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Abstract

Attention mechanisms play a crucial role in the neural revolution of Natural Language Processing (NLP). With
the growth of attention-based models, several pruning techniques have been developed to identify and exploit
sparseness, making these models more efficient. Most efforts focus on hard-coding attention patterns or pruning
attention weights based on training data. We propose Attention Pruning (AP), a framework that observes attention
patterns in a fixed dataset and generates a global sparseness mask. AP saves 90% of attention computation for
language modeling and about 50% for machine translation and GLUE tasks, maintaining result quality. Our method
reveals important distinctions between self- and cross-attention patterns, guiding future NLP research. Our framework
can reduce both latency and memory requirements for any attention-based model, aiding in the development of
improved models for existing or new NLP applications. We have demonstrated this with encoder and autoregres-
sive transformer models using Triton GPU kernels and make our code publicly available at https://github.com/irugina/AP

Keywords: attention mechanism, sparse computational graphs, lottery ticket hypothesis

1. Introduction

Given enough computational power, the scalabil-
ity of the attention mechanism (Bahdanau et al.,
2015; Hermann et al., 2015; Vaswani et al., 2017)
will allow for building ever larger Natural Language
Processing (NLP) models with billions of param-
eters (Shoeybi et al., 2019; Radford et al., 2019;
Raffel et al., 2020; Brown et al., 2020; Chowdhery
et al., 2022; Smith et al., 2022; Fedus et al., 2022;
Du et al., 2022; Anil et al., 2023).

While impressive, these advances also pose a
responsibility to the Natural Language Process-
ing (NLP) community to interpret the behavior of
the hundreds of attention heads in a single model,
and potentially to reduce the number of computa-
tions. Responding to this challenge, previous work
has taken pioneering steps to discover and to ex-
plain the sparseness in the attention patters (Vig
and Belinkov, 2019; Clark et al., 2019; Kovaleva
et al., 2019; Yeh et al., 2023; Ruscio et al., 2023;
Kobayashi et al., 2023; Biderman et al., 2023;
Zhang et al., 2023; Li et al., 2023). Here, we argue
that as the number of heads grows in the range of
thousands, automatic measures would be needed
to discover and to impose sparseness to such mod-
els.

In this paper we introduce a simple task-agnostic
data-informed pruning method for attention mech-
anisms: Attention Pruning. We train Transformer-
based models and we analyze the global ob-
served attention patterns, averaged over all input
sequences in the train set, in order to identify and
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Figure 1: Attention pruning maintains performance
and reduced attention computations. Pruning can
often enable more efficient and interpretable mod-
els with only a modest decrease in performance.

to remove weak connections between input tokens.
Following Frankle and Carbin (2019), we then re-

train these models, enforcing sparseness through
masking, and we demonstrate that attention mech-
anisms incorporate extraneous connections be-
tween the input tokens: we obtain comparable
performance while using sparse attention patterns
for NLP tasks such as language and sequence-
to-sequence (seq2seq) modelling, as well as pre-
diction on GLUE tasks. Figure 1 summarizes the
impact of using our pruning method on standard
NLP tasks.

These global sparseness patterns could help im-
prove both interpretability and inference-time com-
putational efficiency for widely-used attention mod-

https://github.com/irugina/AP
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els. Our contributions are as follows:

• We present a novel pruning method for atten-
tion patterns, focusing on the model’s com-
putational graph, not attention weights, and
showcase both theoretical and empirical gains.

• Our data-informed, global method prunes at-
tention while retaining information and closely
preserving original results.

• As an application-agnostic method, we in-
vestigate pruning impacts on language and
seq2seq modeling, including GLUE task pre-
dictions.

• In seq2seq experiments, we examine atten-
tion pruning in encoder self-attention, decoder
self-attention, and encoder–decoder attention,
highlighting key differences.

2. Related Work

There are several fruitful directions for research fo-
cused on improving the computational efficiency
and the interpretability of the attention mechanism.
Sparseness plays a central role in all of them,
as simple attention mechanisms inherently scale
quadratically with sequence length and assign non-
zero correlation between any two input tokens.

One line of research is that of reducing compu-
tational complexity of attention using insights pro-
vided by empirical observations of patterns. Child
et al. (2019) introduced two sparse matrix factoriza-
tions that reduce the computational complexity from
O(N2) to O(N

√
N). Kitaev et al. (2020) created a

sparse attention mechanism with O(N logN) com-
putational complexity, which is achieved by using lo-
cal sensitivity hashing to cluster tokens that should
attend to each other and then only computing at-
tention within tokens from the same chunks. More
directly related to our work is that of Beltagy et al.
(2020) and Zaheer et al. (2020) who looked directly
at sparsifying the attention patterns rather than at
the underlying matrix factorization, and reduced the
computational complexity of attention from O(N2)
to O(N) using GPU kernels (Gray et al., 2017). A
key difference between these approaches and ours
is that we do not impose any a priori restrictions on
the type of attention patterns we can generate.

Another successful approach has been to adapt
low-rank matrix approximation methods to sim-
plify attention computations. Xiong et al. (2021)
adapted Nyström’s method (Baker, 1979). Wang
et al. (2020) leveraged the Johnson–Lindenstrauss
lemma to introduce projections and to improve com-
plexity. In contrast to this line of work our contri-
bution is easier to implement because (i) we do
not require architectural modifications and we only
change a few lines of code in practice, and (ii) we

do not require optimizing the numerical stability of
any mathematical methods and we introduce very
few and simple hyper-parameters.

Correia et al. (2019) and Peters et al. (2019) ex-
plored directly incorporating sparseness into Trans-
former models through the choice of activation func-
tions and introduced the α-entmax functions. This
encompasses both softmax for α = 1 and sparse-
max (or projections onto the probability simplex) for
α = 2. For any α > 1 α-entmax is sparse. Peters
et al. (2019) provided an efficient implementation
and experimented with α = 1.5. We leverage global
attention masks, rather than creating a sparse at-
tention pattern for each key-value pair, and we man-
age both to provide quantifiable speed guarantees
and to achieve higher sparseness in practice.

There has been a lot of research on under-
standing over-parameterization and on developing
methods that make BERT models faster and more
lightweight (Ganesh et al., 2020). Previous work
has found that different attention heads encode
similar patterns and hence these heads are not al-
ways all necessary (Michel et al., 2019; Kovaleva
et al., 2019; Voita et al., 2019), and thus good per-
formance can be achieved by removing entire atten-
tion heads at test time. Sajjad et al. (2020) pruned
entire Transformer layers at a time and again ob-
tained good performance while removing a large
percentage of the model’s parameters. Our prun-
ing method takes a more fine-grained approach
and prunes individual connections rather than en-
tire heads or layers, and thus it could be used in
conjunction with the above-mentioned methods.

3. Attention Pruning

3.1. Scaled Dot-Product Attention
Attention mechanisms are used to learn connec-
tions (correlations) between two sequences of
lengths N and M , respectively.

Transformer models use the scaled dot-product
attention introduced in (Vaswani et al., 2017), which
takes as input three matrices: a matrix Q ∈ RM×dk

composed of query vectors q ∈ Rdk , a matrix
K ∈ RN×dk composed of key vectors k ∈ Rdk ,
and a third matrix V ∈ RN×dv , which groups value
vectors v ∈ Rdv .

The scaled dot-product outputs a transformation
of the sequence of lengthM governed by the values
associated with other sequence’s tokens, as well
as the relative strength of the connection between
any two tokens from the two sequences:

A = softmax

(
QK⊤
√
dk

)
V

The general sequence-to-sequence Transformer
model uses three types of attention layers: two self-
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attention mechanisms for the encoder and for the
decoder, respectively, as well as a third encoder–
decoder attention, which we will call cross-attention.
Additionally, each attention layer is a multi-headed
attention mechanisms that concatenates several
instances of the dot-product attention described
above.

3.2. Our Pruning Algorithm

Tailor attention to the dataset. The attention
mechanism (Vaswani et al., 2017) creates a ma-
trix with NM connections where N is the length
of a source sequence, i.e., its number of tokens,
and M is the length of the target sequence. In
practice, in order to compute high-level representa-
tions of sources and targets, a portion of these con-
nections is ignored by pre-trained models, which
could be observed with visualization tools on pre-
trained Transformer-based models (Vig and Be-
linkov, 2019; Clark et al., 2019; Kovaleva et al.,
2019). More specifically, there are entries in the at-
tention matrix whose values are close to zero with
high probability, and thus there is no correlation
between the corresponding tokens. We would like
to prune such connections, thus reducing the noise
coming from such entries.

For each possible tuple (type, l,m), where type
is either a self-attention encoder, a self-attention de-
coder or an encoder–decoder, l ∈ {1, . . . L} is the
layer in the Transformer, m ∈ {1, . . . H} is the index
of the head within the Transformer layer, we cal-
culate the corresponding average attention matrix
A

(type,l,m) from the corresponding attention matri-
ces A

(type,l,m)
i generated by source-target pairs in

the training set as follows:

A
(type,l,m)

=
1

n

n∑
i=1

A
(type,l,m)
i , (1)

where n is the size of the training set. The summa-
tion is element-wise.

We introduce a single additional hyper-parameter
p: the percentage of entries we want to prune in
each multi-head attention mechanism. We would
prune an entry in the attention matrix if almost all of
the source-target pairs in the training dataset are
below a threshold τ (type,l), given by the p percentile
of
[
A

(type,l,1)
, . . . ,A

(type,l,H)
]
. In other words, the

global percentage p defines a layer-dependent
pruning threshold τ (type,l), which corresponds to
the p percentile of all attention entries within that
layer, across all heads. The pruning mask Mp,
which depends on p, is computed as follows:

M(type,l,m)
p = (−∞) ·

r
A

(type,l,m)
< τ (type,l)

z
.1

(2)
We use the Iverson bracket notation, where the

comparison operation yields a matrix, whose en-
tries are 1 if the comparison is satisfied, and 0
otherwise (using broadcasting for the scalars).

The mask modifies the calculation of the attention
matrix as follows:

Ã
(t)
i,p = softmax

(
Q

(t)
i K

(t)⊤
i +M

(t)
p√

dk

)
V

(t)
i ,

where t = (type, l,m),Q
(type,l,m)
i ∈ RN×dk ,

K
(type,l,m)
i ∈ RM×dk , V(type,l,m)

i ∈ RN×d, dk and d
are hidden dimensions. Note that the only differ-
ence between Ã

(type,l,m)
i,p and A

(type,l,m)
i is that in

the calculation for the latter we replace M
(type,l,m)
p

with the zero matrix. Also, note that our pruning
mechanism only reduces the computational graph,
and does not affect the number of parameters of
the model.

An interpretation of inducing the mask Mp onto
our computational graph is that we constrain the in-
ductive bias of the attention mechanism by adding
the inductive bias of whether a pair of source–target
positions correlate, which we learn from the training
dataset by inspecting the outputs of a pre-trained
model. Observing whether a pair of positions cor-
relate in the training dataset would allow us to infer
a positional inductive bias from the dataset itself
that we can incorporate during training. Therefore,
we propose the following algorithm.

Attention Pruning (AP). Choose a model F with
attention matrices in its computational graph and
a percentage p for pruning. Then follow the steps
below:

1. Train the model F , initialized with weights θ,
on the training set D = {(xi, yi)}i=1,...,n via
validation on the Dvalid split to obtain optimized
weights θ∗ and then compute the accuracy (or
any other desired evaluation measure)

2. For each possible tuple (type, l,m), calculate
the average A

(type,l,m) from the attention ma-
trices

A
(type,l,m)
i ≡ A

(type,l,m)
i (xi;θ

∗)

for i = 1, . . . , N , i.e., generated by each train-
ing example in D, using equation 1.

1We implement this by adding a large negative value
before applying softmax; this value depends on the code-
base.



4395

p (%) Perplexity
0 24.157
20 24.157
40 24.214
60 24.566
80 25.115
90 26.011

Table 1: Attention Pruning for Transformer-XL-base
trained on WikiText-103 can sparsify 90% of its
attention patterns, while maintaining good perfor-
mance.

3. For each possible tuple (type, l,m), calcu-
late the mask M

(type,l,m)
p from A

(type,l,m) us-
ing equation 2, then obtain a new model F ′

from F by replacing the attention matrices with
Ã

(type,l,m)
i,p as in Section 3.

4. Train F ′ on D and compute the accuracy
aprunedtest,p on Dtest.

Our method is inspired by the Lottery Ticket Hy-
pothesis (Frankle and Carbin, 2019). However, ex-
cept from sharing Step 1, our AP method diverges
significantly from other methods inspired by the Lot-
tery Ticket Hypothesis, such as (Yu et al., 2020),
as we study sparseness not in the parameters of
the neural network, but in the attention patterns
of the model on a fixed dataset. Such a distinc-
tion is important, because while the sparseness
of the weight matrices is usually not interpretable,
the sparseness of the attention patterns is, as it
has been observed in the literature (Kovaleva et al.,
2019; Raganato et al., 2020; Beltagy et al., 2020).

Given our method and the above motivation we
now ask the following: (1) Can AP reveal a global
sparseness for attention patterns? (2) Can that
sparseness be deployed for efficient inference?
(3) Can AP yield an insight into the sparseness
properties of different attention types? We answer
positively all these questions in the following exper-
imental sections.

4. Language Modelling Experiments

We first test pruning attention matrices on the
WikiText-103 (Merity et al., 2017) language mod-
elling task. We use the Transformer-XL base archi-
tecture (Dai et al., 2019), which adds recurrence
to Transformer models by caching self-attention
hidden states between text segments.

We can see in Table 1 and Figure 1(a) that we
can prune over 80–90% of the attention entries and
still maintain good performance on language mod-
elling tasks. Figure 2 shows Transformer XL’s prune
masks, averaged over all its layers and heads,
when using p = 30% or p = 90%. We speculate that

Figure 2: Transformer-XL pruning masks (binary
valued) averaged over all layers and attention
heads for p ∈ {30%, 90%}. AP prunes entries in the
left half (attention to past sequences) more aggres-
sively than the conventional self-attention entries
in the right half. Note that the right half also has an
auto-regressive mask.

attention pruning performs so well here because
it enables Transformer-XL to pay attention to long
sequences only when the distant past is actually
relevant.

5. Machine Translation Experiments

We further test our method on encoder-decoder
Transformer models using various translation tasks
and the implementation by Ott et al. (2019).
In all experiments, we use half-precision float-
ing point (FP16).We run two sets of exper-
iments on the WMT17 English–German (en-
de) and the IWSLT14 German–English (de-
en) machine translation tasks following the de-
fault base Transformer architectures from Ott
et al. (2019) (transformer_iwslt_de_en and
transformer_wmt_en_de, respectively), and
we evaluate on the best model, measured by the
highest validation-split BLEU score in the case of
IWSLT14 de-en, and by the lowest validation loss
in the case of WMT17 en-de.

We prune all three types of attention —
self-attention-encoder, self-attention-decoder and
encoder-decoder—, and we run five experiments
per translation task, for p ∈ {20, 40, 50, 60, 80}, for
both IWSLT14 de-en and WMT17 en-de.

Table 2 summarizes the pruned models perfor-
mance for the two translation tasks. We can see
that AP performs significantly worse here than it
did for the language modeling task above. This
suggest that a finer-grained analysis on pruning
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p (%) 0 20 40 60 80
IWSLT14 34.94 32.08 24.16 14.18 5.00
WMT17 26.73 23.04 4.03 1.28 0.30

Table 2: BLEU scores results from the IWSLT14
de-en and WMT17 en-de translation tasks. We can
see that pruning all types of attention mechanism
leads to a fast drop in performance.

p (%) Self-Enc Self-Dec Cross
0 34.94
20 34.53 34.94 33.50
40 33.70 34.94 24.38
50 33.56 35.08 22.60
60 33.68 34.91 15.08
80 33.67 34.90 6.39

Table 3: Results on the IWSLT14 de-en translation
task when pruning each type of attention mecha-
nism. Pruning cross-attention connections sharply
hurts the model performance.

p (%) Self-Enc Self-Dec Cross
0 26.73
20 26.21 26.73 21.68
40 26.60 26.73 3.72
50 26.60 26.51 2.46
60 26.15 26.61 1.60
80 26.11 23.56 0.69

Table 4: Results obtained on the WMT17 en-de
translation task when pruning each type of attention
mechanism. Pruning up to 80% of encoder self-
attention connections results in a minimal drop of
model performance.

specific attention types, with which we proceed be-
low.

5.1. Attention Type Analysis
We now look at whether the three types of attention
mechanism require specialized pruning. In order
to isolate the effects of AP, we first prune only one
of the three types of attention mechanisms. The
results are summarized in Tables 3 and 4.

For both datasets, we clearly see the same trend:
the Transformer models are more sensitive to prun-
ing cross-attention patterns than to removing self-
attention, which is in line with what was reported
in previous work (You et al., 2020). Figures 3a
and 3c represent the average attention patterns
observed on the IWSLT14 de-en dataset for cross-
attention and the encoder’s self-attention mecha-
nism, respectively. A direct comparison between
the two suggests that cross-attention mechanisms

p (%) IWSLT14 de-en WMT17 en-de
0 34.94 26.73
20 34.92 26.21
40 33.70 26.60
50 33.68 26.19
60 33.64 26.44
80 33.81 21.88

Table 5: BLEU scores for both translation tasks
when pruning self-attention mechanisms. These
are more robust under AP, even when the en-
coder and the decoder attentions are simultane-
ously pruned.

are more brittle, which is in part because they ex-
hibit variable context windows. This makes sense
since in this case the queries and the keys are
generated from different sequences.

5.2. Pruning Self-Attention Only
We prune the two types of self-attention patterns
(self-attention-encoder and self-attention-decoder)
for p ∈ {20, 40, 50, 60, 80}. The results are shown
in Table 5.

In agreement with 5.1, we find that we can prune
large percentage of self-attention connections while
maintaining good BLEU scores. The average at-
tention patterns among all encoder self-attention
heads for IWSLT14 are shown in Figure 3c. We can
see that they are indeed sharper than in the case
of cross-attention, and we show that a fixed win-
dow encodes the relevant contextual information for
processing an input token. Moreover, we observe
that numerous attention heads encode very similar
patterns, in agreement with (Voita et al., 2019).

The results for WMT17 en-de (see Figure 1(b),
Table 5) are particularly encouraging. We can
prune over 60% of the self-attention entries, while
losing less than 1 BLEU point absolute. This sug-
gests that AP is particularly robust when used with
large datasets, possibly because we use summary
statistics.

6. Sparse Normalization

One disadvantage of our pruning method is that
we use a single pruning percentage p for all atten-
tion patterns within a Transformer layer. Translation
models are sequence-to-sequence models from a
source fragment of length M to a target fragment of
length N , where M and N are not invariant across
a dataset. Because of this, we either leave extra-
neous noisy connection between tokens in shorter
sequences or we lose important information when
modeling longer sequences.

This problem would be ameliorated if we
masked attention mechanisms according to pat-
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(a) (b) (c)

Figure 3: IWSLT14 de-en train dataset attention patterns: (a) cross-attention with variable context window,
(b) encoder self-attention with 1.5-entmax activation for sharper patterns, and (c) encoder self-attention
with constant context window.

p (%) BLEU score
Enc Dec Cross Enc+Dec

0 34.93
20 34.38 34.93 32.02 34.55
40 34.76 34.93 24.92 34.60
50 34.33 34.93 16.03 34.37
60 33.77 35.05 10.97 33.91
80 33.17 34.93 4.38 33.21

Table 6: Experiments on IWSLT14 de-en using
1.5-entmax. We can see that pruning self-attention
mechanisms maintains good performance at higher
sparseness percentages than those induced by
1.5-entmax alone. This is in agreement with the
trend observed in Section 5.1, where we saw that
pruning cross-attention patterns yields a sharp drop
in performance.

terns sharper than those produced by the softmax
activation function. Therefore, we turn to the α-
entmax activation, which was used in (Correia et al.,
2019) and (Peters et al., 2019), and which encour-
ages sparseness in the attention patterns. We re-
peated all IWSLT14 de-en experiments from Sec-
tion 5 using α = 1.5. Figure 3b shows the average
observed attention pattern among the encoder self-
attention heads in a model that uses 1.5-entmax
as its normalizing activation function. We can see
that they are indeed sharper than the analogous
ones, which we presented in Figure 3c.

Table 6 demonstrates how attention pruning
performs in conjunction with 1.5-entmax on the
IWSLT14 de-en translation task. We would like
to note that the behavior in 5.1 regarding cross-
attention’s lack of robustness to pruning is even
more pronounced now.

7. AP with BERT on GLUE

In order to analyze the sparseness of BERT
on GLUE tasks (Wang et al., 2019), we study
the vanilla BERT architecture bert-base-cased,
and we apply our AP method on top of it. We train
on the standard GLUE tasks with searched hyper-
parameters listed in Appendix B.

In Table 7 and Figure 1(c), we present the results
of our experiments. Generally, we observe that
we can perform attention pruning on BERT heads,
while maintaining the performance. For example,
AP with p = 20 loses only 1.00 points absolute on
average compared to the baseline p = 0 model.
Another important observation is that, for some
GLUE tasks, we can prune even more than 50% of
the attention weights while maintaining competitive
scores, e.g., for MNLI, QNLI, QQP, SST-2, and
SST-B. For the remaining tasks —RTE, MRPC and
CoLA—, we maintain reasonable performance by
pruning a sizable fraction of the attention weights.

8. Why Use Tailored Attention Masks

We explore the importance of using attention masks
tailored to specific datasets by comparing against
two other scenarios: (i) prune random entries in
attention patterns, and (ii) prune using an attention
mask learned on a different dataset.

8.1. Machine Translation
We prune self-attention mechanisms in
encoder–decoder models trained with soft-
max on the IWSLT14 translation tasks for
p ∈ {20, 40, 50, 60, 80} using either random
or out-of-distribution attention masks, and we
compare to the baseline results above. For the
out-of-distribution experiments, we generate
attention masks on IWSLT14 en-de. Tables 8 and
9 show the results. We note that data-informed
masks outperform random pruning by a large
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Accuracy (%)
p (%) MNLI-m MNLI-mm QNLI QQP RTE SST-2 MRPC CoLA STS-B Average

0 84.07 83.44 90.91 87.51 65.7 91.97 88.77 57.78 88.39 82.06
20 84.00 83.42 89.72 86.37 64.44 91.11 87.12 55.99 87.34 81.06
40 83.42 83.70 88.76 84.73 62.82 89.91 84.45 52.33 86.48 79.62
50 83.32 82.87 87.81 83.84 62.09 89.05 83.08 48.56 85.28 78.43
60 82.54 81.98 87.19 83.10 61.37 88.82 82.04 45.05 81.70 77.09
80 79.29 78.64 82.37 81.32 57.22 84.52 78.57 34.80 65.89 71.40
90 75.40 75.23 77.23 77.45 49.46 80.56 79.41 20.28 51.39 65.16

Table 7: BERT on GLUE. Attention Pruning reduces the attention computations by tens of percentage
points, while maintaining comparable performance. We report Spearman correlation for STS-B, F1 for
QQP and MRPC, and accuracy for the rest. The reported results are the median from five reruns on Dev.

p (%) 0 20 40 50 60 80
AP 34.94 34.92 33.70 33.68 33.64 33.81

Rand. 34.94 32.51 30.66 27.96 26.56 5.93

Table 8: Results for Machine Translation with
IWSLT14 de-en task. Pruning random attention
entries yields sharp drop in performance as the
pruning percentage p increases. AP yields up to
80% sparseness, while maintaining good perfor-
mance.

p (%) 0 20 40 50 60 80
base 30.57 30.37 27.61 27.28 27.51 27.46
ood 30.57 30.44 27.46 27.60 27.56 27.46

Table 9: Results from the IWSLT14 en-de transla-
tion tasks. For simple attention patterns, such as
those in self-attention mechanism for translation
tasks, AP is robust under distributional shifts.

margin, especially as the percentage p increases.
However, using attention masks gathered for the
other translation direction does not meaningfully
influence our results. We speculate that this is
because we only look at self-attention patterns,
which in the case of translation are very sharp and
exhibit a constant context window.

8.2. BERT

We perform out-of-domain experiments by training
GLUE tasks with AP using attention patterns from
all GLUE tasks. In Figure 4, we show the relative
difference in accuracy for our experiments on four
GLUE datasets. Note that the columns for SST-
2 and CoLA show significantly negative relative
accuracy, which means that the attention patterns
from these datasets are not useful for the majority
of the GLUE tasks. This is in line with the nature
of the datasets: SST-2 and CoLA are two tasks
in GLUE that do not involve pairs of sentences.

MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

RT
E

M
RP

C
Co

LA
ST

S-
B

0.60

0.45

0.30

0.15

0.00

0.15

Figure 4: Relative accuracy when a GLUE task
(indicated in the rows: STS-B, CoLA, MRPC, RTE)
is trained with AP (p = 40) using the attention pat-
terns of GLUE tasks (indicated in the columns: all
GLUE tasks). The relative accuracy is computed
so that the in-domain experiment is zero, and the
out-of-domain experiments show deviations in ac-
curacy.

Particularly detrimental to the performance is using
CoLA masks on the STS-B dataset (black entry in
Figure 4). Our experiment in the figure is for p = 40,
but we observed a similar pattern for a variety of
pruning percentages.

9. Towards Efficient Hardware
Implementation of Attention

Pruning

9.1. MACs
In order to quantify the computational advantage
we obtain from pruning, we estimate the number
of Multiply-Accumulate Operations, or MACs for
short (Randell, 1971), executed by a simple at-
tention mechanism during the forward pass of the
model.

Let the input be a tensor x ∈ RB×N×d, where
B is the batch size, N is the number of tokens in
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Kernel Pruning Efficiency
p (%) Time (s) Memory (GB)

Pytorch 0 95.80 6.24
Triton 0 95.41 6.85
Triton 90 86.44 (↓9.4%) 5.00 (↓27%)

Table 10: Proof-of-concept empirical gains from
using AP inference on SQuAD. Memory tracks the
GPU.

a sequence, and d is the number of embedding
dimensions. In Appendix A we show that with AP
we achieve a reduction of

fraction of MACs =
4d+ (2− p)N

4d+ 2N
. (3)

This is particularly helpful for large N ≫ d, suggest-
ing that AP might be computationally beneficial in
applications with long input sequences such as
summarization or question answering.

9.2. Bert Benchmark
We demonstrate empirical gains using block-sparse
GPU kernels. Gray et al. (2017) first implemented
efficient sparse matrix multiplication operations and
applied them to both dense and convolutional lay-
ers. Child et al. (2019) extended this work to at-
tention mechanisms with certain pre-determined
sparseness patterns. Tillet et al. (2019) introduced
Triton, a language and compiler used to generate
optimized GPU code that allows for higher design
flexibility than Pytorch. We use the DeepSpeed2

implementation of sparse attention, which requires
efficient sampled dense-dense and sparse-dense
multiplications as well as softmax operations.

Since in order to obtain performance gains we
need to use sparseness patterns structured around
blocks, as a proof-of-concept, we turn our attention
to question answering applications and apply AP to
the Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) and use a blocksize of 16.
We choose SQuAD for hardware benchmarking
as the sequences are longer (up to 384 tokens)
than those in the GLUE benchmark. We fine-tune
BERT on a single GeForce GTX 1080 GPU for two
epochs with a learning rate of 3e-5 and a batch
size of 4. The length of the sequences is capped
at 384 tokens. At test time, we use a batch size of
256.

The results in Table 10 suggest that we can empir-
ically reduce both inference time and GPU memory
consumption using AP and sparse kernels. At the
same time, we do not compromise performance
noticeably: Pytorch and Triton kernels for p = 0

2https://www.deepspeed.ai

yield 81.02 Exact and 88.63 F1 scores, while AP
with Triton for p = 90 yields 79.62 Exact and 87.32
F1 scores. We would like to underscore the 27%
reduction in memory, in particular, as memory limi-
tations usually prevent utilization of attention-based
models when hardware is constrained. Thus AP is
especially promising in this context.

9.3. Llama2 7B Benchmark
We evaluate our pruning method on the Llama2 7B
model using the Wikitext-2 dataset, with a focus
on language modeling 3. We use a context length
and stride of 4096. Attention pattern statistics are
gathered from the training split, and evaluation is
performed on the test split. Due to computational
constraints, we do not fine-tune the model weights.
Given this limitation, we concentrate on moderate
pruning percentages. This approach demonstrates
how memory improvements can be scaled to recent
large language models even with low batch sizes;
all experiments are conducted with a batch size of
one.

Pytorch Triton
Pruning % 0 60
Memory (GB) 19.51 16.88
Perplexity 6.48 6.72

Table 11: Memory efficiency in Llama2 7B model:
Pruning cuts forward pass memory from 19.51 GB
to 16.88 GB, over a 13.92 GB baseline to load the
model, with minimal perplexity increase.

We summarize our results in Table 11. Loading
the model onto the GPU with half-precision weights
requires 13.92 GB of memory. We managed to
reduce the additional memory requirements for a
forward pass from 5.58 GB to 3.07 GB, achieving a
reduction of over 40%, with only a minimal increase
in perplexity.

10. Conclusion and Future Work

We introduced Attention Pruning, a novel method
that leverages data-informed sparseness for prun-
ing attention. Through controlled experiments on
a variety of tasks (from language modeling to ma-
chine translation and GLUE tasks predictions), we
showed that our method prunes most computa-
tions using pre-computed attention patterns while
maintaining, or even improving, performance. Our
application to seq2seq tasks enabled us to study
attention patterns in self- and cross-attention, re-
vealing key distinctions between the two.

In future work, we aim to assess our method on
other models, NLP tasks, and datasets of various

3https://github.com/irugina1/llama-attention-pruning
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sizes, as well as optimize Attention Pruning for ex-
isting hardware. We believe co-design approaches
for efficient sparse kernels and their successful uti-
lization can enhance Attention Pruning’s scalability.
To encourage further co-design efforts, we are re-
leasing our code to the research community.

11. Limitations

Our study required extensive experiments across
three types of tasks, language modeling, machine
translation and BERT fine-tuning. If one wants to
reproduce our analysis from scratch they would
need to rely on extensive GPU compute. However,
we will release our code, in hopes to alleviate the
work of researchers who would like to perform a
similar study.

12. Ethics Statement

In this research, we introduce a novel method for
pruning attention mechanisms in natural language
processing models. While our primary goal is to re-
duce computational complexity and enhance model
efficiency, we recognize the potential ethical impli-
cations of our work.

First, it is important to note that our developed
pruning technique can lead to the creation of more
efficient and less resource-intensive models. This
has positive implications for sustainability, as it
could help reduce the energy consumption and
environmental footprint of large-scale NLP models.

However, we also acknowledge that more effi-
cient models might contribute to the development
and deployment of increasingly powerful NLP sys-
tems, which could be misused for malicious pur-
poses, such as disinformation campaigns or auto-
mated harassment. Therefore, we encourage the
research community to adopt responsible practices
in the development and deployment of NLP models
with attention pruning and to continuously evalu-
ate the potential risks and societal impact of these
technologies.

Moreover, as our pruning method is applied to
pre-trained models, the potential biases embedded
in the training data could still persist. Therefore,
we emphasize the importance of addressing and
mitigating biases in NLP models and training data to
ensure that the resulting systems do not perpetuate
harmful stereotypes or unfair treatment of certain
social groups.

Finally, we commit to transparently sharing our
code, as mentioned earlier, and findings to en-
courage further collaboration within the research
community, fostering an open and responsible ap-
proach to the development and improvement of
attention pruning techniques.
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A. Estimation of the MACs in
Equation 3

In order to process the input x, we need to fol-
low this sequence of operations: (i) Compute the
key, query, and value matrices; each of these is
obtained by applying a fully connected transforma-
tion Rd → Rd and in total requires 3BNd2 MAC
operations; (ii) Compute attention scores P ; we
need to compute Bh matrix multiplications of the

form X1 ×X2 between matrices X1 ∈ RN×dk and
X2 ∈ Rdk×N ; this takes BhN2dk MACs. (iii) Com-
pute attention patterns: we need to calculate Bh
matrix products of the form X1 ×X2 between ma-
trices X1 ∈ RN×N and X2 ∈ RN×tdk ; this costs us
BhN2dk MACs; (iv) Apply a fully connected layer
to compute the attention mechanism output, which
takes BNd2 MACs. Now let us consider what hap-
pens when a fraction p (0 ≤ p ≤ 1) of the entries in
the matrix P ∈ RB×h×N×N are pruned: in step 3
we only need to do a fraction 1− p of the work we
used to and therefore, we achieve reduction of

fraction of MACs =
4d+ (2− p)N

4d+ 2N
.

B. Details about GLUE

We train on the following GLUE tasks:
MNLI (Williams et al., 2018), QQP (Chen et al.,
2018), STS-B (Cer et al., 2017), SST-2 (Socher
et al., 2013), RTE (Bentivogli et al., 2009),
MRPC (Dolan and Brockett, 2005), QNLI (Ra-
jpurkar et al., 2016), CoLA (Warstadt et al., 2019).
For each task, we fine-tune the BERT model on a
single GPU for three epochs with a learning rate of
2e-5 and a batch size of 32. The maximum length
of the input sequences is 128. Since the datasets
are small, we run each of our experiments with
five different random seeds in order to be able to
capture the mean and the standard deviation of
the results.
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