretraining step to self-train
their translation-based model. Additionally, they
explore two distinct pretraining steps: labeling dis-
fluencies at the word level and classifying gram-
mar at the sentence level. They suggest three dis-
fluency transformations: repetition, insertions, and
deletions. Similarly, Passali et al. (2022) syntheti-
cally creates disfluencies, either as repetitions, re-
placements, or restarts.

2.3. Curriculum Learning
CL is a method where a machine learning model is
trained on simpler data before moving on to more
complex data, mimicking the way a school cur-
riculum is structured. This strategy has proven
effective in different settings like computer vision
and natural language processing (Soviany et al.,
2022; Wang et al., 2021), enhancing the model’s
generalization ability and rate of convergence (Shi
and Peng, 2023; Wang et al., 2021). Utilizing
reinforcement learning to determine the level of
ease or challenge of samples in a dataset is an-
other method being examined in machine learning
(Wang et al., 2021).
CL has been used for various speech applications.
Zhu et al. (2021) use CL for ASR tasks for convert-
ing speech input to text output. Lang and Wang
(2019) apply CL to two spoken language under-
standing (SLU) endeavors: named entity recogni-
tion (NER) and program sequencing.
Additionally, CL has been found to be very suc-
cessful, particularly in Neural Machine Transla-
tion (NMT) domains (Zhang et al., 2019; Pla-
tanios et al., 2019). Models based on CL are
capable of faster training and generating bet-
ter results in comparison to those reliant on un-
structured, stochastic sampling (Penha and Hauff,
2020; Zhang et al., 2019; Platanios et al., 2019).

3. Methods
We propose DACL: Disfluency Augmented
Curriculum Learning to remove disfluencies
and generate fluent text. We perform synthetic
disfluency injection into the original text to varying
degrees and then apply curriculum learning to
the increasing levels of disfluent data in multiple
stages. The model learns to precisely identify
disfluent patterns from fluent phrases during
DACL and thus is able to better generate fluent
text from disfluent text.

3.1. Synthetic Disfluency Augmentation
Here we introduce the first phase of DACL, where
we create three synthetic disfluency augmentation

processes that gradually decrease the fluency of
the original sentence by increasing the number of
disfluencies in the sentence, as shown in Figure 2.
For each of our disfluency transformation types
(repeats, interjections, and false starts), we con-
trol the level of these synthetic disfluencies using
a parameter N (Wang et al., 2020a; Passali et al.,
2022). We apply each of these transformations on
each of the pre-training datasets (the Spotify Pod-
cast Dataset and WikiSplit) from N = 0 to N = 10.
A value of N = 0 indicates that no synthetic dis-
fluency has been added to the dataset, whereas
a value of N = 10 signifies that the highest level
of disfluency has been introduced. Then the three
transformations are:

1. Repeats: Here, we increase the number of rep-
etitions in the input text. We divide the input text
into random-length substrings, by drawing sam-
ples from X ∼ Normal(µ = 10, σ = 1) to deter-
mine the length of each consecutive substring. At
the end of each substring, the last word in the sub-
string is appended N times, and punctuation and
capitalization are modified accordingly within the
substring.

2. Interjections: Here, we increase the number
of interjections in the input text. We divide the in-
put text into random-length substrings, by draw-
ing samples from X ∼ Normal(µ = 10, σ = 1)
to determine the length of each consecutive sub-
string. At the end of each substring, N uniformly
randomly selected interjections from the list [“uh”,
“um”, “well”, “like”, “so”, “okay”, “you know”, “I
mean”] are appended, and punctuation and cap-
italization are modified accordingly within the sub-
string.

3. False Starts: Here, we increase the number of
false starts in the input text. Out of the sentences
with word length ≥ 4, we non-uniformly sample
sentences with 80% probability to get a false start
repeated N times in it. False starts are consid-
ered as the first two words of the sentence being
repeated N times consecutively.

Figure 2: An example of the three different
synthetic disfluency augmentation processes (re-
peats, interjections, and false starts).
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3.2. Disfluency Augmented Curriculum
Learning

Through disfluency augmentation, we create pro-
gressive versions of the original text with vary-
ing degrees of disfluency. This tiered structure of
our augmented disfluent sentences naturally pairs
with the CL process of DACL. Themodel’s capabil-
ity to better identify the disfluencies in a sentence
increases with each subsequent stage of the CL
phase. At each stage of the CL phase, we frame
the problem as a sequence-to-sequence genera-
tion task, where the model is presented with a dis-
fluent sentence and aims to produce a fluent one
in return. The training stages during this phase
are conducted without changing most of the model
hyperparameters except the sequence length of
the model. We use T5-base (Raffel et al., 2020)2
as the backbone generative model for all our ex-
periments. To guide the generative model for our
disfluency removal and fluent sentence generation
task, we add “Remove text disfluency: ” at the be-
ginning and “ [END]” at the end of the input sen-
tences and add “ [END]” at the end of the output
sentences.
There are 6 stages in DACL:
Stage 1. In the first stage of DACL, we feed the
non-augmented sentences (N = 0) into the gen-
erative model and ask it to generate these sen-
tences exactly as they are. This stage enables
the model to recognize that if the provided sen-
tences are free from disfluencies, they should be
returned unaltered. Consequently, this helps pre-
vent the model from returning unintended random
outputs or empty strings, as witnessed in some of
our ablation studies.
Stage 2. From the second stage, we begin in-
troducing some synthetic disfluencies in our in-
put texts. We start with the repeats (word repe-
titions) dataset, as it’s relatively more straightfor-
ward compared to the two other datasets, interjec-
tions and false-starts. Our input texts are the re-
peats dataset with N = 1 and the outputs are the
original non-augmented (N = 0) dataset. We train
the best model obtained from the previous stage
(with the least validation loss) on the training set
of these pairs of inputs and outputs.
Stages 3-6. Similarly, in the third, fourth, fifth,
and sixth stages, our input texts are the repeats
dataset with N = 5, repeats dataset with N =
10, interjections dataset with N = 10, and false
starts dataset with N = 10 respectively. The out-
puts for all the stages are set as the original non-
augmented (N = 0) texts. We train the model from
the previous stages on the training set of the re-
spective pairs of inputs and outputs for the corre-
sponding stages.

2https://huggingface.co/t5-base

Table 1: Statistics of the 3 datasets post data
cleaning.

Dataset Train Dev Test

Spotify (all augmentations) 714 153 153
WikiSplit (all augmentations) 2,970 637 637
Switchboard 21,849 1,884 2,448

After the sixth stage, we take the model with the
lowest validation loss, DACL-best, and proceed
to fine-tune it on the target dataset.

3.3. Fine-Tuning for Evaluation
The DACL-Best now understands the basics of
what is a disfluency and can precisely remove dis-
fluencies that we have shown through our syn-
thetic augmentations. However, naturally disfluent
datasets like Switchboard Treebank-3 can have
more kinds of disfluencies that we have not engi-
neered in our augmentations. To tackle these new
types of disfluencies, we fine-tune DACL-best –
the best checkpoint from DACL – on the training
set of the target dataset, Switchboard Treebank-
3. (Mitchell et al., 1999).
Post-Processing. After obtaining the output from
our models, we take the longest common sub-
sequence (LCS) between the predicted sentence
and the disfluent input sentence. LCS is the
longest series of words that appear in both texts
in the same order, however, they do not have to
be contiguous. The model tends to fix grammati-
cal errors in sentences, which is a positive aspect
of our method. However, since the word-level pre-
cision, recall, and F1 score depend on the order-
ing and position of the tokens in the sentence, the
addition of such extra words tends to slightly im-
pact the accuracy of our calculations. Hence we
remove such extra words by doing an LCS oper-
ation with the input disfluent sentences which are
also devoid of such fixes.

4. Experimental Setup
We design experiments to evaluate the effective-
ness of our proposed DACL approach and answer
two research questions: RQ1: How will DACL
perform with CL on in-domain datasets? RQ2:
How will DACL perform with CL on out-of-domain
datasets?

4.1. Datasets
For DACL, we utilize two datasets: The Spotify
Podcast Dataset (Clifton et al., 2020), and The
WikiSplit Dataset (Botha et al., 2018), and then
do fine-tuning and evaluation on the Switchboard
Dataset (Mitchell et al., 1999; Godfrey and Holli-
man, 1997). We perform synthetic disfluency aug-

https://huggingface.co/t5-base
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mentation on these datasets and then study the
impact of CL over each of these datasets.
Spotify Podcast Dataset. The Spotify Podcast
Dataset3 is comprised of over 100,000 podcasts
which contain “a rich variety of genres, subject
matter, speaking styles, and structural formats”
(Clifton et al., 2020). The podcasts were tran-
scribed using Google’s automatic speech recog-
nition (ASR) tool (Google Cloud), which filters out
some basic disfluencies. For our experiments, we
perform synthetic disfluency transformations on
the test set of the Spotify Podcast Dataset, which
contains 1,028 podcasts; however, we only select
podcasts that have speech in their first minute of
duration, which cuts the dataset down to 1,020
podcast transcripts. We observe that in the first
minute of podcasts, people are generally fluent,
sometimes due to scripted beginnings where hosts
read off a standard intro for each podcast, which
results in a low number of natural disfluencies in
the transcripts.
WikiSplit Dataset. The WikiSplit Dataset4 is
“[o]ne million English sentences, each split into
two sentences that together preserve the original
meaning, extracted from Wikipedia edits” (Botha
et al., 2018). We use a small subset of the
dataset for our experiments that contains 5,000
sentences.5 These sentences are written texts
and completely devoid of disfluencies.
Switchboard Treebank-3. After performing
DACL using the pre-training datasets, we further
fine-tune the model on the Switchboard dataset,6
and evaluate it on the Switchboard Treebank-37
test set (Mitchell et al., 1999; Godfrey and Holli-
man, 1997). This allows us to directly compare our
results to previous work (Jamshid Lou and John-
son, 2020b; Bach and Huang, 2019; Wang et al.,
2018; Zayats et al., 2016).
The Switchboard dataset is a transcribed and syn-
tactically annotated dataset comprised of phone
calls between randomly paired participants on se-
lected topics (Godfrey and Holliman, 1997). The
disfluencies are mainly made up of the nodes la-
beled EDITED, PRN, and INTJ in the Switchboard
Treebank-3 dataset (Jamshid Lou and Johnson,
2020b). We therefore derive the fluent and dis-
fluent versions of the text from these annotations.

3Available at: https://podcastsdataset.byspotify.com/
4Available at: https://github.com/google-research-

datasets/wiki-split
5We use the test set.
6Following Charniak and Johnson (2001) and

Jamshid Lou and Johnson (2020b), we divided the
Switchboard into training, dev, and test sets. Specif-
ically, the training data includes the sw[23]*.mrg files,
the dev data comprises the sw4[5-9]*.mrg files, and the
test data encompasses the sw4[0-1]*.mrg files.

7Available at: https://catalog.ldc.upenn.edu/LDC99T42

4.2. Data Pre-Processing
For the Spotify Podcast dataset and the WikiSplit
dataset, we eliminate extra spaces from the sen-
tences. For the Switchboard dataset, we cre-
ate disfluent and fluent versions. According to
Jamshid Lou and Johnson (2020b), within the tree-
annotation structure of the Switchboard dataset,
there are mainly 3 types of nodes that are disflu-
ent. As demonstrated by Jamshid Lou and John-
son (2020b), Figure 1 illustrates one such parse
tree. The process to create the fluent and disflu-
ent version follows:
1. Disfluent: This is the original transcript that is
obtained by recursively going through the Switch-
board parse trees and collecting their leaves, fol-
lowing the method outlined by Jamshid Lou and
Johnson (2020b).
2. Fluent: These are the original transcripts with
nodes labeled EDITED, INTJ, and PRN filtered
out. The resulting sentences are devoid of disflu-
encies.
Next, following Jamshid Lou and Johnson
(2020b); Johnson and Charniak (2004), all partial
words8 and punctuations have been omitted from
the disfluent and fluent sentences, as they are not
found in realistic ASR applications.
Additionally, we split each of the transcripts af-
ter every 4 speaker turns to ensure that all sen-
tences in the dataset, when tokenized by the T5-
base Tokenizer, are under 512 tokens in size.
To ensure each sentence comprises at least 20
characters, subsequent sentences are recursively
joined together if any sentence falls short of the 20-
character threshold. This is carried out to ensure
that neither disfluent nor fluent sentences contain
any blank entries after splitting them based on
speaker turns.
Table 1 presents the number of sentences of each
of the datasets in each of the three data splits fol-
lowing the data cleaning process.

4.3. Model and Implementation Details
We utilize T5-base9 (Raffel et al., 2020) as our
backbone model, which is an encoder-decoder
model with 220 million parameters. It is a medium-
sized model compared to recent Large Language
Models (i.e., LLaMA 210 and GPT-411). Fine-
tuning T5 on a task-specific dataset allows it to
specialize in disfluency correction, drawing on the
generic language knowledge from pretraining to
improve its disfluency correction capacity. All ex-
periments are run on NVIDIA RTX A5000 24GB

8Words ending in “-” or words tagged as “XX”
9https://huggingface.co/t5-base
10LLaMA 2 has 7 billion to 70 billion parameters (Tou-

vron et al., 2023).
11GPT-4 has 1.7 trillion parameters (OpenAI).

https://huggingface.co/t5-base
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Table 2: DACL with the Spotify Dataset and Evaluation on the Switchboard Dataset

Method Word-Based ROUGE
P R F 1 2 L

Repeats Augmented [0, 1, 5, 10] shuffled (no CL) 26.35 46.99 33.76 73.47 68.43 73.33
Interjections Augmented [0, 1, 5, 10] shuffled (no CL) 27.69 48.35 35.22 70.33 66.52 70.18
Repeats 0− 0 69.69 0.43 0.85 89.09 83.43 89.10
Repeats 0− 0, 1− 0 93.87 8.72 15.96 89.64 83.97 89.65
Repeats 0− 0, 1− 0, 5− 0 95.72 9.80 17.78 89.77 84.09 89.78
Repeats 0− 0, 1− 0, 5− 0, 10− 0 95.76 10.04 18.18 89.79 84.11 89.78
Repeats 0− 0, 10− 0 92.09 4.29 8.21 89.32 83.65 89.32
(DACL-Best) Repeats 0− 0, 1− 0, 5− 0, 10− 0, Inter-
jections 10− 0, False Starts 10− 0

94.80 14.74 25.52 90.14 84.62 90.13

Table 3: DACL with the WikiSplit Dataset and Evaluation on Switchboard Dataset

Method Word-Based ROUGE
P R F 1 2 L

Repeats 0− 0 22.84 6.80 10.52 88.75 83.02 88.67
Repeats 0− 0, 1− 0 49.68 22.50 30.97 90.01 84.21 89.96
Repeats 0− 0, 1− 0, 5− 0 53.27 25.68 34.66 90.30 84.48 90.24
(DACL-Best) Repeats 0− 0, 1− 0, 5− 0, 10− 0, Inter-
jections 10− 0, False Starts 10− 0

71.09 68.12 69.58 93.91 90.86 93.86

GPUs and NVIDIA GeForce RTX 2080 Ti.

4.4. Metrics
Word-Level Precision, Recall, and F1 Score.
Three word-level evaluation metrics are taken into
account, as per prior studies (Ferguson et al.,
2015; Zayats et al., 2016; Jamshid Lou and John-
son, 2020b; Bach and Huang, 2019; Wang et al.,
2020b). The evaluation code has been adapted
from the work of Wang et al. (2020b) to maintain
consistency with previous research.
ROUGE Scores. We utilize ROUGE metrics12
to intermediately evaluate the generated outputs.
ROUGE scores compare the N-gram overlaps be-
tween the generated text and a reference text to
assess the quality of translations.

5. Experimental Results
5.1. RQ1: Results on Spotify Dataset

(In-Domain)
The Spotify dataset is in-domain for the Switch-
board dataset, as both are transcribed spoken
text. We measure the word-based PRF scores
and the ROUGE scores on the test set of the
Switchboard dataset after executing DACL on the
Spotify dataset in Table 2. Then, we fine-tune and
evaluate our model on the Switchboard dataset in
Table 4. Finally, we compare our model to the
state-of-the-art models in Table 6.

12https://huggingface.co/spaces/
evaluate-metric/rouge

5.1.1. DACL (Table 2)
Starting with the first and second rows, we train
the T5-base model using mixed levels of disflu-
ency augmentations with no CL. Specifically, the
input augmentation levels are N = 0, 1, 5, and
10, with all corresponding output levels set at 0.
They are all combined and shuffled to form a
larger dataset. Shuffling the input data at vari-
ous augmentation levels allows us to study the im-
pact of CL, as we remove the curriculum in this
ablation. This training is applied to both the re-
peat (first row) and interjection (second row) aug-
mented Spotify datasets. We notice in these two
rows that the model exhibits low precision on the
Switchboard test set. However, it achieves high
recall scores. This is because the model fre-
quently categorizes entire sentences as disfluent,
removing all the words. Another reason is that
the model can sometimes generate entirely ran-
dom outputs different from the input sequences.
On inspecting the raw outputs before postprocess-
ing, we see the model generating random tokens,
such as: TRUE, FALSE, and END. The LCS post-
processing step then removes these words and re-
turns null strings–as these words are not originally
present in the input disfluent sentences. We con-
clude that in this case, the models fail to under-
stand the underlying task of clearing disfluencies.
Now, we look at the third through sixth row. Here,
we study the impact of progressively increasing
the difficulty of the curriculum over input augmen-
tation levels N = 0, 1, 5, and 10. We note that the
model’s recall score is initially low but increases

https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
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Table 4: Fine-Tuning & Evaluation on Switchboard Dataset after DACL on Spotify

Curriculum Learning on Spotify Fine-tune on SWB? Word-Based ROUGE
P R F 1 2 L

No (T5-base) N 17.74 49.25 26.08 0.5722 0.5124 0.5696
Y 93.57 83.66 88.34 0.9752 0.9598 0.9750

DACL-Best
N 94.80 14.74 25.52 0.9015 0.8463 0.9014

Y, 14 epochs – DACL+FT 97.10 84.75 90.50 0.9795 0.9650 0.9793
Y, Overfitting, 66 epochs – DACL+FT (Overfit) 96.10 90.25 93.08 0.9855 0.9758 0.9854

Table 5: Fine-tuning & Evaluation on Switchboard Dataset after DACL on WikiSplit

Curriculum Learning on WikiSplit Fine-tune on SWB? Word-Based ROUGE
P R F 1 2 L

No (T5-base) N 17.74 49.25 26.08 0.5722 0.5124 0.5696
Y 93.57 83.66 88.34 0.9752 0.9598 0.9750

DACL-Best N 71.09 68.12 69.58 0.9391 0.9086 0.9386
Y 95.13 87.00 90.89 0.9816 0.9691 0.9815

over time during these training and evaluation
stages. The precision score remains consistently
high and gradually increases. This pattern indi-
cates that the model improves its ability to accu-
rately identify and remove disfluencies without ex-
cessive token removal, as these models don’t give
any empty strings or irrelevant tokens as output
when evaluating on the Switchboard test set.
Next, we move on to the seventh row, where we
skip intermediate CL steps by directly increasing
the input disfluency level from 0 to 10. We note
that the model’s performance on the Switchboard
test set was inferior compared to the model in the
sixth row (which had a curriculum that progres-
sively increased in difficulty from 0 to 1 to 5 to
10, rather than a jump in difficulty from 0 to 10),
suggesting that training on the intermediate levels
(such as 1, 5, etc.) is necessary for the model to
identify disfluencies.
Next, in the eighth row, we build on the curriculum
of the model from the sixth row as we add in addi-
tional disfluency types: interjections with N = 10
and false starts with N = 10. This more diffi-
cult training regimen yields a model with an over-
all good score on the Switchboard test set, which
we consider as our final checkpoint (namedDACL-
Best) for the next set of experiments.
Throughout the process, we can see that the
ROUGE scores are consistently increasing with
the subsequent CL stages and are considerably
lower in the non-CL and skip-CL studies. The final
DACL-best model has the highest ROUGE scores
among all the models in Table 2. This indicates
that the CL process is instrumental in increasing
the quality of the outputs generated by the model.

5.1.2. Fine-Tuning and Evaluation (Table 4)
We observe in the first row that only using T5-base
as is (no CL and no fine-tuning) does not yield
good disfluency removal overall, with precision at
17.74 and recall at 49.25; the recall is still relatively

Table 6: Comparison with Previous Work

Method Word-based
P R F

DACL+FT 97.1 84.7 90.5
DACL+FT (Overfit) 96.1 90.2 93.0
EGBC (Bach and Huang, 2019) 95.9 86.3 90.9
EGBC + residual (Bach and Huang, 2019) 96.1 86.9 91.2
Self-Trained BERT-Based Parser (ensem-
ble) (Jamshid Lou and Johnson, 2020b)

92.5 97.2 94.8

Self-Trained BERT-Based Parser (single)
(Jamshid Lou and Johnson, 2020b)

92.2 96.6 94.3

Noisy BiLSTM (Bach and Huang, 2019) 94.7 89.8 92.2
Weight sharing (Wang et al., 2018) 92.1 90.2 91.1
BiLSTM (Zayats et al., 2016) 91.6 80.3 85.9
Semi-CRF (Zayats et al., 2016) 90.0 81.2 85.4

high due to the generation of irrelevant output to-
kens and null strings frequently.
In the second row, we can observe the impact
of directly fine-tuning the T5-base model on the
Switchboard dataset. The precision increases to
93.57 and the recall increases to 83.66, however,
we observe that the issues with the generation of
irrelevant output and null strings still remain here.
In the fourth row, the model achieved the best val-
idation loss in 14 epochs of fine-tuning the DACL-
Best model on the Switchboard training set. This
approach yielded the highest precision scores ob-
served in our study – 97.10 – and also the high-
est amongst all the previous approaches on the
Switchboard test set as shown in Table 6, denoted
as DACL+FT.
In the fifth row, we overfit the model (to 66 epochs)
on the Switchboard training dataset, denoted in
Table 6 as DACL+FT (Overfit). This yielded the
highest recall, F1, and ROUGE scores in Table 4
on the Switchboard test set. This model shows
the overall best results among all the previous ap-
proaches on the Switchboard test set, as shown in
Table 6. However, there is a decrease in precision
to 96.10. This signifies that as themodel was over-
fitting on the training set it started to identify more
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Table 7: Examples from Switchboard test set (Mitchell et al., 1999). Blue underlines indicate true pos-
itives. Red underlines indicate false negatives. Cyan underlines indicate false positives. Bold words
indicate words that are considered disfluent according to the Switchboard dataset, however, we
observe that contextually they are not disfluencies. ‘...’ indicates phrases that were exactly the same
in input, output, and reference sentences.

Type Sentence

Input Text 1 “I mean I’ve I’ve I I have ... months of you know reasonably satisfactory use they
will accept it in any condition and they will gladly no questions asked take it back
if for some bizarre reason ... ”

Reference Text 1 “I have ... months of reasonably satisfactory use they will accept it in any condition
and they will gladly take it back if for some bizarre reason ... ”

Generated Text 1 “I have ... months of reasonably satisfactory use they will accept it in any condition
and they will gladly no questions asked take it back if for some bizarre reason ...”

Input Text 2 “yeah well I think I guess nowadays with the uh with the economy the way it is I
guess there was a there was a story ...”

Reference Text 2 “nowadays with the economy the way it is I guess there was a story ...”
Generated Text 2 “I think nowadays with the economy the way it is I guess there was a story ...”

Input Text 3 “hi uh uh I I should say something ”
Reference Text 3 “I should say something”
Generated Text 3 “hi I should say something”

words and phrases as disfluencies at the cost of
precision. However, we should note that the refer-
ence texts were human-annotated, thus implying
that what might appear disfluent to the annotators
might not appear disfluent to others in some con-
texts. Since the best model judiciously selects its
disfluent candidates based on the context of the
sentence, it has the highest precision. Such ex-
amples where some words that can be argued to
not be proper disfluencies based on the context of
the sentence are presented in Table 7.

5.2. RQ2: Results on WikiSplit Dataset
(Out-of-Domain)

The WikiSplit dataset is out-of-domain for the
Switchboard dataset, as Wikipedia is written text,
and Switchboard is transcribed spoken text. We
measure the word-based PRF scores and the
ROUGE scores on the test set of the Switch-
board dataset after executing DACL on the Wik-
iSplit dataset in Table 3. Then, we fine-tune and
evaluate our model on the Switchboard dataset
in Table 5. Finally, we compare our model to the
state-of-the-art models in Table 6.
5.2.1. DACL (Table 3)
Table 3 seems to follow the general trends of Ta-
ble 2 where the ROUGE and word-level precision,
recall, and F1 scores increase with incremental
stages of the CL process. The difference is:
(1) The precision scores in Table 3 are lower than
the precision scores in Table 2 for the same stages
of DACL;
(2) The recall scores in Table 3 are higher than
the recall scores in Table 2 for the same stages of
DACL.

This difference can be attributed to the fact that
WikiSplit is a written dataset whereas Spotify is
a spoken transcribed dataset. The presence of
existing speech disfluencies (i.e. aside from the
generated disfluencies) in the Spotify dataset adds
some noise to the entire training process and also
instructs the model to better identify disfluencies
from the sentences and leave the rest unaltered.

5.2.2. Fine-Tuning and Evaluation (Table 5)
In Table 5, we observe in the fourth row that DACL
+ fine-tuning yields the best precision and recall
scores — as well as the best scores across the
table. However, both of these scores (P=95.13,
R=87.00) are lower than the best precision and
recall scores obtained from Table 4 (P=97.10,
R=90.25).

6. Conclusion
Disfluencies are difficult to distinguish from flu-
ent speech. In this work, we propose a curricu-
lum learning-based model that can eliminate dis-
fluencies and provide fluent text with high word-
based precision along with robust word-based re-
call and F1 scores. This would allow the model to
be more accurate in distinguishing between dis-
fluent and fluent sentences. We build a synthetic
disfluency augmentation approach that produces
progressive versions of the original text with var-
ious degrees of disfluencies. We combine this
with CL to provide a novel training approach for
training sequence-to-sequence generation mod-
els for producing fluent text from disfluent texts.
Our evaluations and ablation studies indicate the
efficacy of our approach, and our best model
surpasses state-of-the-art methods in word-based
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precision and displays goodword-based recall and
F1 scores on the widely used Switchboard test set.
In the future, we plan to study other kinds of disflu-
encies present in speech. Creating synthetic aug-
mentations with other kinds of disfluencies would
allow us to create a more robust model. We also
plan to extend this method to other languages and
aim to see if the model trained on the English lan-
guage corpus fares well on other language disflu-
encies with some amount of fine-tuning.

7. Ethical Considerations
There are a few important ethical considerations
that must be made when removing disfluencies
from text:
(i) Authenticity and Accuracy: Removing or al-
tering speech disfluencies might affect the mes-
sage’s authenticity. Changing the natural form
of communication may inadvertently misrepresent
what the speaker means or feels. Transparency
should be maintained if disfluencies are elimi-
nated, particularly in public or official communica-
tions. To prevent deceiving the general public, any
changes to the original speech should be made
clear.
(ii) Inclusivity: Adjusting disfluencies may sideline
or stereotype people who naturally display more
disfluencies in their speech, like those with speech
conditions or non-native speakers. It may enforce
a standard of “fluent” speech and disregard di-
verse communication styles.
(iii) Bias: Perceptions of what qualifies as a “dis-
fluency” can be subjective and culturally based.
Systems that remove disfluencies may inadver-
tently sustain linguistic biases, advocating a par-
ticular type of speech as more desirable. Addi-
tionally, culture and language can impact speech
patterns, including disfluencies. Removing these
features may accidentally diminish cultural or lin-
guistic identity.

8. Limitations
Our method has a few key limitations to note:
(i) Preservation of Meaning: Disfluencies can
carry significant meaning and express nuance,
hesitation, or emphasis. Automated or manual re-
moval of disfluencies may inadvertently alter the
speaker’s intended meaning or emotional expres-
sion.
(ii) Accessibility: Some individuals might find
pauses or repeated words helpful to process
speech, particularly those with particular cognitive
or learning needs.
(iii) Comprehending Nuances: Automated sys-
tems might lack the insight to understand the rea-
sons for speech disfluencies, and taking them out
might remove layers of meaningful communica-
tion.
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