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Abstract
The ability of large language models (LLMs) to "learn in context" based on the provided prompt has led to an
explosive growth in their use, culminating in the proliferation of AI assistants such as ChatGPT, Claude, and Bard.
These AI assistants are known to be robust to minor prompt modifications, mostly due to alignment techniques that
use human feedback. In contrast, the underlying pre-trained LLMs they use as a backbone are known to be brittle in
this respect. Building high-quality backbone models remains a core challenge, and a common approach to assessing
their quality is to conduct few-shot evaluation. Such evaluation is notorious for being highly sensitive to minor prompt
modifications, as well as the choice of specific in-context examples. Prior work has examined how modifying different
elements of the prompt can affect model performance. However, these earlier studies tended to concentrate on a
limited number of specific prompt attributes and often produced contradictory results. Additionally, previous research
either focused on models with fewer than 15 billion parameters or exclusively examined black-box models like
GPT-3 or PaLM, making replication challenging. In the present study, we decompose the entire prompt into four
components: task description, demonstration inputs, labels, and inline instructions provided for each demonstration.
We investigate the effects of structural and semantic corruptions of these elements on model performance. We
study models ranging from 1.5B to 70B in size, using ten datasets covering classification and generation tasks. We
find that repeating text within the prompt boosts model performance, and bigger models (≥30B) are more sensitive
to the semantics of the prompt. Finally, we observe that adding task and inline instructions to the demonstrations
enhances model performance even when the instructions are semantically corrupted. The code is available at this URL.

Keywords: ICL, prompting, prompt components, prompt corruption, zero-shot evaluation

1. Introduction

The ability of language models to respond to
prompts and learn in context has led to an explosive
growth in their use, culminating in the proliferation
of AI assistants such as ChatGPT (OpenAI, 2023),
Claude (Anthropic, 2023), and Bard (Google AI,
2023), which use large pre-trained language mod-
els as the backbone. AI assistants built on top of
backbone models are robust to prompt variation,
in large part due to alignment techniques involv-
ing learning from human feedback (Ouyang et al.,
2022). However, the underlying backbone mod-
els are notoriously brittle in this respect, and their
performance often varies widely with slight prompt
modifications. Building a high-quality backbone
model remains a core challenge, and one of the
more common ways to gauge their quality is to con-
duct in-context evaluation, which suffers from high
sensitivity to prompt variation. Despite this sensi-
tivity, models have shown remarkable resilience
to corruption in certain parts of the prompt. Re-
cently proposed explanations for in-context learn-
ing, such as implicit gradient descent (Dai et al.,
2022; von Oswald et al., 2022), fail to account for
this resiliency.

A number of previous studies have examined the
impact of prompts on model performance across
different tasks (Brown et al., 2020; Radford et al.,

2019; Lu et al., 2021; Lialin et al., 2022; Talmor
et al., 2020; Webson and Pavlick, 2021; Lampinen
et al., 2022; Reynolds and McDonell, 2021; Min
et al., 2022; Zhao et al., 2021; Raman et al., 2022;
Kim et al., 2022). However, the results have some-
times been contradictory. In particular, the stud-
ies of individual prompt components have been
plagued by inconsistency. For instance, Webson
and Pavlick (2021) found that meaningless instruc-
tions don’t have a significant effect on model perfor-
mance. On the other hand, evidence from Mishra
et al. (2021b) and Reynolds and McDonell (2021)
suggested that meaningful prompts are crucial for
zero-shot performance. Similarly, while Min et al.
(2022) and Wei et al. (2023b) demonstrated that
label semantics aren’t necessary for zero-shot per-
formance, both Kim et al. (2022) and Webson and
Pavlick (2021) argued otherwise.

Additionally, the majority of prior research has
focused either on smaller models with <15B pa-
rameters or black-box LLMs like GPT-3 (Brown
et al., 2020), InstructGPT (Ouyang et al., 2022),
and PaLM (Chowdhery et al., 2022), and there-
fore don’t offer a complete understanding of the
significance of different prompt components across
model sizes.

In the present study, we decompose the input
prompt into four components: task instructions, in-
line instructions, and demonstrations that consist

https://github.com/text-machine-lab/Understanding_prompts_via_corruption
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of input/target label pairs (see Figure 1) and in-
vestigate the effect of structural and semantic cor-
ruptions to these prompt components across ten
models, ranging from 1.5B to 70B. We evaluate
them on ten datasets, covering both classification
and generation tasks. Building on techniques from
model interpretability research, we also examine
the average per component attention of two of the
models to determine which components contribute
more to model output. Our results show that:

1. Including repeated text in the prompt boosts
model performance.

2. Addition of both task and inline instructions
improves model performance, even when
these instructions are random words.

3. Larger models exhibit higher sensitivity to
prompt semantics and pay more attention to
the semantically relevant prompt components.

2. Related work

Several prior studies have investigated in-context
learning (ICL) capabilities of large language mod-
els (Brown et al., 2020; Radford et al., 2019; Lu
et al., 2021; Lialin et al., 2022; Talmor et al., 2020;
Webson and Pavlick, 2021; Lampinen et al., 2022;
Reynolds and McDonell, 2021; Min et al., 2022;
Zhao et al., 2021; Raman et al., 2022; Wei et al.,
2023b; Madaan and Yazdanbakhsh, 2022). How-
ever, when it comes to the impact of different parts
of the prompt on model performance, the conclu-
sions have often been inconsistent. For example,
Webson and Pavlick (2021) suggest that relevant
and irrelevant instructions in the prompt yield similar
model performance, whereas Mishra et al. (2021b)
and Reynolds and McDonell (2021) argued the op-
posite. The latter studies showed that detailed and
task-relevant prompts that closely resemble natural
human language give better model performance.
Similarly, Kim et al. (2022) studied the importance
of ground-truth labels for in-context learning and
found that ground-truth labels were important for
ICL, contradicting the results from Min et al. (2022).

While prior work has not provided a compre-
hensive analysis of the impact of different prompt
components on model performance, a few stud-
ies have selectively examined specific elements of
the prompt. For example, Lampinen et al. (2022)
looked into adding explanations to the demonstra-
tion and found that adding task explanations can
significantly improve model performance. Min et al.
(2022) examined different aspects of in-context
demonstrations and found that input-label mapping
did not significantly affect model accuracy. Web-
son and Pavlick (2021) and Gu et al. (2021) studied

instructions and labels and suggested that the la-
bels were more important than instructions. Wei
et al. (2023b) investigated the effect of semantic
priors associated with the labels during pre-training,
relative to the input-label mapping provided in the
prompt, showing that the ability to override seman-
tic priors with the prompt is an emergent ability.

Prior work has also examined different prompt-
ing strategies, as well as additional fine-tuning to
improve in-context performance. For instance, Xu
et al. (2023) introduced re-reading prompting strat-
egy where they repeat the question in the prompt
and found that this strategy improves performance
for ChatGPT and GPT-3. Wei et al. (2023a) pro-
posed “symbol tuning”, fine-tuning models with ar-
bitrary labels, and observed performance improve-
ments on unseen ICL tasks. In a different ap-
proach, Gonen et al. (2022) proposed constructing
the prompt with lower perplexity for better perfor-
mance.

Few studies (Dai et al., 2022; von Oswald et al.,
2022) also linked attention computation performed
during in-context learning to model updates per-
formed with gradient descent. However, it is un-
clear how this mechanism would account for some
aspects of in-context learning, such as the success
of zero-shot prompting.

3. Experiment setup

3.1. Prompts

Prompt components We use the term “prompt”
to refer to the complete input text provided to the
model. A prompt consists of four main components:
a task instruction, demonstration input, demonstra-
tion label, and brief inline instructions accompa-
nying each demonstration (see Figure 1). Two
newlines are used as a separator after the task
instruction and after each demonstration. We re-
fer to a prompt with all components, including a
test instance and its inline instruction, as a base-
line prompt. Our experiments are conducted in a
zero-shot and 4-shot setting. Figure 1 shows the
baseline prompt for Twitter Emotion classification
dataset. Baseline prompts for all the datasets are
provided in the Appendix A.

Prompt design We leverage the task instruc-
tions and demonstrations provided by Wang et al.
(2022c) for each dataset, as they have been re-
viewed and refined through multiple iterations. We
use inline instructions from PromptSource (Bach
et al., 2022). To ensure coherence and simplic-
ity, we made a few changes to the task and inline
instructions, following the recommendations of Go-
nen et al. (2022).
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I’m feeling quite sad and sorry for myself but I’ll snap out of it soon.

In this task, you are given a tweet. The task is to classify this tweet based on its emotion. The 
answer should be one of these emotions 'Sadness', 'Joy', 'Love', 'Anger', 'Fear', or 'Surprise'.

Task Instruction

Demonstrations

Which emotion is expressed 

I am just feeling cranky and blue.

I am just feeling cranky and blue.

Test example

Sadness

AngerWhich emotion is expressed in this tweet?

Which emotion is expressed in this tweet?

in this tweet?

I can have for a treat or if i am feeling festive.

I feel like I am caring about my body not in just an attempt to be the right size but to feel good and

Joy

LoveWhich emotion is expressed in this tweet?

Which emotion is expressed in this tweet?

have a full life.

Figure 1: Prompt Components of Twitter Emotion Classification baseline prompt. Demonstration includes
input , inline instruction , label . Two newlines are added as separators after task instruction and each

demonstration. Prompts taken verbatim from Super-NaturalInstructions and PromptSource.

Prompt corruptions We perform two types of
prompt corruptions: structural corruption and se-
mantic corruption. In structural corruption, we
add or remove the prompt components, depending
on the setup. We start with the test instance and
add components one by one to analyze their effect
on model performance. To assess the impact of
repeated text in the prompt, we systematically elim-
inate inline instructions from the baseline prompt.
We remove the inline instruction from one demon-
stration, then two, and continue this process until
we have removed the inline instructions from all four
demonstrations. These corruptions are referred to
as repeated text corruptions. We keep the inline
instruction which follows the test instance as is.

In semantic corruption, we disrupt the semantics
of prompt components. Task and inline instruc-
tions are corrupted with random words drawn from
the english_words1 set. With a 100% corrup-
tion rate, we refer to this corruption as the random
words corruption. The random word instructions
retain the same number of tokens as the original
(meaningful) instructions. Labels are perturbed by
assigning incorrect labels to the demonstrations.
These incorrect labels are drawn from the same
label space. This corruption is referred to as the

1https://pypi.org/project/english-words/

wrong label corruption and is only applied to clas-
sification tasks. In the random words label corrup-
tion, we replace original labels with random words,
similar to the instruction random words corruption,
but we use the original labels to assess the model’s
predictions. To noise the demonstration inputs,
we replace them with random sentences sampled
from Common Crawl. We refer to this as Out-Of-
Distribution (OOD) input corruption.

3.2. Models, datasets and metrics
Models To cover a broad range of models, we
conducted experiments with ten models ranging
in size from 1.5B to 70B. The models are GPT2-
xl (Radford et al., 2019), GPT-J-6B (Wang and
Komatsuzaki, 2021), Pythia-12B (Biderman et al.,
2023), OPT-30B, OPT-30B-IML-MAX2, OPT-66B
(Zhang et al., 2022a), Vicuna-33B (Chiang et al.,
2023), Llama-7B, Llama-2-70B and Llama-2-70B-
chat (Touvron et al., 2023). This provides a wide
range of model sizes, and types and also doesn’t
focus on a single model family, making the results
more generalizable. Our study included pre-trained
language models, as well as instruction-tuned and
aligned models. We refer to models as "aligned"

2Instruction tuned variant of OPT.
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when they undergo additional training through rein-
forcement learning from human feedback (RLHF)
(Ouyang et al., 2022).

Datasets The evaluation was conducted on ten
datasets from Super-NaturalInstructions (Wang
et al., 2022c). Datasets include eight classifica-
tion tasks: RTE, Medical Question Pair, Financial
Phrasebank, Twitter Emotion classification, CoLA,
AgNews, COPA, Com2sense, and two generation
tasks: TriviaQA and Mathdataset answer genera-
tion (Wang et al., 2022c). Following Wang et al.
(2022c), we used 100 randomly sampled balanced
test instances for each of the 10 datasets. Data
statistics are shown in Table 3 in the Appendix.

Evaluation method and metrics For evaluation,
we used Exact Match for classification tasks, and
Rouge-L for generative tasks. Following Wang et al.
(2022c), we strip the model response at the first
full stop symbol. We used the jackknife variance
estimate method to calculate the mean of model
performance. The mean performance, averaged
across tasks, is reported for each model in Tables
1 and 2. For all figures, we plot the mean as the
“average score”. For generation tasks, we used
the greedy decoding strategy, setting the top-p and
temperature values to 1 and limiting the maximum
number of new tokens to 10.

Attention computation To understand the sig-
nificance of different prompt components, we com-
puted the average attention norm per prompt com-
ponent for GPT-J-6B (Wang and Komatsuzaki,
2021) and OPT-30B (Zhang et al., 2022a). Fol-
lowing Kobayashi et al. (2020), we compute the L2
norm of the sum of the attention-weighted value
vector ∥

∑
αV (x)∥, where α is the attention weight,

x is the input vector, and V (x) = WO(WV x) is the
value projection of x, followed output transforma-
tion WO. Specifically, we used the last token of
the prompt as the query token and extracted atten-
tion norms for the other tokens. For each token,
we averaged these norms across all layers. We
then averaged the resulting scores over all tokens
corresponding to a given prompt component. This
average is reported in Figures 6, 13 and 12.

For GPT-J-6B, each plot shows the average at-
tention norm over 100 samples (10 samples per
dataset). For OPT-30B, due to computing costs, we
focused on datasets with shorter baseline prompts:
CoLA, Twitter Emotion classification, and TriviaQA.
For each attention plot, we included the average at-
tention norm from 30 samples, selecting only those
where the model predictions were correct.

4. Results

Tables 1 and 2 show results for each corruption
across 10 datasets. Here’s a breakdown of the
prompt configurations used:

• Test instance: The input prompt containing
only the test instance.

• +task instr.: Test instance with the task in-
struction added.

• +inline instr.: Test instance with an inline in-
struction added instead of the task instruction.

• +both instr.: Test instance with both task and
inline instructions added.

• +demos.: Test instance plus four demonstra-
tions (no instructions included).

• +task instr. +demos.: Test instance with task
instructions and four demonstrations.

• +inline instr. +demos.: Test instance with
four demonstrations (each containing an inline
instruction) and no task instruction.

• Baseline: Includes all components (task in-
struction, inline instruction, demonstrations,
and test instance).

• Baseline -inputs: Baseline prompt with
demonstration inputs removed.

• Baseline -labels: Baseline prompt with
demonstration labels removed.

• Rw both instr.: Random word corruption ap-
plied to both task and inline instructions.

• Rw labels: Random word corruption applied
to labels.

• OOD inputs: Out-of-distribution input corrup-
tion.

• Inline instr. in [n] demos.: Meaningful inline
instructions added to "n" demonstrations.

• Rw inline instr. in [n] demos.: Random word
inline instructions added to "n" demonstrations.

Adding task and inline instructions boosts the
performance even when the instructions are
random words. Our experiments with four mod-
els (see Figure 2) highlight that the addition of
demonstrations to the test instance has the most
impact, producing a gain of 25-35% across all mod-
els. Accuracy is improved further by adding task
instructions and inline instructions (Figure 2). The
models gain between 5-18% accuracy when mean-
ingful instructions are added. Interestingly, this gain
is between 1-12% when instructions are just ran-
dom words, except for Llama-70B. Figure 3 shows
a similar effect for all ten models.

Inline instructions are more important than task
instructions. From Figure 3, we see that the per-
formance gained by inline instruction is 2.5-12.5%
across models whereas task instruction helps mod-
els by only 1-7.5%. This pattern is observed for
models of all sizes, except OPT-66B, where the
gain obtained by the inline instructions is close to
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Figure 2: Demonstrations improve the average score, adding task and inline instruction improves it further,
even when instructions are just random words. The Y-axis represents the average score across all
datasets. The use of random words is indicated with “rw”.

Structural Corruptions GPT2-xl GPT-J-6B OPT-30B OPT-66B
Test instance 0.9 4.2 4.4 4.7
+ task instr. 0.4 2.3 1.2 0.7
+ inline instr. 1.6 1.6 2.2 2.1
+ both instr. 1.6 3.3 2.7 2.0
+ demo. 28.1 34.9 38.3 39.6
+ task instr. + demo. 30.4 37.1 40.9 43.7
+ inline instr + demo. 37.1 38.7 40.8 43.0
Baseline 40.7 42.6 45.6 45.9
Baseline - labels 0.1 0.2 0.5 0.9
Baseline - inputs 27.1 17.0 22.0 22.3

Table 1: Model performance averaged across all datasets. The highest performance is in bold, baseline
prompt performance is underlined.

that of the task description (Figure 3). This sug-
gests models benefit from the brief repetitive text
more than from a detailed task instruction.

Repeated text boosts performance. We further
investigated the effects of repeating inline instruc-
tions. In Figure 4, we plot the results for the base-
line prompt (which includes all components) and
the results obtained when eliminating inline instruc-
tions from demonstrations one by one. Note that
we always keep the inline instruction that occurs
after the test instance. We see a huge drop in per-
formance when removing the inline instruction from
all demonstrations. The drop is 20-35% across
all models, except OPT-30B-IML, which shows a
drop of 8.8%. Interestingly, we observed a similar
effect for prompts in which inline instructions were
replaced with random words, producing a perfor-
mance drop of 40-51% (cf. Figure 5). This sug-
gests that the mere presence of repetitive text in the
prompt, whether relevant or irrelevant, can boost
model performance.

However, how often we introduce these repeti-

tions in the prompt also matters. Table 2 shows that
models like OPT-30B and Llama-70B can achieve
better performance with only two or three meaning-
ful inline instructions in the prompt. The attention
plot in Figure 11 shows that if we introduce inline in-
struction in four demonstrations rather than in one,
the attention to the input segment of each demon-
stration dropped from 2% to 1.8% and the attention
to each of the labels decreased by around 0.4%.
We see a similar pattern for repeated text corrup-
tions in prompts with random word instructions (see
Figure 15 in Appendix).

Labels must be drawn from the label space, but
need not be correct. When we perturb labels
with the wrong label corruption, the performance
drops just by 0-6% across all models (except for
Llama-2-70B, where the drop is 18.6%). However,
when we apply random words label corruption,
the accuracy drops to almost zero for all models
(except OPT-30B-IML-MAX) (cf. Figure 9). Com-
plete removal of the labels from the prompt has a
similar effect (cf. Figure 7).
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Figure 3: Adding relevant or meaningless instruction to the prompt improves model performance. The
components are added to the test instance. For example ‘+ demonstrations’ means test instance +
demonstration.The Y-axis represents the average score across all datasets. Random words are indicated
with “rw”.

Corruptions GPT2
xl

GPT-J
6B

LLama
7B

Pythia
12B

OPT
30B

OPT-30B
IML-MAX

Vicuna
33B

OPT
66B

LLama-2
70B

LLama-2
70B-chat

Structural
+ demos. 28.1 34.9 40.8 33.7 38.3 49.0 48.5 38.6 49.1 48.8
+ task instr. + demos. 30.4 37.1 44.2 37.2 40.9 55.1 49.7 43.7 55.9 56.5
+ inline instr. + demos. 37.1 38.7 46.0 41.1 40.8 64.6 59.0 43.0 61.7 58.3
Baseline 40.7 42.6 47.4 38.9 45.6 67.7 61.7 45.9 64.5 63.4
Semantic
Rw both instr. 40.4 41.5 44.5 39.3 40.5 49.8 50.5 42.6 48.2 52.7
Rw labels 3.7 1.8 1.4 1.4 3.4 46.5 3.8 2.7 1.2 7.9
OOD inputs 41.7 40.7 43.9 38.1 44.6 67.6 57.1 40.7 50.5 57.4
Repeated Text
Inline instr. in 3 demos. 43.2 43.2 48.2 39.3 45.8 65.8 61.1 43.1 64.6 63.5
Inline instr. in 2 demos. 40.9 43.1 44.5 41.6 43.7 63.9 59.3 43.5 62.7 62.6
Inline in instr. 1 demos. 40.6 43.1 42.7 39.8 45.7 63.2 58.8 41.9 62.0 61.3
Inline in instr. 0 demos. 13.3 22.6 17.9 14.8 21.4 59.0 30.5 20.3 35.1 29.2
Rw inline instr. in 3 demos. 35.8 38.8 43.1 38.8 35.6 50.9 51.9 39.7 48.2 56.1
Rw inline instr. in 2 demos. 35.9 36.1 41.1 36.0 35.4 45.4 46.6 40.6 49.2 49.0
Rw inline instr. in 1 demos. 33.0 34.9 36.7 31.4 22.4 35.0 38.7 32.8 37.7 41.5
Rw inline instr. in 0 demos. 0.6 0.2 1.3 0.4 0.2 0.2 1.1 0.3 0.7 1.6

Table 2: Model performance averaged across all datasets. Structural corruption is when components are
added to the test instance. Repeated text corruptions are performed on baseline prompt which includes
inline instruction in all four demonstrations. Random words text is represented by “Rw”. The top two
performances for each model are in bold, and baseline prompt performance is underlined.

Bigger models are more sensitive to the seman-
tics of the prompt. We divide the models in the
study into smaller (<15B) and bigger (≥ 30B) mod-
els. In Figure 3, smaller models show the perfor-
mance gain between 5-12% with both relevant and
irrelevant instructions, whereas bigger models gain
more with meaningful instructions (7-18%) and just
1-4% with random word instructions. When we
perturb demonstration inputs with OOD sentences
(see Figure 10), smaller models’ accuracy drops
by 1-4%. In bigger models, this performance de-
crease is larger (1-6%), with Llama-2-70b showing
a huge drop of 18%, which suggests that bigger
models are more sensitive to prompt semantics.

Bigger models pay more attention to relevant
components. In Figure 6, we plot the average at-
tention per component for GPT-J-6B and OPT-30B
baseline prompts. In line with earlier observations
about vertical attention patterns (Kovaleva et al.,
2019), we find that the models allocate the highest
attention weight to separators, after which the most
attended to component is labels. Inline instructions
are next, followed by demonstration inputs and task
instructions. Compared to smaller models, larger
models seem to allocate more attention to relevant
components and less to separators when generat-
ing the target label. For example, OPT-30B allo-
cates 5.4% less attention to separators compared
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Figure 4: Repeated text boosts performance. Inline instruction in four demos is the baseline prompt.
Inline instruction which occurs after the test instance is kept as is.
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Figure 5: Repeated text boosts performance even when the text is irrelevant; “rw” refers to random words.
The prompts include all components but the instructions are replaced with random words.

to GPT-J-6B, and instead increases attention to
inline instructions by 3.5% and to demonstration
inputs by 2.3%. To compare how models behave
when text is corrupted semantically, we plotted at-
tention for prompts with meaningful versus irrel-
evant instructions (see Figures 12 and 13). We
see that GPT-J-6B shifts its attention from sepa-
rators and labels to the demonstration input and
the random inline instructions. OPT-30B does the
opposite: it reduces its attention to random words

text and shifts it to the separator.

Results are similar in classification and genera-
tion tasks, with few exceptions. As can be seen
in Table 4, repeating inline instructions has a big
impact on both classification and generation tasks
regardless of model size. The first repetition has
the most pronounced effect, and this is true even
when the inline instructions are random. To see this
effect, compare the rows “Inline instr. in 0 demos”

GPT-J-6B
Baseline prompt 1.4 6.7 1.3 1.6 5.3 6.7 6.7 1.4 1.6 5.8 6.7 6.7 1.4 1.6 6.2 6.7 6.7 1.3 1.6 6.2 6.7 6.7 1.4 1.6
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Figure 6: Average attention per component for GPT-J-6B and OPT-30B baseline prompts. ‘D’ stands for
Demonstration and “sep” for the new line separator.
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Figure 7: Label from label space is important. Com-
plete removal of labels drops the performance to
almost zero.
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Figure 8: Semantics of the demonstration input is
not important. Complete removal of labels drops
the performance.

and “Inline instr. in 1 demos”, as well as the rows
“Rw Inline instr. in 0 demos” and “Rw Inline instr. in
1 demos” in Table 4. We also observe that adding
relevant or random word instructions to demonstra-
tions improves GPT2-xl performance by an average
of 12.5% for classification and 3.8% for generation
tasks. For the larger model LLama-2-70B, relevant
instructions lead to gains of 18.5% for classifica-
tion and 3.3% for generation tasks. Adding random
word instructions yields LLama-2-70B, a marginal
improvement of 0.1% in classification tasks and a
drop of 1.7% for generation tasks. To see this effect,
compare the rows “+demos.”, “Baseline” and “Rw
both instr.” in Table 4. The performance drop from
meaningful to random word instructions is more
pronounced (20.2% drop) in LLama-2-70B in clas-
sification tasks (compare rows “Baseline” and “Rw
both instr.” in Table 4) suggesting that larger models
pay more attention to the meaning of the instruc-
tion. In generation tasks, both model sizes exhibit
a comparable drop in performance.

Results are consistent across most of the
datasets. Tables 5 and 6 show results for each
dataset individually for both GPT2-xl and LLama-
2-70B. The first repetition of relevant or irrelevant
inline instructions in the prompt significantly boosts
performance across all datasets for both model
sizes. Adding relevant instructions proves benefi-
cial for both GPT2-xl and LLama-2-70B on all 10

datasets. At the same time, adding random word
instruction benefits GPT2-xl on 8 out of 10 datasets,
but LLama-2-70B only on 6 out of 10 datasets. Cor-
rupting labels with random words impacts GPT-2-xl
on 8 out of 10 datasets and LLama-2-70B on all
datasets.

5. Conclusion

This study investigated the importance of different
components of a prompt for large language models.
We systematically corrupted prompts in different
ways across 10 models ranging from 1.5 billion to
70 billion parameters and evaluated their perfor-
mance on 10 diverse datasets. We also examined
how much attention the models allocate to different
prompt components. One interesting finding was
that adding any inline instructions to the prompt,
even just random words, actually helps models per-
form better. We also showed that repeated text
improves model performance drastically and that
larger models are substantially more sensitive to
prompt semantics. We hope our study will pave
the way for more refined and effective prompting
strategies in future applications.

6. Limitations

Our study was focused on exploring various types
of corruption across a diverse range of datasets
and model sizes. It involved a large number of ex-
periments and certain prompt elements were held
constant, such as demonstrations and instructions.
Altering these components might introduce varia-
tions in the results, and this aspect should be taken
into consideration for further research. Additionally,
we limited the attention analysis to datasets with
shorter prompts due to the computational inten-
sity and cost associated with computing attention
norms. An additional limitation arises from the use
of the same prompt template across all model types.
This uniformity may lead to some performance dis-
crepancies in instruction-tuned models.

7. Ethic Statements

Our goal with this study is to enrich the understand-
ing of prompting and contribute to the responsible
utilization of large language models. We believe
that attention analysis can offer meaningful insights
to the research community, facilitating the develop-
ment of more robust language models. It’s note-
worthy that all the models and datasets employed
in our research are open source, and we meticu-
lously reported all experiment details in the paper
to support the transparency and accessibility of the
research.
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Figure 9: Using labels from the correct label space is crucial for model performance.
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Figure 10: Semantics of the demonstration input is not important.
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Figure 11: Average OPT-30B attention per component for repeated text corruptions. “Inline” refers to the
presence of the number of inline instructions in the baseline prompt. A solid black box represents omitted
components.

Baseline prompt 1.7 6.1 1.8 2.3 5.1 6.1 6.1 2.0 2.3 5.8 6.1 6.1 2.1 2.3 5.8 6.1 6.1 1.8 2.3 6.1 6.1 6.1 2.0 2.3

Ta
sk

Ins
t

se
p

D1
 in

pu
t

D1
 in

lin
e

D1
 la

be
l

pe
rio

d
se

p
D2

 in
pu

t
D2

 in
lin

e
D2

 la
be

l
pe

rio
d

se
p

D3
 in

pu
t

D3
 in

lin
e

D3
 la

be
l

pe
rio

d
se

p
D4

 in
pu

t
D4

 in
lin

e
D4

 la
be

l
pe

rio
d

se
p

Te
st 

inp
ut

Te
st 

inl
ine

Random words
instructions 1.6 6.2 1.8 2.1 5.0 6.2 6.2 2.0 2.1 5.8 6.2 6.2 2.1 2.1 5.8 6.2 6.2 1.8 2.1 6.2 6.2 6.2 2.0 2.1

0.0

0.5

1.0

Figure 12: Average attention per component for OPT-30B: Baseline prompt versus prompt when both
task and inline instructions are replaced by random words.
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task and inline instructions are replaced by random words.
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A. Components of Prompts for all
datasets

We show baseline prompts for all datasets. We
use 4-shot setting and each prompt consists of four
components: Task instruction, inline instruction,
demonstration input and label. [Test instance] will
vary. Each dataset consists of 100 samples and is
balanced. Data statistics for each of the datasets
is shown in 3.

Medical Question Pair (Classification
task)

In this task you are given a medical
question pair. Your task is to classify this
question pair into two categories 1) ’Similar’
if the given two questions have the same
connotation or meaning 2) ’Dissimilar’ if
the given two questions have a different
connotation or meaning.

Question1: After how many hour from
drinking an antibiotic can I drink alcohol?
Question2: I have a party tonight and I took
my last dose of Azithromycin this morning.
Can I have a few drinks? Are these two
questions similar or dissimilar? Similar.

Question1: After how many hour from
drinking an antibiotic can I drink alcohol?
Question2: I vomited this morning and
I am not sure if it is the side effect of
my antibiotic or the alcohol I took last
night... Are these two questions similar or
dissimilar? Dissimilar.

Question1: Can coarctation of the aorta
cause poor growth in height? Question2: I
am 4’ 8". My mom said that I have a birth
defect (coarctation of aorta). Are the two
related? Are these two questions similar or
dissimilar? Similar.

Question1: Aspirin allergy - is it worth
getting a bracelet? Question2: How much
Aspirin can I take for my headache without
causing any side effects? Are these two
questions similar or dissimilar? Dissimilar.

[Test instance.] Are these two ques-
tions similar or dissimilar?

Twitter Emotion Classification (Classifi-
cation task)

In this task, you are given a tweet. The
task is to classify this tweet based on its
emotion. The answer should be one of
these emotions ’Sadness’, ’Joy’, ’Love’,
’Anger’, ’Fear’, or ’Surprise’.

Im feeling quite sad and sorry for my-
self but ill snap out of it soon. Which
emotion is expressed in this tweet? Sad-
ness.

I am just feeling cranky and blue. Which
emotion is expressed in this tweet? Anger.

I can have for a treat or if i am feel-
ing festive. Which emotion is expressed in
this tweet? Joy.

I feel like im caring about my body
not in just an attempt to be the right size
but to feel good and have a full life.Which
emotion is expressed in this tweet? Love.

[Test instance.] Which emotion is ex-
pressed in this tweet?

CoLA (Classification task)

You will be given a sentence. If the sentence
is grammatically correct and meaningful,
then answer with ’Yes’, otherwise ’No’.

Our friends won’t buy this analysis,
let alone the next one we propose. Is this
sentence meaningful and grammatically
correct? Yes.

One more pseudo generalization and
I’m giving up. Is this sentence meaningful
and grammatically correct? Yes.

They drank the pub. Is this sentence
meaningful and grammatically correct? No.

Day by day the facts are getting murkier. Is
this sentence meaningful and grammatically
correct? Yes.

[Test instance.] Is this sentence meaningful
and grammatically correct?
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Dataset Statistics
RTE Yes(50), No(50)

Medical Question Pair Similar(50), Similar(50)
Financial Phrasebank Neural(33), Negative(33), Positive(34)

Twitter Emotion classification Sadness(17), Joy(17), Love(17), Anger(17), Fear(16), Surprise(16).
CoLA Yes(50), No(50)

AgNews World(25), Sports(25), Business(25), Sci/Tech(25)
COPA Cause(50), Effect(50)

Com2sense Yes(50), No(50)
TriviaQA -

Mathdataset -

Table 3: Datasets statistics: labels and total number of samples per label in brackets.

Com2sense (Classification task)

You will be given a piece of text either about
an everyday event, or a general statement.
If the event seems a plausible event, or the
general statement makes sense to you then
answer the question as ’Yes’, otherwise ’No’.

The glass fell of a three-story build-
ing, so it broke into pieces. Does this
statement make sense to you? Yes.

Marry was going out to work, so she
asked her sixteen-year-old daughter to take
care of her five-year-old son. Does this
statement make sense to you? Yes.

Johnathan didn’t have a hammer, so
he used a cotton pad to drive the nail into
the wood. Does this statement make sense
to you? No.

Suraya’s best friend is getting mar-
ried soon, so she will likely choose to go on
a trip instead of helping her friend organize
the ceremony. Does this statement make
sense to you? No.

[Test instance.] Does this statement
make sense to you?

RTE (Classification Task)

In this task, you are given two sentences.
Indicate if the first sentence clearly entails the
second sentence (i.e., one can conclude the 2nd
sentence by reading the 1st one). Indicate your
answer with ’Yes’ if the first sentence entails the
second sentence, otherwise answer with ’No’.

Sentence 1: No Weapons of Mass Destruction
Found in Iraq Yet. Sentence 2:Weapons of
Mass Destruction Found in Iraq. Does Sentence
1 entail Sentence 2? No.

Sentence 1: A place of sorrow, after Pope John
Paul II died, became a place of celebration, as
Roman Catholic faithful gathered in downtown
Chicago to mark the installation of new Pope
Benedict XVI. Sentence 2: Pope Benedict XVI
is the new leader of the Roman Catholic Church.
Does Sentence 1 entail Sentence 2? Yes.

Sentence 1: Herceptin was already ap-
proved to treat the sickest breast cancer
patients, and the company said, Monday, it will
discuss with federal regulators the possibility
of prescribing the drug for more breast cancer
patients. Sentence 2: Herceptin can be used
to treat breast cancer. Does Sentence 1 entail
Sentence 2? Yes.

Sentence 1: Nearly 4 million children who
have at least one parent who entered the U.S.
illegally were born in the United States and are
U.S. citizens as a result, according to the study
conducted by the Pew Hispanic Center. That’s
about three quarters of the estimated 5.5 million
children of illegal immigrants inside the United
States, according to the study. About 1.8 million
children of undocumented immigrants live in
poverty, the study found. Sentence 2: Three
quarters of U.S. illegal immigrants have children.
Does Sentence 1 entail Sentence 2? No.

[Test instance.] Does Sentence 1 entail
Sentence 2?
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Financial Phrasebank (Classification
task)

Classify the given a piece of financial
news into three classes: positive, negative,
and neutral. Output must be ’Positive’,
’Negative’, or ’Neutral’.

According to Gran , the company has
no plans to move all production to Russia
, although that is where the company is
growing. Is the sentiment of the sentence
’Negative’, ’Neutral’, or ’Positive’? Neutral.

Technopolis plans to develop in stages an
area of no less than 100,000 square meters
in order to host companies working in com-
puter technologies and telecommunications
, the statement said. Is the sentiment of the
sentence ’Negative’, ’Neutral’, or ’Positive’?
Neutral.

The international electronic industry
company Elcoteq has laid off tens of
employees from its Tallinn facility ; contrary
to earlier layoffs the company contracted
the ranks of its office workers , the daily
Postimees reported. Is the sentiment of the
sentence ’Negative’, ’Neutral’, or ’Positive’?
Negative.

With the new production plant the company
would increase its capacity to meet the
expected increase in demand and would
improve the use of raw materials and there-
fore increase the production profitability. Is
the sentiment of the sentence ’Negative’,
’Neutral’, or ’Positive’? Positive.

[Test instance.] Is the sentiment of
the sentence ’Negative’, ’Neutral’, or
’Positive’?

Mathdataset Answer Generation (Gener-
ation task)

Given a simple high-school level math
question, you are required to solve it and
provide the final answer. The final answer
is always a single number. These questions
can range from a variety of topics like simple
arithmetic, solving equations, converting a
quantity from one unit to another, finding
remainders/GCD/LCM, finding probabilities
etc. Each question has only one correct
answer. This answer can be a positive or
negative integer, a fraction or a decimal
number. If the answer is a negative number
use the hyphen (e.g. -42) symbol for the
minus sign. For decimal numbers, do not
add extra zeros after the decimal point. For
fractional numbers, separate the numerator
and denominator using a forward slash (e.g.
3/25).

Let y = -74 - -79. Solve 0 = -y*q - 13
+ 3 for q. The answer to this math problem
is -2.

Work out 29.8 + -0.18. The answer
to this math problem is 29.62.

How many nanometers are there in
610.1077 millimeters The answer to this
math problem is 610107700.

Four letters picked without replace-
ment from bboobleoeewobw. What is prob
of picking 3 o and 1 e? The answer to this
math problem is 12/1001.

[Test instance.] The answer to this
math problem is
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AGNews (Classification task)

In this task, you are given a news article.
Your task is to classify the article to one
out of the four topics ’World’, ’Sports’,
’Business’, ’Sci/Tech’. If you are not sure
about the topic, choose the closest option.
Note that URLs in the text have been
replaced with [Link].

Comets, Asteroids and Planets around a
Nearby Star (SPACE.com) SPACE.com -
A nearby star thought to harbor comets
and asteroids now appears to be home
to planets, too. The presumed worlds are
smaller than Jupiter and could be as tiny
as Pluto, new observations suggest. What
label best describes this news article?
Sci/Tech.

Oil and Economy Cloud Stocks’ Out-
look NEW YORK (Reuters) - Soaring crude
prices plus worries about the economy
and the outlook for earnings are expected
to hang over the stock market next week
during the depth of the summer doldrums.
What label best describes this news article?
Business.

Russian FM meets with Katsav Rus-
sian Foreign Minister Sergey Lavrov met
Monday with Israeli 39;s President Moshe
Katsav as part of his first tour of the
region to discuss, among other topics, a
collaboration between the two countries
in combating terrorism. What label best
describes this news article? World.

Murtagh a stickler for success North-
eastern field hockey coach Cheryl Murtagh
doesn’t want the glare of the spotlight that
shines on her to detract from a team that
has been the America East champion
for the past three years and has been to
the NCAA tournament 13 times. What la-
bel best describes this news article? Sports.

[Test instance.] What label best describes
this news article?

COPA (Classification task)

In this task your given two statements. You
must judge whether the second sentence
is the cause or effect of the first sentence.
The two sentences are separated by a
newline character and the answer can be
’Cause’ or ’Effect’.

The women met for coffee. They wanted
to catch up with each other. Is the second
sentence cause or effect of the first sen-
tence? Cause.

The physician misdiagnosed the pa-
tient. The patient filed a malpractice lawsuit
against the physician. Is the second sen-
tence cause or effect of the first sentence?
Effect.

The guests of the party hid behind
the couch. It was a surprise party. Is the
second sentence cause or effect of the first
sentence? Cause.

My friend was recovering from surgery. I
brought her a card and flowers. Is the
second sentence cause or effect of the first
sentence? Effect.

[Test instance.] Is the second sentence
cause or effect of the first sentence?

TriviaQA (Generation task)

You are given a general knowledge ques-
tion based on Wikipedia and Web content.
Write an answer to this question.

Who was the man behind The Chipmunks?
The answer to this question is David Seville.

What star sign is Jamie Lee Curtis?
The answer to this question is Scorpio.

Which Lloyd Webber musical premiered
in the US on 10th December 1993? The
answer to this question is Sunset Boulevard.

The Euro is divided into how many
cents? The answer to this question is 100.

[Test instance.] The answer to this
question is
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B. More results

Table 4 shows results for classification and genera-
tion tasks whereas Tables 5 and 6 show results for
individual tasks for GPT-2-xl (smaller model) and
Llama-2-70B (bigger model) respectively.

C. Attention plots

Figure 14 shows repeated text corruptions for GPT-
J-6B. Figure 15 shows repeated text corruptions for
OPT-30B with random word instructions.
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Corruptions GPT2-xl GPT2-xl LLama-2-70B LLama-2-70B
Classification Generation Classification Generation

Semantic Corruptions
+ demos. 28.1 9.8 53.8 30.7
+ task instr. + demos. 30.4 11.2 61.6 33.0
+ inline instr. + demos. 38.3 9.3 69.0 32.5
Baseline 40.7 15.5 72.3 33.4
Semantic Corruption
Rw both instr. 40.4 11.6 52.1 30.8
Rw labels 3.7 6.3 1.1 1.7
OOD inputs 41.7 13.3 57.6 22.1
Repeated text
Inline instr. in 3 demos 45.3 15.1 72.4 33.5
Inline instr. in 2 demos 41.4 14.7 70.4 31.9
Inline instr. in 1 demos 41.4 15.3 69.6 31.7
Inline instr. in 0 demos 17.6 9.1 38.1 22.9
Rw Inline instr. in 3 demos 41.1 10.2 53.5 27.0
Rw Inline instr. in 2 demos 41.6 9.1 54.0 29.8
Rw Inline instr. in 1 demos 40.2 3.0 41.5 22.5
Rw Inline instr. in 0 demos 0.9 0.0 0.9 0.2

Table 4: Model performance for classification and generation tasks. The highest performance is in bold, baseline
prompt performance is underlined.

Corruption RTE MQP FPH TE CoLA AGN COPA C2S TQ MATH
Structural
+ demos. 46.0 46.0 19.0 6.0 49.0 33.0 20.0 42.0 18.6 0.9
+ task instr. 45.0 47.0 25.0 19.0 48.0 39.0 22.0 37.0 20.2 2.1
+ inline instr. 50.0 50.0 35.0 26.0 50.0 61.0 54.0 50.0 15.1 3.6
Baseline 53.0 60.0 34.0 23.0 51.0 58.0 50.0 47.0 17.0 14.0
Semantics
Rw both instr. 53.0 50.0 58.0 25.0 44.0 54.0 50.0 47.0 15.6 7.7
Rw labels 0.0 0.0 0.0 23.0 0.0 1.0 0.0 0.0 11.9 0.7
OOD inputs 51.0 52.0 46.0 28.0 50.0 63.0 52.0 48.0 12.7 13.9
Repeated text
Inline instr. in 3 demos 52.0 63.0 50.0 22.0 50.0 41.0 50.0 51.0 18.0 12.2
Inline instr. in 2 demos 54.0 70.0 35.0 21.0 50.0 32.0 50.0 50.0 14.9 14.6
Inline instr. in 1 demos 50.0 50.0 33.0 31.0 50.0 38.0 50.0 50.0 15.1 15.5
Inline instr. in 0 demos 1.0 43.0 0.0 1.0 47.0 16.0 0.0 0.0 9.1 9.3
Rw Inline instr. in 3 demos 50.0 50.0 40.0 20.0 42.0 37.0 50.0 49.0 15.4 5.0
Rw Inline instr. in 2 demos 50.0 50.0 33.0 20.0 50.0 35.0 53.0 50.0 11.5 6.8
Rw Inline instr. in 1 demos 50.0 50.0 33.0 16.0 50.0 25.0 50.0 50.0 0.0 6.0
Rw Inline instr. in 0 demos 0.0 0.0 0.0 0.0 4.0 0.0 0.0 2.0 0.0 0.0

Table 5: Model performance for each dataset for GPT2-xl. Datasets are RTE, Medical Question Pair (MQP),
Financial Phrasebank (FPH), Twitter Emotion classification(TE), CoLA, AgNews (AGN), COPA, Com2sense (C2S),
and two generation tasks: TriviaQA (TQ) and Mathdataset answer generation(MATH)
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Corruption RTE MQP FPH TE CoLA AGN COPA C2S TQ MATH
Structural
+ demos. 61.0 60.0 60.0 22.0 49.0 58.0 67.0 53.0 41.6 19.8
+ task instr. 67.0 66.0 69.0 22.0 72.0 61.0 64.0 72.0 41.8 24.2
+ inline instr. 70.0 67.0 78.0 42.0 72.0 83.0 75.0 65.0 42.4 22.2
Baseline 84.0 77.0 80.0 34.0 81.0 86.0 64.0 72.0 42.5 24.3
Semantics
Rw both instr. 66.0 53.0 34.0 27.0 54.0 74.0 56.0 56.0 42.9 18.7
Rw labels 3.0 0.0 0.0 1.0 0.0 0.0 0.0 5.0 1.7 1.7
OOD inputs 70.0 61.0 71.0 20.0 77.0 35.0 54.0 73.0 35.0 9.2
Repeated text
Inline instr. in 3 demos 76.0 82.0 84.0 44.0 74.0 85.0 63.0 71.0 45.8 21.2
Inline instr. in 2 demos 72.0 80.0 78.0 41.0 72.0 86.0 65.0 69.0 40.4 23.3
Inline instr. in 1 demos 70.0 81.0 82.0 37.0 76.0 84.0 60.0 67.0 43.2 20.3
Inline instr. in 0 demos 43.0 52.0 34.0 24.0 71.0 1.0 25.0 55.0 25.3 20.5
Rw Inline instr. in 3 demos 63.0 55.0 40.0 35.0 49.0 79.0 58.0 49.0 39.5 14.5
Rw Inline instr. in 2 demos 58.0 70.0 33.0 34.0 50.0 77.0 59.0 51.0 39.9 19.7
Rw Inline instr. in 1 demos 50.0 58.0 34.0 18.0 48.0 25.0 50.0 49.0 39.1 6.0
Rw Inline instr. in 0 demos 5.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.4 0.0

Table 6: Model performance for each dataset for LLama-2-70B. Datasets are RTE, Medical Question Pair (MQP),
Financial Phrasebank (FPH), Twitter Emotion classification(TE), CoLA, AgNews (AGN), COPA, Com2sense (C2S),
and two generation tasks: TriviaQA (TQ) and Mathdataset answer generation(MATH)
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Figure 14: Average GPT-J-6B attention per component for repeated text corruptions. “Inline” refers to the
presence of the number of inline instructions in the baseline prompt. Fully black box represents missing
components.
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Figure 15: Random words instructions: Average OPT-30B attention per component for repeated text
corruptions. “Inline” refers to the presence of the number of inline instructions in the baseline prompt. A
solid black box represents omitted components.
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