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Abstract
Minimum Bayesian Risk Decoding (MBR) emerges as a promising decoding algorithm in Neural Machine Translation.
However, MBR performs poorly with label smoothing, which is surprising as label smoothing provides decent
improvement with beam search and improves generality in various tasks. In this work, we show that the issue arises
from the inconsistency of label smoothing on the token-level and sequence-level distributions. We demonstrate
that even though label smoothing only causes a slight change in the token level, the sequence-level distribution is
highly skewed. We coin the issue autoregressive over-smoothness. To address this issue, we propose a simple
and effective method, Distributional Cooling MBR (DC-MBR), which manipulates the entropy of output distributions
by tuning down the Softmax temperature. We theoretically prove the equivalence between the pre-tuning label
smoothing factor and distributional cooling. Extensive experiments on NMT benchmarks validate that distributional
cooling improves MBR in various settings.

Keywords: Minimum Bayesian Risk, Distributional Cooling, Machine Translation

1. Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015; Vaswani et al., 2017; Yan et al., 2020a)
has witnessed significant progress in recent years.
It models the conditional probability distribution of
target language candidates given a source sen-
tence by a using neural architecture model. Given
a well-trained NMT model, the task of decoding is
to select high-quality candidates according to the
model distribution. The most commonly used de-
coding is Maximum-a-Posteriori decoding (MAP),
which aims to find the most probable candidate
(i.e., mode of the distribution). However, as re-
vealed by recent studies (Stahlberg and Byrne,
2019; Yan et al., 2022), MAP decoding can be
degenerate, suffering from hallucination or being
even empty.

Minimum Bayesian Risk Decoding (MBR) (Ku-
mar and Byrne, 2002; Eikema and Aziz, 2020)
emerges as a promising alternative to MAP decod-
ing, which seeks the candidate with the largest util-
ity instead of the largest probability. Several advan-
tages have been observed for MBR, such as being
robust against domain shift (Müller and Sennrich,
2021) and avoiding beam search curse (Eikema
and Aziz, 2022). With the help of neural met-
rics (Freitag et al., 2022) such as BLEURT (Sellam

The early part of this work was done when Jianhao
Yan was working at Pattern Recognition Center, Wechat
AI, Tencent Inc, China.
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Figure 1: Translation quality against label smooth-
ing factors. As the factor of label smoothing in-
creases, beam search retains its performance
while that of MBR drops drastically.

et al., 2020), MBR exceeds the de facto MAP de-
coding algorithm – beam search, achieving the
state-of-the-art on several benchmarks.

Despite the above promises, one crucial issue is
identified for MBR but not yet solved in the litera-
ture: MBR performs poorly with models trained with
label smoothing (Eikema and Aziz, 2020). We fur-
ther find that the performance drops monotonically
when increasing the label smoothing factor (see
Figure 1, under the experiment settings in Section
4.1). It is counter-intuitive since label smoothing
increases the generality of various tasks (Szegedy
et al., 2016; Chorowski and Jaitly, 2017) and pro-
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vides steady improvements under the MAP setting
in various NMT benchmarks (Vaswani et al., 2017;
Chen et al., 2018).

We aim to investigate the root cause and ad-
dress the issue that label smoothing benefits beam
search but hurts MBR. As beam search makes
use of token-level distribution and MBR relies on
sequence-level distribution, we analyze the ef-
fect of label smoothing on the token-level and
sequence-level distributions, finding that while la-
bel smoothing only slightly softens the token-level
distribution, this effect makes the sequence-level
distribution highly skewed with lots of low-quality
candidates. We call the issue autoregressive over-
smoothness, and quantify autoregressive over-
smoothness using token-level entropy, finding that
it correlates well with MBR’s performance.

According to the above observations, we pro-
pose a conceptually simple and empirically effec-
tive approach, Distributional Cooling MBR (DC-
MBR), which sharpens the model distributions by
cooling down the Softmax temperature. It corrects
the skewed sequence-level distribution and avoids
sampling from candidates that the model is not
confident with. We theoretically prove the equiv-
alence between distributional cooling and label
(un-)smoothing, validating that distributional cool-
ing is a reverse process of label smoothing and
can safely recover from the autoregressive over-
smoothness without extra training.

We conduct experiments with two settings, bilin-
gual NMT, under which we train Transformers
(Vaswani et al., 2017) from scratch and evalu-
ate them on three NMT benchmarks; and multi-
lingual NMT, under which we evaluate with mBART-
50 (Tang et al., 2020) on ten NMT benchmarks.
Results show that DC-MBR mitigates the autore-
gressive over-smoothness and significantly outper-
forms the de facto standard unbiased setting of
MBR. For instance, compared with naive MBR,
DC-MBR improves up to 51.2 BLEURT points for
the model trained with label smoothing.

In this paper, we take the label smoothing’s in-
compatibility with MBR as a clue, dig into the hy-
pothesis space, and propose a principled solution.
Rather than simply avoiding label smoothing, MBR
should be compatible with all kinds of models, es-
pecially in the recent tendency of LLMs (Touvron
et al., 2023) where modifying training procedures
is costly. Our proposed DC-MBR approach not
only addresses the critical issue of label smoothing
hurting MBR performance but also opens up new
possibilities for improving the robustness and gen-
eralization of NMT models. By making MBR com-
patible with a wider range of training techniques,
our work contributes to the development of more
flexible and adaptable NMT systems that can bet-
ter handle the challenges of real-world translation

tasks. Furthermore, our findings shed light on the
complex interplay between training methods and
decoding strategies, paving the way for future re-
search on optimizing NMT performance.1

2. Related Work

MT Decoding The dominant decoding method
in NMT is Maximum-a-Posteriori (MAP) decod-
ing, which seeks the hypothesis with the highest
conditional probability. Among all MAP decoding
methods, beam search is the de facto method in
modern NMT systems. Many variants of beam
search (Bahdanau et al., 2015; Wu et al., 2016;
He et al., 2016; Yang et al., 2018; Murray and
Chiang, 2018; Freitag and Al-Onaizan, 2017; Shu
and Nakayama, 2018) are proposed to improve
its performance. Other than beam search, exact
decoding algorithms (Stahlberg and Byrne, 2019;
Yan et al., 2022) use depth-first search to find the
mode or top candidates of the whole candidate
space. However, the computational cost of exact
search hinders its applications.

Minimum Bayesian Risk Decoding (MBR), origi-
nated from SMT (Kumar and Byrne, 2002; Smith
and Eisner, 2006; Tromble et al., 2008), recently
emerges as the new alternative to MAP decod-
ing algorithm in NMT. MBR selects the candidates
with the highest utility, e.g., an evaluation met-
ric, instead of the highest probability, which may
avoid degenerate problems with MAP. Early at-
tempts to incorporate MBR into NMT mainly use
the k-best list obtained via beam search (Stahlberg
et al., 2017; Shu and Nakayama, 2017; Blain et al.,
2017). Recently, Eikema and Aziz (2020) show
that the model’s sequence distribution provides
a good approximation for human translation and
proposes to approximate the hypothesis space
and reference space of MBR by unbiased ances-
tral sampling. This unbiased sampling setting be-
comes the common practice of MBR and shows
promising results. Müller and Sennrich (2021)
show that MBR increases robustness against copy
noise and domain shift. Eikema and Aziz (2022)
demonstrate that MBR does not suffer from beam
search curse (Koehn and Knowles, 2017a), i.e.,
better search always leads to better translations,
and explores approximations for the expected util-
ity. Freitag et al. (2022) propose to combine neural
reference-based metric (i.e., BLEURT) as the utility
function and demonstrate significant improvements.
In this work, we take the inferior performance of
MBR with label smoothing as a clue and propose
a novel approach called distributional cooling. We
demonstrate that, in contrast to the common un-
biased setting, MBR can be further improved by

1The code can be found at https://github.com/
ElliottYan/DC-MBR/tree/main.

https://github.com/ElliottYan/DC-MBR/tree/main
https://github.com/ElliottYan/DC-MBR/tree/main
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cooling down the model distribution, effectively ad-
dressing the limitations of label smoothing in the
context of MBR.

There is also work proposing the idea of de-
smoothing in decoding (Hewitt et al., 2022; Fre-
itag et al., 2023), investigating the effectiveness
of truncation methods. Compared with this line of
work, distributional cooling is the more principled
approach, clearly motivated by the inverse relation
to label smoothing, while previous work does not
explicitly discuss label smoothing.

Label smoothing First introduced by Szegedy
et al. (2016), label smoothing is designed to
improve the generality of neural models by re-
placing the one-hot targets with smoothed tar-
gets. It has shown to be effective in various NLP
tasks (Szegedy et al., 2016; Chorowski and Jaitly,
2017; Pereyra et al., 2017), and provides a steady
performance gain in machine translation (Vaswani
et al., 2017; Chen et al., 2018). Müller et al. (2019)
first study the effectiveness of label smoothing
with beam search and attribute its effectiveness
to better calibrating model predictions (Guo et al.,
2017). However, label smoothing is not always
helpful. Meister et al. (2020b) observe the case
where higher entropy is detrimental to the perfor-
mance of random sampling. Here we focus on
label smoothing’s negative effect on MBR and at-
tribute the issue to the different behavior of label
smoothing in sequence-level and token-level distri-
bution. Further, we introduce distributional cooling
that effectively resolves this issue.

3. Background

We take the standard Transformer (Vaswani et al.,
2017) as the baseline, investigating label smooth-
ing under the MAP and MBR decoding algorithms.

3.1. NMT and Label Smoothing

Given a model f(θ), Neural Machine Translation
(NMT) predicts the conditional probability P (y|x)
of a target sentence y given a source sentence x,
which can be factorised with an auto-regressive
process:

P (y|x; θ) =
∏
t

P (yt|y<t, x; θ). (1)

We refer to P (yt|y<t, x; θ) and P (y|x; θ) as
token-level distribution and sequence-level distri-
bution, respectively. The token-level distribution
P (yt|y<t, x; θ) is derived with a Softmax function,

oit = f(yi|y<t, x; θ), (2)

P (yit|y<t, x; θ) =
exp oi∑|V |
j exp oj

, (3)

where yi is i-th token in the vocabulary V , and
o represents the output logits. The widely used
objective for training an NMT model is the label-
smoothed cross-entropy loss, defined as,

Lls = −
∑
i

Qi
λ · logP (yit). (4)

Qλ is the λ-smoothed target distribution. Its prob-
ability of the i-th token can be expressed as,

Qi
λ =

{
1− λ if yi is golden token

λ
|V |−1 otherwise

. (5)

3.2. Decoding Algorithms

Given a model and an input, decoding algorithms
select high-quality candidates from P (y|x).
Maximum a Posteriori (MAP) The standard de-
coding algorithm in NMT is MAP decoding, which
finds the candidate with the highest sequence prob-
ability (mode of the sequence distribution).

yMAP = argmaxyP (y|x) (6)

= argmaxy1,··· ,yT

T∏
t

P (yt|y<t, x; θ). (7)

The exact solution of MAP is computationally
costly due to NMT’s exponentially large search
space. Hence, practitioners turn to beam search,
a decoding algorithm relies on greedy token selec-
tions.
Maximum Bayesian Risk (MBR) Recently, it has
been shown that the mode of the model’s sequence
distribution (i.e., MAP’s optimal solution) may be
degenerate or even empty (Stahlberg and Byrne,
2019; Yan et al., 2022), which makes the mode a
bad target. In contrast, MBR (Kumar and Byrne,
2002) chooses the candidate with the highest ex-
pected utilities:

yMBR = argmaxh∈Yh
Er∈Yr [u(h, r)|x, θ]︸ ︷︷ ︸

=:µu(h;x,θ)

, (8)

where the utility function u can be a certain eval-
uation metric measuring the similarity between a
hypothesis h and a reference r. The hypothesis
space Yh and reference space Yr are sets of all
possible translations. Clearly, the above formu-
lation is also intractable as both spaces are pro-
hibitively large. Recently, Eikema and Aziz (2020)
propose a sampling-based approach that approx-
imates both spaces with the help of the model
distribution. The authors argue that the model dis-
tribution is a good approximation for human trans-
lations. Specifically, their approach relies on finite
candidates sampled from the model’s distribution,

Ymodel ∼
∏
t

P (yt|y<t, x; θ), (9)
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and uses these candidates as both the pseudo
references and hypotheses:

µ̂u(h;x, θ) :=
1

N

Ymodel∑
r

u(h, r), (10)

ŷMBR = argmaxh∈Ymodel
µ̂u(h;x, θ), (11)

where N = |Ymodel| is the number of candidates
sampled. In practice, the choice of the utility func-
tion can be NMT n-gram matching metrics such
as BLEU (Papineni et al., 2002), ChrF (Popović,
2015) or neural metrics such as BLEURT (Sellam
et al., 2020).

4. Analyses

In this section, we will examine the cause of label
smoothing negatively impacting the performance of
Minimum Bayes Risk (MBR). We will also compare
the effects of label smoothing on beam search,
which has been shown to work well with it in previ-
ous studies (Szegedy et al., 2016; Chorowski and
Jaitly, 2017; Pereyra et al., 2017; Vaswani et al.,
2017). We will begin by outlining the details of our
experimental setup.

4.1. Setup

For the bilingual setting, we conduct experiments
on three benchmarks: WMT 2020 English-German
(En-De), WMT 2020 German-English (De-En), and
WMT 2016 English-Romanian (En-Ro). We train
Transformers from scratch using the training set
and evaluate on dev/test sets. All models are
trained for 300k steps. The batch size is 32k for
En-De/De-En tokens and 16k for En-Ro. Hyper-
parameters settings except label smoothing are
the same as Vaswani et al. (2017). We train mod-
els from scratch and preprocess datasets following
previous work. For En-De and De-En, We apply
the same filtering process described in Zeng et al.
(2021) and get about 37M parallel sentence pairs,
which are tokenized with Moses 2 and segmented
by byte pair encoding BPE (Sennrich et al., 2016)
with 32000 merge operations. For En-Ro, we have
608k parallel sentences tokenized and segmented
using the same tool as En-De and De-En.

For the multilingual setting, we use the pre-
trained mBART-50 (Tang et al., 2020), which is de-
signed specifically for NMT and trained to support
over 50 languages. We choose 10 directions of
WMT16 to evaluate our method, including En↔De,
En↔Cs, En↔Fi, En↔Ro, En↔Ru. For the multi-
lingual NMT setting, we use the large version of
the released mBART-503. The benchmarks we

2http://www.statmt.org/moses/
3https://huggingface.co/facebook/

mbart-large-50

used are the ten tasks of WMT16 supported by
mBART-50. The dataset statistics of both bilingual
and multilingual settings can be found in Table 1.

Dataset Train Valid Test

Bilingual
WMT20 En-De 37M 1997 1418
WMT20 De-En 37M 2000 785
WMT16 En-RO 608K 1999 1999

Multilingual

WMT16 En-De - 2169 2999
WMT16 De-En - 2169 2999
WMT16 En-Cs - 2656 2999
WMT16 Cs-En - 2656 2999
WMT16 En-Ro - 1999 1999
WMT16 Ro-En - 1999 1999
WMT16 En-Ru - 2818 2998
WMT16 Ru-En - 3003 2998
WMT16 En-Fi - 1500 3000
WMT16 Fi-En - 1500 3000

Table 1: Dataset statistics.
For MBR settings, our results rely on a candidate

list of two sizes: low-cost (N=10) and high-cost
(N=50). In the analysis part, we use the high-cost
setting. Following Freitag et al. (2022), we use
BLEURT v0.2 (Sellam et al., 2020) as our utility
function to achieve state-of-the-art performance. 4

For evaluation, we mainly report BLEURT points for
both the bilingual and multilingual settings, except
for bilingual experiments on WMT16 En-Ro, where
we report sacreBLEU as its training corpus is case
insensitive and the BLEURT metric is trained on
case-sensitive data.

For the significance test, we first tokenize the
generated sequence and reference with the tok-
enizer5, and then use the script provided by the
Moses toolkit6. It is worth noting that the signif-
icance test is conducted with NIST (Doddington,
2002) and BLEU (Papineni et al., 2002) scores.

4.2. Inconsistency between Token- and
Sequence-level Distributions

One key distinction between MBR and beam
search is that MBR relies on sequence-level distri-
bution P (y|x) and re-ranks among sequence sam-
ples, while beam search generates tokens greed-
ily from the token-level distribution P (yt|y<t, x).
Therefore, we explore the effect of label smoothing

4Due to the space limitation, we will provide results
using other utility functions on the additional page upon
acceptance.

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

6https://github.com/
moses-smt/mosesdecoder/blob/
master/scripts/analysis/
bootstrap-hypothesis-difference-significance.
pl

http://www.statmt.org/moses/
https://huggingface.co/facebook/mbart-large-50
https://huggingface.co/facebook/mbart-large-50
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
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Figure 2: Ranking statistics for tokens in the
ground-truth sentence within the token-level dis-
tribution P (yt|y<t, x).
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Figure 3: Translation quality statistics for se-
quences within the top-20 candidates of the
sequence-level distribution P (y|x).

over the model’s sequence-level and token-level
distributions.

Figure 2 demonstrates rankings of ground-truth
tokens on the token-level distributions. We predict
the teacher-forcing probabilities of reference to-
kens and investigate how the ranks of these tokens
within the distribution P (yt|y<t, x) change with la-
bel smoothing factors. We can see that most of
the reference tokens are ranked within the top 0-5,
indicating that our models are well-trained. When
we increase the label smoothing factor, the rank-
ings only change slightly. Specifically, the count of
reference tokens in rank 0-5 slightly drops, and that
in rank 45-|V | (tail of the token-level distribution)
slightly increases. It implies that label smoothing
makes the model mildly less confident at the token-
level as intended. It improves the models’ gener-
ality and accords with our experiments in Figure 1
that label smoothing provides minor improvements
with beam search.

The minor impact on the token-level distribu-
tion can lead to a huge disparity regarding the
sequence-level distribution. With the exact top-
N (Yan et al., 2022) decoding algorithm, which is
a DFS-based search algorithm equipped with a
min-heap, we decode the topmost (i.e., top-20) se-
quences of the sequence-level model distribution.

Figure 3 plots the translation qualities of these
topmost sequences for models trained with and
without label smoothing. As we can see, com-
pared to the model without label smoothing, the
model trained with label smoothing has more low-
quality sequences in its top region of sequence-
level distribution. It suggests that label smoothing
skews the model distribution and gives poor se-
quences higher ranks/probabilities. This may re-
late to the well-known label bias problem (Lafferty
et al., 2001), wherein the sampling process of the
model’s short-sighted decisions on certain steps
lead to poor translations. This leads to low-quality
hypotheses and reference spaces and explains
MBR’s deteriorated performance in Figure 1.

To further understand why a small distortion
in the model’s token-level distribution results in
a much skewed sequence-level distribution, we
examine the auto-regressive nature of machine
translation models. As a concrete example, sup-
pose we have a reference sequence of 30 tokens.
Given a model trained without label smoothing and
perfectly fit the data set, it should receive 100%
probability for each reference token and the whole
sequence. In contrast, with a model with label
smoothing λ = 0.1, each reference token receives
a 90% probability, whereas the reference sequence
as a whole receives only 90%30 = 4%. This effect
further enlarges. When λ = 0.2, the reference
sequence only receives about 0.1% probability.
Consequently, as shown in Figure 1, the model
re-distributes the probability mass to many low-
quality sentence candidates. We adopt the term
autoregressive over-smoothness for this issue. In
the next section, we discuss how to quantify au-
toregressive over-smoothness.

5. Method

We propose DC-MBR to address the above issue.
The idea is to sharpen the sequence-level distri-
bution, thus allowing the model to benefit from its
own confidence. To this end, we first propose a
measure of autoregressive over-smoothness, and
then introduce our DC-MBR.

5.1. Measuring Autoregressive
Over-Smoothness Using Entropy

Measuring to what extent the model suffers from
autoregressive over-smoothness is non-trivial, as
the search space of sequence-level distribution is
prohibitively large. We turn to a token-level mea-
sure that performs well empirically, the token distri-
bution entropy,

H =

|V |∑
i

P (yit) logP (yit). (12)
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Figure 4: The performance of MBR against the
smoothness of the model distribution. Each data
point is a Transformer-based model. The perfor-
mance of MBR is negatively correlated with entropy
values. (τ = −0.99).

The connection is straightforward. The lower the
token level entropy is, the less probability mass is
distributed to the golden reference.

To validate our measure, we conduct experi-
ments on the WMT20 En-De task and investigate
the relationship between entropy and MBR perfor-
mance. To control the entropy values, we train
45 Transformer-base models with various hyper-
parameters (i.e., α ∈ [0.1, 0.9] and β ∈ [0.1, 0.5])
of generalized entropy regularizations (GER, Meis-
ter et al. 2020b), where label smoothing is one
of the special cases. We use a Transformer-
base model (Vaswani et al., 2017) and fine-tune
the model for 10k more steps. Figure 4 plots
the BLEURT points against corresponding model
entropy values. Our measure of autoregressive
over-smoothness is a good proxy as it correlates
strongly (-0.99) with the MBR performance. The
model with smaller token distribution entropy suf-
fers less from autoregressive over-smoothness and
achieves a better performance with MBR.

5.2. Distributional Cooling for MBR

In order to mitigate the autoregressive over-
smoothness and further improve MBR, it is es-
sential to sharpen the model distribution. This is
simply the reverse of label smoothing. While it can
be achieved by training with negative entropy reg-
ularizations, it would require extra computational
overhead and it would sacrifice the model’s perfor-
mance with beam search.

Instead, we manipulate the generation process
of both hypothesis space and reference space by
distributional cooling. It turns down the Softmax
temperature and thus reduces the token-level en-
tropy. Formally, we divide the logits o by tempera-

ture T before normalization,

P (yt|y<t, x; θ, T ) =
exp ot

T∑|V |
j exp

oj
T

, (13)

and generate candidates in hypothesis space and
reference space with

YT
model ∼

∏
t

P (yt|y<t, x; θ, T ). (14)

The computation of MBR becomes

µ̂u(h;x, θ) :=
1

N

YTr
model∑
r

u(h, r), (15)

ŷDC-MBR = argmax
h∈YTh

model
µ̂u(h;x, θ). (16)

We use separate temperatures Th and Tr for the
hypothesis and reference spaces due to their dis-
tinct roles in MBR. See more discussion in Section
5.6

With distributional cooling, we model a label (un-
)smoothing process, as it forces the model to focus
on its most confident candidates and avoid dis-
tributing probability mass on unconfident ones. It
is simple and easy to implement. It only modifies
the decoding phase, which can be easily applied
to off-the-shelf MT models and does not affect the
model’s performance with beam search.

5.3. Proof of Equivalence

Distributional cooling also theoretically connects
with the label (un-)smoothing. In this section, we
provide the proof.

Proposition 1 The optimal solution of the model
trained with label smoothing λ is P̂λ whose proba-
bility of i-th token is:

P̂ i
λ =

{
1− λ yi is golden token

λ
|V |−1 otherwise

. (17)

Intuitively, this solution is straightforward since
minimizing cross-entropy loss equals minimizing
the Kullback–Leibler divergence between target
distribution Q and model distribution P . The loss
achieves zero if and only if two distributions are the
same.

With the assistance of Proposition 1, we can
further derive the following lemma. 7

Lemma 1 Given two models that achieve the opti-
mal solutions with different label smoothing factors
λ1, λ2 < 1, there exists a Softmax temperature fac-
tor T = (log 1−λ1

λ1
)/(log 1−λ2

λ2
) that can transform

P̂λ1
to P̂λ2

.

7The detailed proof for Proposition 1 and Lemma 1
can be found in Appendix upon acceptance.
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Models Models BS MBR Ours ∆

N = 10

Transformer 29.1 28.9 28.9 +0.0
+ LS 0.1 31.1 25.1 30.9 +5.4
+ LS 0.2 31.4 19.7 31.2 +12.5
+ LS 0.3 31.5 12.5 30.9 +28.4

N = 50

Transformer 29.1 29.4 29.1 -0.3
+ LS 0.1 31.1 27.7 31.2 +3.5
+ LS 0.2 31.4 22.5 31.5 +9.0
+ LS 0.3 31.5 15.8 31.3 +15.5

(a) Utility: Sacrebleu, Score: SacreBLEU, on En-Ro task.

Models Models BS MBR Ours ∆

N = 10

Transformer 65.0 63.8 68.8 +5.0
+ LS 0.1 64.2 41.0 67.9 +26.9
+ LS 0.2 64.9 24.0 68.3 +44.3
+ LS 0.3 64.6 17.1 68.3 +51.2

N = 50

Transformer 65.0 68.7 70.1 +1.4
+ LS 0.1 64.2 52.1 69.4 +17.3
+ LS 0.2 64.9 31.3 69.8 +38.5
+ LS 0.3 64.6 21.0 69.8 +48.8

(b) Utility: BLEURT, Score: BLEURT, on En-De task.
Table 2: Gray: Models perform poorly with original
MBR. We investigate two settings: Low cost, N=10,
100 utility function calls per sentence; High cost,
N=50, 2500 utility calls per sentence. Our results
are significantly better than “MBR”(p < 0.01).

The above Lemma proves the equivalence be-
tween distributional cooling and label smoothing
training. Thus, we can exactly manipulate the Soft-
max temperature to recover the over-smoothness
brought by label smoothing, and, furthermore, im-
prove the performance of MBR. This justifies our
approach in that distributional cooling with a tem-
perature T < 1.0 does not just make the model’s
output distribution sharp in any direction. It trans-
forms the distribution towards the optimal solution
of a model trained by a smaller label smoothing.

5.4. Main Results

Table 2a and 2b show our results on the bilingual
NMT setting. Table 3 provides our results under
the multilingual NMT setting. The default value of
temperature is set to 0.5.
Mitgating Autoregressive Over-smoothness.
As shown in the gray rows of the two tables, we con-
firm that models trained by label smoothing (‘+LS
xx ’) generally improve with beam search (BS),
but label smoothing performs poorly with naive
MBR (MBR). The performance drops drastically
no matter the choice of the number of candidates
or tasks. On the other hand, DC-MBR (column
Ours) achieves strong and consistent performance
across different choices of label smoothing, where
the performance gap between ours and naive
MBR can even reach about 28 BLEU scores and

50 BLEURT points. This consistency indicates
that our methods address the autoregressive over-
smoothness.
Improving Sub-optimal Settings. We compare
our performance with naive MBR under an unbi-
ased setting. In bilingual NMT (Table 2b), we ob-
serve significant gaps (+5.0/+1.4 BLEURT point)
in both the low-cost scenario and the high-cost
scenario. In multilingual NMT (Table 3), the conclu-
sions are similar. Our method significantly outper-
forms MBR with +2.5 BLEURT points when N = 10
and with +0.5 BLEURT points when N = 50. Our
results suggest that the widely used unbiased set-
ting is sub-optimal, and the construction of hypoth-
esis and reference space needs exploration.
DC-MBR vs Beam Search. Further, we compare
beam search (‘BS’) with our approach, as beam
search is the widely applied decoding algorithm
in NMT applications. As shown in Table 2b and
3, our methods strongly outperform beam search
with +4.8 to +5.1 BLEURT points in the bilingual
setting and with +1.2 and +2.2 BLEURT points in
the multilingual setting. Compared with naive MBR,
which performs weaker than beam search when
N = 10, our methods perform much better in the
low-cost scenario. The results indicate that our
approach makes MBR more applicable in place of
beam search in NMT applications, with lower costs
and higher translation quality.
Computational Cost Reduction. A by-product of
our approach is our method can achieve the same
performance with much less computational cost,
i.e., the number of candidates, and thus enable a
much faster decoding process. For instance, our
low-cost result (68.8, ‘Transformer, Ours, N=10’
in Table 2b) is comparable to that of the original
MBR’s high-cost result (68.7, ‘Transformer, MBR,
N=50’). The computational cost is reduced from
2500 to 100 BLEURT calls (25x speedup), due to
the quadratic nature of MBR. Compared with other
acceleration methods in MBR (Eikema and Aziz,
2022; Freitag et al., 2022), which mainly focus on
truncating the hypothesis space or the reference
space and accelerating the MBR computation pro-
cess solely, our methods additionally reduce the
cost of candidate generation.

5.5. The Number of Candidates

In our approach, we decrease the Softmax temper-
ature to sharpen the token-level distribution. This
may reduce the diversity of generated candidates.
Thus, one possible concern is whether our method
would limit the potential of MBR when using a
large number of candidates. To this end, we study
MBR’s performance as the number of candidates
increases. We plot different temperature choices
and report the corresponding BLEURT points over
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Figure 5: BLEURT points against the number of candidates used with different temperature values. All
results are averaged over three random runs. Left: Transformer-base w/ LS=0.1; Right: Transformer-base
w/o LS

mBART BS N=10 N=50
MBR Ours ∆ MBR Ours ∆

En-De 71.8 70.3 73.7 +3.4 74.2 74.8 +0.6

De-En 74.0 73.4 74.3 +0.9 75.1 74.7 -0.4

En-Cs 73.0 70.1 75.3 +5.2 75.0 77.2 +2.2

Cs-En 70.8 69.8 71.2 +1.4 71.7 71.7 +0.0

En-Ro 77.2 77.3 78.6 +1.3 79.8 79.5 -0.3

Ro-En 72.3 72.2 72.5 +0.4 73.6 72.8 -0.8

En-Ru 70.8 68.3 72.9 +4.6 72.5 74.4 +1.9

Ru-En 71.6 70.3 72.2 +1.9 72.4 72.7 +0.3

En-Fi 77.4 75.6 79.9 +4.2 80.1 81.8 +1.7

Fi-En 68.9 68.1 69.6 +1.5 70.1 70.2 +0.1

Average 72.8 71.5 74.0 +2.5 74.5 75.0 +0.5

Table 3: BLEURT points for the ten tasks on
WMT16 with mBART. Our results are significantly
better than “MBR” (p < 0.01).
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Figure 6: BLEURT points for varying DC-MBR’s
temperature values on multilingual tasks. We use
N = 10. Best viewed in color.

WMT20 En-De, and present results with both mod-
els trained with and without label smoothing.

Figure 5 shows the results. Given the model
with label smoothing, distributional cooling is nec-
essary. Even with 250 candidates sampled per
sentence, our methods (T < 1.0) strongly outper-
form the naive MBR (T = 1.0) by a considerable
margin. Given the model without label smooth-

ing, our methods still significantly outperform naive
MBR in most cases, except in the scenario of high
costs (e.g., N=250), where a proper choice of tem-
perature (e.g., T=0.6/0.8) is required. For both
models, our approach helps MBR achieve strong
performance at a low cost (N=5,10). The above
results resolve the concern that sharpening model
distribution would limit the gains with a large num-
ber of candidates.

In addition, we find that the performance of our
approach improves with an increasing number of
candidates, indicating our approach retains the
advantage of MBR of not suffering from the beam
search curse problem (Koehn and Knowles, 2017b;
Eikema and Aziz, 2022).

5.6. Tempearture of DC-MBR

Temperature is another key factor for DC-MBR.
Applicability of Distributional Cooling. Besides
DC-MBR’s effectiveness shown in previous experi-
ments, we want to know whether DC-MBR is appli-
cable to wider settings such as different translation
directions. To this end, we plot the performance
of each direction of our multilingual experiments
in Figure 6. As shown, tuning down temperature
almost monotonically improves translation perfor-
mance in all directions, proving the general appli-
cability of DC-MBR.
Distinct Roles for Yh and Yr. In the above exper-
iments, we use the same temperature to generate
both the hypothesis and reference space. Since
they have very different roles in MBR decoding,
we study how the performances are affected by
temperature.

Figure 7 shows the choices of Th and Tr

for the hypothesis and reference space, respec-
tively. Experiments are conducted on the valid
set of WMT20 En-De. The model we use is the
Transformer-based trained with label smoothing
0.1. As shown, Th has a significant effect on
the performance of MBR. The BLEURT point gap
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Figure 7: Temperature study of DC-MBR. The number of candidates is 10. Left: Fix Tr = 1.0 and tune
Th; Middle: Fix Th = 0.5 and tune Tr. Right: Quality/Diversity scores of sampling candidates versus
Temperature T . Red: Quality; Blue: Diversity

between the best (Th = 0.5) and worst settings
(Th = 1.0) is about 20 points. A sharp hypothesis
space is more favorable than a smooth one. On
the other hand, a good Tr value also provides a
considerable gain on the performance, about +1.5
BLEURT points. Different from Th, a sharp refer-
ence space is not always the best choice. A Tr

value that is too high or too low can result in a drop
in BLEURT.

To further reveal the characteristics of both
spaces, the right plot in Figure 7 plots the quality
and diversity for sampled candidates over differ-
ent choices of temperature. We directly use the
BLEURT point for quality, and the diversity score is
defined as

Div =
1

|Y|2
∑
a∈Y

∑
b∈Y

ChrF(a, b), (18)

which is the average ChrF score (Popović, 2015)
of each candidate against the others. We do not
use neural metrics such as BLEURT because they
are trained to be robust against surface changes.
In conclusion, the hypothesis space provides the
possible candidates for translation, which should
be of high quality and insensitive to diversity. In
contrast, the reference space is responsible for the
comprehensive evaluation of utilities, which should
balance both quality and diversity.

6. Conclusion

We investigated the negative effect of label smooth-
ing on MRB, finding that MBR’s performance de-
creases monotonically with the increase of label
smoothing value, and showing that the above
phenomenon is due to the autoregressive over-
smoothness caused by the autoregressive factor-
ization. We then presented a conceptually sim-
ple and theoretically well-motivated approach, DC-
MBR, to address this issue. Extensive experiments
on NMT benchmarks demonstrated the effective-
ness of our approach.
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