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Abstract
Clinical NLP research faces a scarcity of publicly available datasets due to privacy concerns. MIMIC-III marked a
significant milestone, enabling substantial progress, and now, with MIMIC-IV, the dataset has expanded significantly,
offering a broader scope. In this paper, we focus on the task of predicting clinical outcomes from clinical text.
This is crucial in modern healthcare, aiding in preventive care, differential diagnosis, and capacity planning. We
introduce a novel clinical outcome prediction dataset derived from MIMIC-IV. Furthermore, we provide initial insights
into the performance of models trained on MIMIC-III when applied to our new dataset, with specific attention to
potential data drift. We investigate challenges tied to evolving documentation standards and changing codes in
the International Classification of Diseases (ICD) taxonomy, such as the transition from ICD-9 to ICD-10. We also
explore variations in clinical text across different hospital wards. Our study aims to probe the robustness and gener-
alization of clinical outcome prediction models, contributing to the ongoing advancement of clinical NLP in healthcare.

Keywords: Corpus (Creation, Annotation, etc.), Document Classification, Text categorisation, Neural language
representation models

1. Introduction

In the realm of clinical NLP research, publicly avail-
able datasets are a rarity, primarily due to pri-
vacy and ethical concerns. The pivotal release
of MIMIC-III (Johnson et al., 2016) has been deci-
sive for the reproducibility of research results and
progress in the area of clinical NLP. A tremen-
dous amount of influential research was published
based on the dataset. To support such research
efforts, MIMIC-IV (Johnson et al., 2020) was re-
leased, expanding the dataset to include patient
data up to 2019. This release increased the num-
ber of unique patients by approximately six times,
providing a richer and more extensive dataset. Re-
cently, van Aken et al. (2021) introduced the task
of predicting clinical outcome from clinical text,
only incorporating information available at admis-
sion time. Predicting clinical outcome is essen-
tial in modern healthcare. It serves as a pre-
ventive tool, aiding doctors during the differen-
tial diagnosis process by identifying potential risks
and symptoms, as well as assisting hospitals in
proactive capacity planning. In this investigation,
we present a clinical outcome prediction dataset
derived from MIMIC-IV. Additionally, we offer ini-
tial observations regarding the efficacy of models
trained on MIMIC-III when applied to our dataset,
paying particular attention to data drift from the in-
clusion of more recent documents from MIMIC-IV.
In addition to understanding complex linguistic as-
pects like relationships, ambiguity, negations, ab-
breviations, and other language intricacies, clini-
cal documentation of diagnoses and procedures

presents extra challenges for these models when
applied to real-world tasks. To determine the cor-
rect diagnosis and procedure codes that are asso-
ciated with the patients’ clinical note, professional
coders need to manually assign codes, organized
in a standardized taxonomic hierarchy like ICD-9,
ICD-10 or ICD-11 (International Statistical Classifi-
cation of Diseases and Related Health Problems
(ICD)) 1. The ICD system is widely established
and is used for billing and clinical documentation
purposes. Searle et al. (2020) highlight that clin-
ical text, combined with the often stringent time
constraints placed on clinical coders, adds to the
likelihood of errors and inconsistencies in this pro-
cess. Moreover, the ICD-Code taxonomy is up-
dated regularly, which results in inconsistencies
between each major revision. The goal of the reg-
ular updates is to capture an expanding range of
health conditions, procedures, and therapies with
increasing granularity. Major updates to the ICD
system are not fully backwards compatible, which
makes using clinical data across time challeng-
ing. We present the first analysis of different as-
pects of the generalization and robustness capa-
bilities of state-of-the-art models trained on MIMIC-
III data and evaluated on MIMIC-IV. Our evaluation
focuses on the following aspects:

• The implementation of the major revision of
ICD-9 to ICD-10 that is partially present in the
MIMIC-IV data

1https://www.who.int/
standards/classifications/
classification-of-diseases

https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
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• The effect of changes in clinical documenta-
tion standards or guidelines

• The different hospital wards in which the text
is produced, i.e. the emergency department
and the ICU.

Contribution We summarize our contribution as
follows:

1. Generation of an outcome prediction dataset
utilizing MIMIC-IV data 2.

2. Application of techniques to establish corre-
spondence between existing MIMIC-III doc-
uments within MIMIC-IV, facilitating compa-
rability for models previously trained on the
MIMIC-III outcome prediction task.

3. Rigorous selection of dataset splits designed
to facilitate the reuse of the original MIMIC-III
test dataset for outcome prediction purposes
(van Aken et al., 2021).

4. Evaluation and comparison of existing state-
of-the-art models for clinical outcome predic-
tion with regard to data drift.

2. Related Work

MIMIC-III The freely available Medical Informa-
tion Mart for Intensive Care v1.4 database, also
known as MIMIC-III (Johnson et al., 2016), fueled
medical computational science research since
2016 with thousands of citations and provided a
valuable foundation to an abundance of publica-
tions. MIMIC-III contains de-identified electronic
health record data including textual discharge sum-
maries in English of the Beth Israel Deaconess
Medical Center (BIDMC) in Massachusetts rang-
ing from 2001 to 2012.

MIMIC-IV The MIMIC-IV (Johnson et al., 2020)
dataset is the successor to MIMIC-III and contains
MIMIC-III data from 2008 to 2012 as well as new
data collected from 2013 to 2019. Furthermore,
in addition to ICU data, it also contains data from
the BIDMC emergency department. The incorpo-
ration of emergency department data significantly
enhances the phenotypic diversity within MIMIC-
IV, capturing a broader spectrum of patient profiles,
including those not requiring critical care interven-
tions.

Coding Differences Between MIMIC-III and
MIMIC-IV MIMIC-III uses the ICD-9 coding
standard to encode diagnoses and procedures.
MIMIC-IV relies on the newer ICD-10 standard for
data collected between 2013 and 2019, as well

2https://github.com/DATEXIS/
MIMIC-DataDrift

as ICD-9 for data before 2013. While ICD-9 con-
tains 3,878 procedure as well as 14,567 diagno-
sis codes, the much more fine-grained ICD-10
contains 71,920 procedure and 69,832 diagnosis
codes. Researchers and practitioners who seek to
evaluate tasks that rely on the medical coding in-
formation, like clinical outcome prediction, have to
tackle issues that come with multiple coding stan-
dards, e.g. ambiguous label spaces. One ap-
proach is to perform independent evaluations on
each respective label space, e.g. Bornet et al.
(2023) use only the documents annotated with
ICD-10 codes. However, depending on the type
of code (diagnostic or procedures) MIMIC-IV con-
tains up to 66.7% of ICD-9 coded data which forms
the majority of the dataset (s. Section 3 for more
details). To enable comparability of models on
both coding standards present in MIMIC-IV, they
need to be combined into a common label space.
For ICD-10 as well as ICD-9, there are sophisti-
cated mapping mechanisms provided by the Cen-
ters for Medicare and Medicaid Services as well
as the Centers for Disease Control and Prevention
called ”General Equivalency Mappings” (GEMs) 3.

Clinical Outcome Prediction Task van Aken
et al. (2021) proposed a task to predict a patients’
outcome from a clinical note written at admission
time. They proposed a dataset based on MIMIC-
III with four tasks: 1. Diagnosis Prediction, 2.
Procedure Prediction, 3. Length-of-Stay and 4.
In-Hospital Mortality Prediction. With the help of
trained medical professionals, they chose to ex-
tract a list of sections from the discharge sum-
maries from MIMIC-III that are known at admis-
sion time. The resulting documents, called Admis-
sion Notes, only contain information that is likely
to represent the knowledge about a patient’s state
at hospital admission. Thus, they can be used
to evaluate the task of clinical outcome prediction.
This differentiates the task of clinical outcome pre-
diction from the task of ICD coding (Edin et al.,
2023; Mullenbach et al., 2018), where the full doc-
ument is used.

Clinical Outcome Prediction Approaches To
solve the outcome prediction task, several ap-
proaches have been proposed, such as the CORe
(Clinical Outcome Representations) model (van
Aken et al., 2021) that aims to learn clinical out-
come representations of admission notes by con-
tinuing pre-training on discharge summaries. Be-
sides the continued work of the authors, like using
prototypical networks for more interpretable predic-
tions (van Aken et al., 2022) or behavioral testing

3https://www.cms.gov/medicare/
coding-billing/icd-10-codes/
2018-icd-10-cm-gem

https://github.com/DATEXIS/MIMIC-DataDrift
https://github.com/DATEXIS/MIMIC-DataDrift
https://www.cms.gov/medicare/coding-billing/icd-10-codes/2018-icd-10-cm-gem
https://www.cms.gov/medicare/coding-billing/icd-10-codes/2018-icd-10-cm-gem
https://www.cms.gov/medicare/coding-billing/icd-10-codes/2018-icd-10-cm-gem
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PRESENT ILLNESS: 58yo woman w/ hx of hypertension, AFib on coumadin
presented to ED with headache and chest pain. Husband reports states that patient
has been complaining of headache for 1 days, chest pain for 3 days and has lost
consciousness 2 days ago for a minute
MEDICATION ON ADMISSION:The Preadmission Medication list is accurate and
complete. 1. Aspirin 120 mg PO DAILY, 2. Simvastatin 20 mg PO QPM
PHYSICAL EXAM: Vitals: P: 82 R: 12 BP: 140/75 SaO2: 95%
Cardiac: RRR
atraumatic, normocephalic Pupils: 4-3mm. Abd: Soft, BS+ Extrem:
Warm and well-perfused.
FAMILY HISTORY: non-contributary
SOCIAL HISTORY: Lives together with husband

Figure 1: Example of an admission note from
MIMIC-IV.

(van Aken et al., 2022), there have been many
works on improving on the task. Winter et al.
(2022) enhance encoder models with external in-
formation from knowledge graphs by injecting it
into redundant attention heads. Naik et al. (2022)
augment the classification process by adding re-
trieved documents from PubMed. Grundmann
et al. (2022) augment encoder models to use op-
tional previously known diagnosis codes to sup-
port the prediction. Taylor et al. (2023) employ a
prompt learning approach. Ji and Marttinen (2021)
use task-specific embeddings. Papaioannou et al.
(2022) enhance the encoders by applying cross-
lingual knowledge transfer. Also, the outcome pre-
diction dataset proposed by van Aken et al. (2021)
was used for numerous other tasks besides clinical
outcome prediction, e.g. evaluation of trustworthi-
ness of synthetic data (Belgodere et al., 2023) or
analyzing the interpretability of classifiers (Naylor
et al., 2021). To the best of our knowledge, the
approach of van Aken et al. (2022), based on pro-
totypical networks, provides the best performance
on the diagnosis prediction task.

3. Preparing the Dataset

MIMIC-III consists of in total 53,423 patient stays
and 38,597 unique patients, resulting in an aver-
age of 1.38 stays per patient. It covers a time span
from 2001 until 2012. The MIMIC-IV (Johnson
et al., 2020) dataset can be understood as the suc-
cessor to MIMIC-III and contains MIMIC-III data
from 2008 to 2012 as well as new data collected
from 2013 to 2019. Furthermore, in addition to ICU
data (66,239 stays with 50,920 unique patients), it
also contains data from the BIDMC emergency de-
partment (431,231 stays with 180,733 unique pa-
tients).

3.1. Extraction of Admission Notes
Following van Aken et al. (2021) we adapt the ex-
traction methodology and extract the following sec-
tions from the discharge summaries in MIMIC-IV:
Chief Complaint, Present Illness, Medical History,

Admission Medications, Allergies, Physical exam,
Family History and Social History. In contrast to
MIMIC-III, the section Social History is often not
present in MIMIC-IV. We provide an example of an
admission note, modified for anonymity reasons in
Figure 1.

3.2. Matching

MIMIC-IV contains parts of MIMIC-III due to the
overlap during the years 2008-2012. To establish
comparability with the outcome prediction dataset
by van Aken et al. (2021), it is necessary to ex-
clude any document from the MIMIC-III training
dataset split in our MIMIC-IV test dataset splits.
Therefore, we need to identify the respective docu-
ments from MIMIC-III in MIMIC-IV. However, iden-
tifying the content of MIMIC-III in MIMIC-IV is not
trivial. First, all the unique identifiers, e.g. of pa-
tients and admissions, have been re-generated so
that no direct match is possible, and it is unknown
whether the entire ICU subset from that timeframe
is part of MIMIC-III or not. Second, MIMIC-IV
changed the de-identification process. Instead
of replacing HIPAA (Health Insurance Portability
and Accountability Act) defined data by random
identifiers, all discriminating data is replaced with
three underscores. Furthermore, MIMIC-IV only
contains information about the year of a patients’
admission instead of the day, week and season
identifiers present in MIMIC-III. Patients are now
grouped by a so-called anchor-year-group (e.g.
2011-2013) that indicates when the patients’ first
admission took place. MIMIC-IV contains four an-
chor year groups in total: 2008-2010, 2011-2013,
2014-2016 and 2017-2019. Because the data col-
lection for MIMIC-III stopped in 2012, there can-
not be any MIMIC-III admission in the anchor-year-
groups after 2013. In consequence, we focus
on the groups 2008-2010 and 2011-2013 which
must contain admissions from MIMIC-III. However,
this data also includes all patients and admis-
sions from 2013, not present in MIMIC-III. Further-
more, Johnson et al. (2022) provide a dataset split
called ”MIMIC-III Clinical Database CareVue sub-
set” based on MIMIC-III that is guaranteed to be
not part of MIMIC-IV and mostly consists of docu-
ments from before 2008. It uses the same unique
identifiers as MIMIC-III. By removing every docu-
ment from MIMIC-III that is also part of CareVue,
we can reduce the number of false positives result-
ing from our matching approaches. The resulting
difference contains 23,294 patients and 32,140 ad-
mission notes. We use the following two matching
approaches to identify those remaining MIMIC-III
admission notes in MIMIC-IV:
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Matching by Earliest Possible Year Patients
are assigned an anchor-year-group according to
their first admission. In addition, a patient receives
an anchor year with added noise. Each admis-
sion of a patient has a discharge time feature that
is based upon the anchor year. First, we identify
patients in the first two anchor-year groups (2008-
2010 and 2011-2013) and filter the admissions.
We subtract the difference between the anchor
year and the minimum of the anchor-year-group
from the year of discharge of an admission. This
enables us to filter out all admissions from before
2013. We refer to this matching approach in the
following as EPY .

Feature-Based Matching by Length-Of-Stay, Di-
agnoses and Procedures To increase the fil-
tering precision, we match admissions that share
the following features: Diagnoses, procedures and
length-of-stay. We define the length-of-stay to be
the difference between the discharge and admis-
sion time of a patient stay. Furthermore, we match
by using the respective timestamp of the admis-
sion, but only use the hour, minutes and seconds
as they are kept the same as in MIMIC-III. Year,
month and day features are obscured in MIMIC-IV.
We consider an admission to be part of MIMIC-III if
all the mentioned features match. In the following,
we refer to this matching approach as FBM .

Matching Quality Estimation To guarantee the
precision of our chosen matching methods to iden-
tify matching admission notes in MIMIC-III and
MIMIC-IV, we perform a range of validation exper-
iments. In a quantitative evaluation, we choose
random text sequences from the discharge notes
of two matching admissions and evaluate whether
we can find overlaps between the two. We find that
feature-based matching of the admission does not
contain false positive matches. Matching by ear-
liest possible year EPY overlaps mostly with the
feature-based matching FBM but contains many
false positives. Further, we perform a qualitative
evaluation by analyzing random examples from
matched admission notes. We find that the set
EPY \FBM contains different admission- and dis-
charge timestamps for the matched admissions.
We consider those admissions a false positive
match. FBM\EPY shows us that MIMIC-IV con-
tains around 3,000 patients which are not in the
ICU module but part of MIMIC-III. We also find
128 documents that are not matched via the EPY
matching. Finally, we find 60 examples in the set
of MIMIC-III\MIMIC-III(CareV ue∩EPY ∩FBM). Five
examples of this set did not have discharge sum-
maries, and 55 could not be matched. We con-
clude that the combination of our chosen match-
ing methods provides sufficient precision that we

can say that, up to our knowledge, there are no
false positive matches resulting from our matching
approaches. Using our matching we can identify
99.37% of the remaining subset in MIMIC-IV.

3.3. Dataset Splits
In order to evaluate data drift, we create six differ-
ent splits out of MIMIC-IV that we use for evalua-
tion, presented in Table 1. III− test is the original
test split of van Aken et al. (2021) which serves
as a baseline. IVIII−test contains all the data
from MIMIC-IV that we identified using our match-
ing algorithm to be also present in the III − test
dataset split. This split allows us to compare the
effects of the new de-identification scheme used
in MIMIC-IV. IVHOSP contains all the admissions
from the emergency department / hospital module
in MIMIC-IV. It excludes all ICU admissions. This
split enables us to evaluate whether models are ca-
pable to generalize from seen ICU data to another
clinical domain. Analoguesly, the emergency de-
partment split, IVICU uses only the ICU data. This
dataset also contains parts of the MIMIC-III train-
ing data that we use for training. Finally, IVICU\III
consists of all admissions that are not present in
MIMIC-III. Therefore, it can be used to measure
the data drift from 2001-2012 to the new data in
MIMIC-IV from 2013-2019.

3.4. General Equivalency Mappings
Share of ICD-9 and ICD-10 Codes in MIMIC-IV
MIMIC-IV contains data from 2008 until 2019. ICD-
10 was introduced in 2012. In consequence, we
find examples annotated with both ICD-9 and doc-
uments annotated with ICD-10 in MIMIC-IV. The
dataset contains 58.2% ICD-9 diagnosis codes,
and 66.7% ICD-9 procedures codes. The remain-
ing codes are annotated in ICD-10 format. In order
to enable comparable results, we establish a com-
mon label space. The available GEMs allow us to
convert either from ICD-9 to ICD-10 or vice versa.
As ICD-9 does not directly map to ICD-10 and ICD-
10 is more fine-granular, the GEMs define four dif-
ferent match types: ”NO MAP”, ”IDENTICAL”, ”AP-
PROXIMATE” and ”COMBINATION”. ”NO MAP”
and ”IDENTICAL” represent that there is no map-
ping between both codes, or that there exists a di-
rect one-to-one mapping. ”COMBINATION” often
can be resolved automatically, as it means that a
certain combination of codes lead to either a dif-
ferent combination of codes or a single code. The
same applies for ”APPROXIMATE” which means
that often there is a one-to-one mapping that fails
to be an identical match due to less specificity
in the target system. However, COMBINATION
and APPROXIMATE can also lead to non auto-
matically resolvable mappings that require addi-
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Dataset øDiag./Adm. øProc./Adm. øLength-of-Stay øMortality

III − train 11.17 4.16 10.14 days 10.41%
III − test 11.27 4.10 10.00 days 10.44%

IVIII−test 13.24 3.73 8.99 days 9.07%
IVHOSP 10.68 2.17 4.60 days 0.72%
IVICU 14.73 3.23 3.12 days 9.39%
IVICU\III 15.85 3.05 3.20 days 9.60%
IVICU9\III 15.59 2.93 3.29 days -
IVICU10\III 16.48 3.32 2.98 days -

Table 1: Overview of the dataset statistics from MIMIC-III and different splits we choose to generate
from the MIMIC-IV dataset. This table shows the average number of diagnoses and procedures per
admission and the average length of stay in days as well as the average mortality of an admitted patient.
III indicates that this split was derived from MIMIC-III, IV that it is based on MIMIC-IV.
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Figure 2: Relative frequencies of each GEM type
per GEM table. Automatically non-resolvable
types are marked with stripes. The number in
square brackets indicates the number of digits per
ICD code after grouping. CM refers to diagnosis,
PCS to procedure codes.

tional expert knowledge to be resolved. We refer to
those non-resolvable types in the following as ”AP-
PROXIMATE ALTERNATIVES”, ”COMBINATION
ALTERNATIVES” and ”MULTIPLE SCENARIOS”.
”MULTIPLE SCENARIOS” refers to one or multiple
codes that can be mapped in two or more different
ways into the other system.

Application of GEMs - Translation Direction
As mentioned in Section 2, the ICD-10 system
is much more specific and contains almost five
times as many diagnosis codes and 20 times

as many procedure codes in comparison to ICD-
9. In Figure 2 we show that it is harder to
map from ICD-9 to ICD-10, especially regarding
procedure codes. We find, that mapping from
ICD-9 to ICD-10 leads to more cases of ”AP-
PROXIMATE ALTERNATIVES”, ”COMBINATION
ALTERNATIVES” and ”MULTIPLE SCENARIOS”
which are not automatically resolvable. This con-
firms our initial hypothesis that mapping to a more
specialized system is harder than the other way
around. Mapping from ICD-10 to ICD-9 results
in fewer non-resolvable codes, but involves losing
some of the specialized and detailed codes from
the more recent ICD-10 system. This works both
for the procedure codes as well as the diagnosis
codes. Therefore, we decide to translate all codes
in our experiments from ICD-10 to ICD-9 and eval-
uate only using the ICD-9 system.

Improving Translation by Code Grouping In
Figure 3 we show that 80.5% of the admissions
contain at least one diagnosis code and 80.2% at
least one procedure code that is not mappable to
the respective other system. The ICD system is
built hierarchically. This allows us to reduce the
complexity of each code following the approach of
van Aken et al. (2021). We group the ICD codes
by using only their first three digits. In conse-
quence, this increases the number of resolvable
codes. This also leads to a denser label space,
and the remaining three digits of each code still
contain meaningful and helpful clinical information.
In Figure 2, we illustrate the impact of grouping to
four and three digits, denoted by [4] and [3]. We
find that reducing the precision to three digits leads
to a large decrease of non-resolvable codes.

Investigation of Remaining Non-Resolvable
Codes We further investigate which codes still
remain non-resolvable after code grouping. We
observe that the occurrence of not resolvable
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Figure 3: Relative frequencies of MIMIC-IV admis-
sions with non-resolvable codes. 81.2 % contain
at least one non-resolvable code in their diagnosis,
74% in their annotated procedures. ICD-9 in red,
ICD-10 in blue

codes follows a power law distribution. The
top five most occurring not resolvable diagnosis
codes are responsible for 62.14% of not resolvable
cases. An example for this is the ICD-10 code
F32.9 Major depressive affective disorder, single
episode, unspecified, that can either be translated
to 296.20 Major depressive affective disorder, sin-
gle episode, unspecified or 311 Depressive disor-
der, not elsewhere classified. We find that almost
all of the identified codes are part of the APPROXI-
MATE ALTERNATIVES category in the GEM map-
ping.

4. Experiments

We evaluate the effect of data drift on models
trained on MIMIC-III using the evaluation datasets
defined in Subsection 3.3. We follow van Aken
et al. (2021) and evaluate state-of-the-art models
on the set of clinical outcome prediction tasks. The
tasks have been identified from doctors as a mean-
ingful evaluation in the clinical setting. The set of
clinical outcome prediction tasks consists of the fol-
lowing tasks:

Diagnosis and Procedures Prediction The
task is to predict the resulting diagnoses or proce-
dures at discharge time, given a patients’ admis-
sion note. We use the grouped first three digits
of the annotated codes. This task is a multi-label
classification task.

Diagnosis+ and Procedure+ In addition to the
procedure and diagnosis code prediction tasks, we
add the four-digit codes and a bag of words rep-
resentation of each codes’ name to the label set.
This enables a more precise prediction, as the
model can predict either the three digit, four-digit or
the bag of words variant of a code. We call this task
setting in the following section ICD+, analogue to
the implementation of van Aken et al. (2021).

Length-Of-Stay The task is to predict the dura-
tion of a patients’ stay, given his admission note.

To ease the usage of classification models, the
length-of-stay is grouped into four categories: less
than 3 days, 3 to 7 days, 7 to 14 days and more
than 14 days. These four groups were recom-
mended by medical professionals.

In-Hospital Mortality Prediction The task is to
predict whether a patient deceases during his hos-
pital stay, given his admission note.

4.1. Models
We evaluate the following models on the task, as
they have shown good performance on the out-
come prediction tasks on MIMIC-III data and be-
cause the models and training code are publicly
available. We use the original CORe (Clinical Out-
come Representations) model (van Aken et al.,
2021), PubMedBERT (Gu et al., 2021) and the Pro-
toPatient (van Aken et al., 2022) model.

CORe The CORe model 4 is a BioBERT-based
model (Lee et al., 2020) that was further pre-
trained on admission notes from MIMIC-III and clin-
ical cases from PubMed using a masked-language
modeling task. In addition, it was trained on a
task similar to next-sentence prediction, where the
model has to predict whether two text sequences
are part of the same patient note.

PubMedBERT For comparison, we evaluate our
tasks on PubMedBERT (Gu et al., 2021), which
was pre-trained on 14 million abstracts from
PubMed. Unlike other models like BioBERT (Lee
et al., 2020), Gu et al. (2021) also pre-trained the
tokenizer, thereby enhancing the representation
for domain-specific words by preserving them from
being broken down into single word pieces. Hence,
PubMedBERT generally exhibits superior perfor-
mance compared to BioBERT. We opted against
utilizing Clinical BERT (Alsentzer et al., 2019) due
to its pre-training on text sourced from MIMIC-III, a
factor that could potentially confer the model with
an unjustified advantage.

ProtoPatient In addition to CORe, van Aken
et al. (2022) propose a neural network architecture
based on prototypical part networks (Chen et al.,
2019) and Transformer-based language models.
The ProtoPatient model uses label-wise attention
to learn one prototype- and attention vector for
each diagnosis. A patient’s note is mapped to
multiple prototype vectors. The combination of at-
tention and prototype vectors enhances the inter-
pretability of the classification. Each prototype vec-
tor linked to a diagnosis label highlights a short,

4https://huggingface.co/bvanaken/
CORe-clinical-outcome-biobert-v1

https://huggingface.co/bvanaken/CORe-clinical-outcome-biobert-v1
https://huggingface.co/bvanaken/CORe-clinical-outcome-biobert-v1
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coherent text sequence from the admission note.
ProtoPatient shows state-of-the-art performance
on the diagnosis classification task.

4.2. Experimental Setup
We fine-tune all models on the original MIMIC-III
training split from van Aken et al. (2021) on the orig-
inal ICD-9 labels. For all evaluation splits, we re-
move all admission notes where one or more ICD
codes are not automatically resolvable using the
code matching described in Section 3.4 and eval-
uate only on ICD-9 codes. For the CORe model
and PubMedBERT we perform a hyperparameter
optimization on the same of dataset splits defined
by van Aken et al. (2021). We tune the learning
rate from 5e − 6 to 1e − 4, warm up steps from
30 to 5000, gradient accumulation steps from 1 to
20, dropout from 0.1 to 0.3 and optimized for maxi-
mization of AUROC. For ProtoPatient, we used the
hyperparameters proposed by the authors, as they
led to reproducible scores from the paper. The Pro-
toPatient model enhances interpretability on es-
pecially many-label classification tasks because it
performs the classification on a per-token basis.
Therefore, we decided against the evaluation of
this model on the mortality and length-of-stay pre-
diction tasks. Furthermore, we only perform more
detailed experiments using the CORe model, as it
showed similar performance to PubMedBERT. For
CORe and ProtoPatient we use the original imple-
mentations by van Aken et al. (2021, 2022).

5. Results

Diagnosis and Procedure Task Results Table
2 shows the performance of the chosen models,
trained on MIMIC-III, on the respective split of
MIMIC-IV and MIMIC-III. A lower relative perfor-
mance compared to the MIMIC-III test split can
be attributed to data drift. We observe that as
expected the models do not generalize well from
ICU training data to the provided emergency de-
partment data in IVHOSP . This applies to pro-
cedures as well as the diagnosis code prediction
task. For the ICD+ variants, we observe a larger
relative performance in comparison to their 3-digit
counterparts for all models. PubMedBERT bene-
fits from the added information on the ICD+ proce-
dures task. CORe and PubMedBERT both show
reduced performance on the diagnoses ICD+ task.
We observe that PubMedBERT performs slightly
worse than the CORe model but follows similar per-
formance trends regarding the performance on the
MIMIC-IV splits.

Performance Impact on ProtoPatient We find
that especially the ProtoPatient model does not

generalize well on the MIMIC-IV diagnosis task in
comparison to the CORe model. This applies to
all subsets and results in an average of -8.62 p.p.
(percentage points) of AUROC in comparison to
MIMIC-III. From the scores we cannot account this
problem to data drift alone as the performance is
also worse on the IVIII−test split from MIMIC-IV.
This means that the new de-identification scheme
that has been applied on the MIMIC-IV data is
partially responsible for the worse performance of
the ProtoPatient model. We hypothesize that the
model learns to focus more on very specific key-
words and thus overfits on the de-identification
schema from MIMIC-III. However, in contrast to
the diagnosis task, we observe that the ProtoPa-
tient model still performs well on the procedure
code prediction task. Note, that IVIII−test splits
for the diagnosis and procedure tasks do not fully
contain all admission notes from the original III
test split due to our matching approach, neither
any note from before 2008.

5.1. Impact of GEMs
To assess the effect of using GEMs for translating
ICD-10 annotated patient notes to ICD-9, we com-
pare the performance on notes originally coded
with ICD-9 and those annotated solely with ICD-
10 codes. From the resulting scores in Table 3, we
deduce that applying the GEMs has a negative ef-
fect on the prediction performance of ProtoPatient
on the procedure predictions. CORe, on the other
hand, seems to handle the introduced data drift
from newer coding standards better. It remains to
note that the absolute performance numbers are
not comparable due to different label spaces and
number of examples in each split. For the diagno-
sis code prediction, we notice almost no difference
in prediction performance.

5.2. Mortality Prediction - Data Drift on
Emergency Department Data

We observe in Table 2 that the CORe model,
trained on MIMIC-III at first sight, performs well
on the mortality prediction task and also seems
to generalize on emergency department data
(IVHOSP ). However, on closer inspection, using
Precision, Recall and F1 we observe in Table 4
that the model fails to predict the minority class and
only performs well on the majority class. As ICU
patients are 5.5 times more likely to decease dur-
ing their stay, the model favors the prediction of a
patients’ death, resulting in a low precision score.

5.3. Length-of-stay
Applying MIMIC-III trained models on the length-
of-stay task on MIMIC-IV data, we observe that
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Model Task III IVIII−test IVHOSP IVICU IVICU\III

ProtoPatient ProtoPatientdiag 86.09 79.43−6.66 76.30−9.79 77.95−8.15 76.21−9.88
ProtoPatientproc 87.97 88.99+1.02 86.15−1.82 88.29+0.32 87.19−0.78

CORe

Diagnoses 83.05 81.06−1.99 79.38−3.67 83.14+0.09 79.32−3.73
Diagnoses ICD+ 83.21 81.20−2.01 78.26−4.95 81.69−1.51 78.48−4.73
Procedures 87.68 88.75+1.07 85.38−2.30 88.40+0.71 87.63−0.05
Procedures ICD+ 88.08 88.66+0.58 85.25−2.83 88.90+0.82 87.19−0.89

Length-of-Stay 72.10 71.69−0.41 59.57−12.53 71.38−0.72 69.69−2.42
In-Hospital Mortality 83.10 82.84−0.26 84.83+1.73 84.29+1.19 82.81−0.29

PubMedBERT

Diagnoses 83.61 81.56−2.05 79.80−3.81 80.76−2.85 82.61−1.00

Diagnoses ICD+ 80.96 79.80−1.16 77.67−3.29 78.81−2.15 80.98+0.02

Procedures 83.68 85.07+1.39 83.13−0.55 84.63+0.95 86.39+2.71

Procedures ICD+ 87.90 88.92+1.02 85.62−2.28 86.93−0.97 88.70−0.80

Length-of-Stay 70.25 70.98+0.73 58.98−11.27 70.18−0.07 69.16−1.09

In-Hospital Mortality 82.45 82.37−0.08 84.67+2.22 86.21+3.76 84.21+1.76

Table 2: Evaluation results in macro averaged AUROC. We also present the performance difference
compared to the performance on the original III test dataset. ProtoPatient does not generalize to MIMIC-
IV data for diagnosis code prediction but manages to generalize well for procedure code prediction.

Model Task IVICU9\III IVICU10→9\III

ProtoPatient Diag. 77.07 77.01
Proc. 89.62 85.88

CORe

Diag. 79.38 79.74
Diag+ 78.26 78.88
Proc. 85.38 87.08
Proc+ 85.25 86.60

Table 3: Comparison between the performance on
the subset of admissions that use ICD-9 codes and
the subset of admissions that use ICD-10 codes.
For the ICD-10 subset, the codes are translated to
ICD-9. Diagnosis prediction remains unaffected by
the change of the coding system. Procedure code
prediction performs worse for the CORe model on
original ICD-9 codes and slightly worse for ICD-10
codes.

Alive Deceased
Prec. Rec. Prec. Rec. F1

III 93.61 90.87 37.36 46.73 66.87
IVICU\III 93.42 95.22 45.00 36.84 67.41
IVHOSP 99.49 96.80 6.67 31.55 54.57

Table 4: Recall, Precision and F1 performance of
the CORe model on the mortality prediction task.
On closer inspection, the model fails to generalize
from ICU data to emergency department hospital
data.

the performance is similar to the MIMIC-III per-
formance for the ICU data regarding the mea-
sured macro AUROC in Table 2. However, the
performance drops drastically on the emergency

F1
<= 3. > 3 <= 7. > 7 <= 14 > 14

III 41.98 46.62 38.57 37.60
IVICU\III 43.48 39.79 31.58 33.26
IVHOSP 53.58 28.00 19.37 15.90

Table 5: Class-wise F1 of the CORe model on the
length-of-stay task. The model does not seem to
generalize on the emergency department data.

department data (IVHOSP ). This behavior is ex-
pected because the length-of-stay of a patient in
the MIMIC-III training dataset is around twice as
long (s. Table 1), thus the training distribution dras-
tically differs from the test data distribution. We
also measure the F1 score for each class on the
III, IVICU\III and IVHOSP splits in Table 5. We
observe that even though the IVHOSP split fol-
lows a different distribution with on average shorter
stays than patients in MIMIC-III (III), the mod-
els perform surprisingly good at identifying shorter
stays. For longer stays, however, the performance
decreases drastically, with a trend that especially
long stays are very unlikely to be predicted. Fur-
thermore, it is noticeable that the average length-
of-stay in the newer MIMIC-IV ICU admissions
(IVICU\III ) is shorter than in MIMIC-III, which also
explains the reduced performance on the ICU test
split.

6. Discussion and Findings

GEMs Negligibly Impact Performance We
conclude from our observations in Section 5 that
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applying GEMs to automatically map from ICD-10
to ICD-9 does not have a large negative effect on
the models’ prediction performance in the clinical
outcome prediction tasks.

Data Drift Does Not Drastically Affect Diag-
nosis and Procedure Prediction Performance.
In contrast to Yang et al. (2022) we could not ob-
serve that our selected models suffer from drasti-
cally decreased performance due to data drift with
the exception for the ProtoPatient model on the
diagnosis classification task. According to Yang
et al. (2022), the switch from ICD-9 to ICD-10 and
changes in how microbiology samples are taken
were the main reasons for performance drop. We
suggest that compared to time-series data, it is
easier to link clinical features with the text they are
associated with in clinical notes. Similarly, the fea-
tures linked to certain diagnosis codes, even with
changes in coding standards over time, tend to
stay more consistent. We hypothesize that the new
de-identification scheme in MIMIC-IV has a bigger
effect on how well the models perform in the evalu-
ations compared to other changes. This indicates
that Transformer-based language models trained
on MIMIC-III are able to generalize well on MIMIC-
IV for the diagnosis and procedure prediction tasks
from the outcome prediction benchmark.

Decreased Performance on Emergency Depart-
ment Data (IVHOSP ) As expected, we find that
models trained on MIMIC-III ICU data perform sig-
nificantly worse on the new emergency depart-
ment data from MIMIC-IV (IVHOSP ). Especially for
the length-of-stay and mortality prediction tasks,
we see decreased performance. Surprisingly, the
performance impact on the ICD code classification
tasks is lower than expected for CORe and Pub-
MedBERT, with -2.58 p.p. macro AUROC on aver-
age.

ProtoPatient Suffers More from Data Drift In
contrast to the pure Transformer-based language
models CORe and PubMedBERT, we observe a
drastically lower performance on the MIMIC-IV di-
agnosis prediction task for the ProtoPatient model.
We find that the de-identification scheme has a
large negative impact on the models’ performance.
This implies that the model hyper-focuses on spe-
cific keywords from MIMIC-III, lowering the perfor-
mance on unseen and structurally slightly different
data.

7. Conclusion

In this work, we present the new clinical out-
come prediction dataset based on MIMIC-IV that is
backwards compatible and thus comparable with

MIMIC-III. We also use GEMs to map the label
space to ICD-9. We show the effect of data drift
on language models trained on outcome predic-
tion tasks like diagnosis-, procedure-, length-of-
stay and mortality prediction. We provide empirical
evidence that Transformer-based language mod-
els trained on MIMIC-III are capable of general-
izing to unseen admission notes in MIMIC-IV. Fi-
nally, this work should allow researchers to probe
the performance of models fine-tunined on MIMIC-
III data on MIMIC-IV without any effect of data
poisoning in the test split. For future work, we
suggest considering to refine the mapping of re-
maining complex not automatically resolvable ICD
codes to enhance the datasets quality and to in-
crease the dataset size. Furthermore, we encour-
age the work on applying language models on the
outcome prediction task, especially interpretable
models that can help doctors build an intuition for
the models’ prediction.

8. Ethical Considerations

Using transformer-based language models to pre-
dict patient outcomes from clinical text can be help-
ful for clinicians and medical professionals. How-
ever, it is important to recognize that these text-
based models might introduce biases from their
training and fine-tuning, thus they shouldn not be
blindly trusted. Moreover, the incorporation of
billing codes, such as ICD-9 and ICD-10, within
datasets like MIMIC-III and MIMIC-IV, inherently
introduces biases. Therefore, these codes should
be approached with careful consideration as an op-
timal label space. Of particular concern is the in-
clusion of both ICD-9 and ICD-10 codes in MIMIC-
IV, which amplifies the risk of introducing further bi-
ases due to the necessity of mapping between the
two systems. This work underscores the persis-
tent challenge of noisy mappings between these
systems, which can alter the clinical context and
significance of certain annotated codes. It is cru-
cial to note that predicting patient outcomes solely
based on clinical text, especially in the absence of
supplementary data, poses inherent challenges.

9. Acknowledgements

This work was founded by the German Federal
Ministry of Education and Research (BMBF) un-
der grant agreements 01IS23013C (More-with-
Less), as well as the grant agreement 01IS23015C
(SCM) and the grant agreement 16SV8857 (KIP-
SDM).

10. Bibliographical References



4390

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available
clinical BERT embeddings. In Proceedings
of the 2nd Clinical Natural Language Process-
ing Workshop, pages 72–78, Minneapolis, Min-
nesota, USA. Association for Computational Lin-
guistics.

Brian Belgodere, Pierre Dognin, Adam Ivankay,
Igor Melnyk, Youssef Mroueh, Aleksandra Mo-
jsilovic, Jiri Navartil, Apoorva Nitsure, Inkit
Padhi, Mattia Rigotti, et al. 2023. Auditing and
generating synthetic data with controllable trust
trade-offs. arXiv preprint arXiv:2304.10819.

Alban Bornet, Dimitrios Proios, Anthony Yazdani,
Fernando Jaume-Santero, Guy Haller, Edward
Choi, and Douglas Teodoro. 2023. Compar-
ing neural language models for medical concept
representation and patient trajectory prediction.
medRxiv, pages 2023–06.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett,
Cynthia Rudin, and Jonathan K Su. 2019. This
looks like that: deep learning for interpretable im-
age recognition. Advances in neural information
processing systems, 32.

Joakim Edin, Alexander Junge, Jakob D Havtorn,
Lasse Borgholt, Maria Maistro, Tuukka Ruot-
salo, and Lars Maaløe. 2023. Automated med-
ical coding on mimic-iii and mimic-iv: A critical
review and replicability study. arXiv preprint
arXiv:2304.10909.

Paul Grundmann, Tom Oberhauser, Felix Gers,
and Alexander Löser. 2022. Attention networks
for augmenting clinical text with support sets for
diagnosis prediction. In Proceedings of the 29th
International Conference on Computational Lin-
guistics, pages 4765–4775, Gyeongju, Republic
of Korea. International Committee on Computa-
tional Linguistics.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Nau-
mann, Jianfeng Gao, and Hoifung Poon. 2021.
Domain-specific language model pretraining for
biomedical natural language processing. ACM
Trans. Comput. Healthcare, 3(1).

Shaoxiong Ji and Pekka Marttinen. 2021. Patient
outcome and zero-shot diagnosis prediction with
hypernetwork-guided multitask learning. arXiv
preprint arXiv:2109.03062.

Alistair Johnson, Tom Pollard, and Roger Mark.
2022. Mimic-iii clinical database carevue sub-
set.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinform., 36(4):1234–
1240.

James Mullenbach, Sarah Wiegreffe, Jon Duke,
Jimeng Sun, and Jacob Eisenstein. 2018. Ex-
plainable prediction of medical codes from clini-
cal text. In Proceedings of the 2018 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers),
pages 1101–1111, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Aakanksha Naik, Sravanthi Parasa, Sergey Feld-
man, Lucy Wang, and Tom Hope. 2022.
Literature-augmented clinical outcome predic-
tion. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 438–
453.

Mitchell Naylor, Christi French, Samantha Terker,
and Uday Kamath. 2021. Quantifying ex-
plainability in nlp and analyzing algorithms
for performance-explainability tradeoff. arXiv
preprint arXiv:2107.05693.

Jens-Michalis Papaioannou, Paul Grundmann,
Betty van Aken, Athanasios Samaras, Ilias Ky-
parissidis, George Giannakoulas, Felix Gers,
and Alexander Loeser. 2022. Cross-lingual
knowledge transfer for clinical phenotyping. In
Proceedings of the Thirteenth Language Re-
sources and Evaluation Conference, pages
900–909, Marseille, France. European Lan-
guage Resources Association.

Thomas Searle, Zina M. Ibrahim, and Richard J. B.
Dobson. 2020. Experimental evaluation and de-
velopment of a silver-standard for the MIMIC-III
clinical coding dataset. In Proceedings of the
19th SIGBioMed Workshop on Biomedical Lan-
guage Processing, BioNLP 2020, Online, July
9, 2020, pages 76–85. Association for Compu-
tational Linguistics.

Niall Taylor, Yi Zhang, Dan W Joyce, Ziming Gao,
Andrey Kormilitzin, and Alejo Nevado-Holgado.
2023. Clinical prompt learning with frozen lan-
guage models. IEEE Transactions on Neural
Networks and Learning Systems.

Betty van Aken, Jens-Michalis Papaioannou,
Manuel Mayrdorfer, Klemens Budde, Felix Gers,
and Alexander Loeser. 2021. Clinical out-
come prediction from admission notes using

https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://aclanthology.org/2022.coling-1.422
https://aclanthology.org/2022.coling-1.422
https://aclanthology.org/2022.coling-1.422
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.13026/8A4Q-W170
https://doi.org/10.13026/8A4Q-W170
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/N18-1100
https://aclanthology.org/2022.lrec-1.95
https://aclanthology.org/2022.lrec-1.95
https://doi.org/10.18653/v1/2020.bionlp-1.8
https://doi.org/10.18653/v1/2020.bionlp-1.8
https://doi.org/10.18653/v1/2020.bionlp-1.8
https://doi.org/10.18653/v1/2021.eacl-main.75
https://doi.org/10.18653/v1/2021.eacl-main.75


4391

self-supervised knowledge integration. In Pro-
ceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 881–
893, Online. Association for Computational Lin-
guistics.

Betty van Aken, Jens-Michalis Papaioannou, Mar-
cel Naik, Georgios Eleftheriadis, Wolfgang Ne-
jdl, Felix Gers, and Alexander Loeser. 2022.
This patient looks like that patient: Prototypical
networks for interpretable diagnosis prediction
from clinical text. In Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and
the 12th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Pa-
pers), pages 172–184, Online only. Association
for Computational Linguistics.

Benjamin Winter, Alexei Figueroa Rosero, Alexan-
der Löser, Felix Alexander Gers, and Amy Siu.
2022. KIMERA: Injecting domain knowledge
into vacant transformer heads. In Proceedings
of the Thirteenth Language Resources and Eval-
uation Conference, pages 363–373, Marseille,
France. European Language Resources Asso-
ciation.

Janice Yang, Ludvig Karstens, Casey Ross, and
Adam Yala. 2022. AI gone astray: Technical sup-
plement. CoRR, abs/2203.16452.

11. Language Resource References

Johnson, Alistair and Bulgarelli, Lucas and Pollard,
Tom and Horng, Steven and Celi, Leo Anthony
and Mark, Roger. 2020. MIMIC-IV. [link].

Johnson, Alistair EW and Pollard, Tom J and Shen,
Lu and Lehman, Li-wei H and Feng, Mengling
and Ghassemi, Mohammad and Moody, Ben-
jamin and Szolovits, Peter and Anthony Celi,
Leo and Mark, Roger G. 2016. MIMIC-III, a
freely accessible critical care database. Nature
Publishing Group. [link].

van Aken, Betty and Papaioannou, Jens-Michalis
and Mayrdorfer, Manuel and Budde, Klemens
and Gers, Felix and Loeser, Alexander. 2021.
Clinical Outcome Prediction from Admission
Notes using Self-Supervised Knowledge Inte-
gration. Association for Computational Linguis-
tics. [link].

https://doi.org/10.18653/v1/2021.eacl-main.75
https://aclanthology.org/2022.aacl-main.14
https://aclanthology.org/2022.aacl-main.14
https://aclanthology.org/2022.aacl-main.14
https://aclanthology.org/2022.lrec-1.38
https://aclanthology.org/2022.lrec-1.38
https://doi.org/10.48550/arXiv.2203.16452
https://doi.org/10.48550/arXiv.2203.16452
https://physionet.org/content/mimiciv/2.2/
https://physionet.org/content/mimiciii/1.4/
https://doi.org/10.18653/v1/2021.eacl-main.75

	Introduction
	Related Work
	Preparing the Dataset
	Extraction of Admission Notes
	Matching
	Dataset Splits
	General Equivalency Mappings

	Experiments
	Models
	Experimental Setup

	Results
	Impact of GEMs
	Mortality Prediction - Data Drift on Emergency Department Data
	Length-of-stay

	Discussion and Findings
	Conclusion
	Ethical Considerations
	Acknowledgements
	Bibliographical References
	Language Resource References

