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Abstract
Traditionally, approximate dynamic programming is employed in dialogue generation with greedy policy improvement
through action sampling, as the natural language action space is vast. However, this practice is inefficient for
reinforcement learning (RL) due to the sparsity of eligible responses with high action values, which leads to weak
improvement sustained by random sampling. This paper presents theoretical analysis and experiments that reveal
the performance of the dialogue policy is positively correlated with the sampling size. To overcome this limitation, we
introduce a novel dual-granularity Q-function that explores the most promising response category to intervene in the
sampling process. Our approach extracts actions based on a grained hierarchy, thereby achieving the optimum
with fewer policy iterations. Additionally, we use offline RL and learn from multiple reward functions designed to
capture emotional nuances in human interactions. Empirical studies demonstrate that our algorithm outperforms
baselines across automatic metrics and human evaluations. Further testing reveals that our algorithm exhibits both
explainability and controllability, as well as generates responses with higher expected rewards.

Keywords: Dialogue Generation, Reinforcement Learning, Dual-granularity Q-function

1. Introduction

To ensure a satisfactory user experience, an in-
telligent dialogue agent is required to respond flu-
ently and naturally while being endowed with a
“forward-looking” capacity in the dialogue. A pre-
dominant approach to training agents is to optimize
the maximum likelihood estimation (MLE) objective
for the probability distribution of responses. How-
ever, this supervised technique is insufficient to
learn a long-term behavior since the corpus often
contains suboptimal dialogues, and MLE cannot
model the future direction of the conversation. In-
stead, if we view the open-domain dialogue as a
control problem, RL could enable agents to auto-
matically adjust policy concerning the pre-defined
appraisal functions via a trial-and-error process.

Recent work in RL for dialogue generation is
well summarized by Lone et al. (2022). Most
prior studies build dialogue agents using the actor-
critic framework, optimizing the policy with the sup-
port of N generated possible responses from the
agent to maximize the action-value function (i.e.,
Q-function). Although this self-behavior cloning
avoids reliance on policy gradients, thereby pre-
venting divergence from human language, it often
suffers from slow improvement and falls into a trivial
local optimum due to its indiscriminate treatment
of the action space. We argue that the actions
that can make the Q-function produce a higher
value (i.e., Q-value) in a given state will be simi-
lar at an elevated abstraction rank. For example,
in a conversation about favorite food, responses

Figure 1: Comparison of our idea with prior work.

about restaurants are more likely to get higher cu-
mulative expected rewards than those about busi-
ness. If we apprehend which abstract category
of actions can achieve a higher Q-value, generat-
ing responses from that category for greedy im-
provement will make the training policy more effi-
cient. A simple illustration depicting this view is
provided in Figure 1. To this end, we propose
a dual-granularity Q-function to evaluate the Q-
value associated with an action under different
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levels of abstraction. Specifically, our algorithm
includes a coarse-grained Q-function based on
category-represented responses, which aims to
lock in the optimal category, and a fine-grained Q-
function based on token-represented responses,
which strives to extract the optimal action. In this
manner, the infinite action space is divided into sev-
eral blocks at the high-level abstraction, enabling
exploration of the entire action space to adapt policy
on the fly. Since RL requires numerous costly inter-
actions with the environment (i.e., real users), we
applied offline RL to our algorithm, which leverages
the previously collected English dataset DailyDia-
log (Li et al., 2017) for policy training. Moreover,
inspired by the psychology of human conversa-
tion, four reward functions are devised to improve
the agent’s ability to engage in natural dialogue.
Experimental results demonstrate that by training
with our algorithm, four state-of-the-art dialogue
models achieve a significant performance improve-
ment. The controllability and effectiveness of our
approach are clarified in the discussion. Our main
contributions in this study are two-fold:
(1) To the best of our knowledge, this is the first
attempt to implement offline RL using different-
grained representations of natural language. This
approach provides a unified algorithmic template
suitable for tasks with large action spaces.
(2) The quantitative and qualitative empirical verifi-
cations have established that our approach exhibits
a high level of trustworthiness.

2. Methodology

2.1. Preliminaries
We begin with a Markov decision process repre-
sented by a tuple M = (S,A, T,R, γ), where S is
the state space, A is the action space, T is the
state transition function, R is the reward function,
and γ ∈ (0, 1) is a discount factor. In the dialogue
setting, the agent observes a context s, executes
its policy π, by generating a response a, accord-
ing to π(a|s), transitions to a new context s′, and
receives a reward r = R(s, a). The goal is to learn
π to maximize cumulative reward from a dataset
D, which consists of multiple (s, a, r, s′) pairs pro-
duced under a potential behavior πβ . Therefore,
prior works typically rely on the actor-critic style
that alternates between fitting Q-function by the
policy evaluation based on approximate dynamic
programming (i.e., iterating the Bellman operator
via minimizing the temporal difference error) and
improving π by updating it toward responses that
maximize the expected Q-value.

Evaluation : Q← argmin
Q

E(s,a,r,s′)∽D

[(r + γEa′∽π(a′|s′)[Q(s′, a′)]−Q(s, a))2].
(1)

Improvement : π ← argmax
π

Es∽D,a∽π(a|s)

[Q(s, a)].
(2)

A challenge in implementing offline RL is that
static D has limited coverage of S and A, whereby
π may be biased toward out-of-distribution (OOD)
actions for πβ with erroneously high Q-value (Fu-
jimoto et al., 2019; Kumar et al., 2020; Kostrikov
et al., 2021). Hence, we follow Jang et al. (2022)
to employ the one-step algorithm (Brandfonbrener
et al., 2021) for on-policy evaluation, as shown be-
low, which can iterate in a rather stable manner
since actions are always in D to avoid the OOD
due to distribution deviations between π and πβ .

Evaluation : Q← argmin
Q

E(s,a,r,s′,a′)∽D

[(r + γQ(s′, a′)−Q(s, a))2].
(3)

2.2. Dual-granularity Q-function
Traditionally, to implement the argmax operator in
Eq.(2), a set of responses is sampled by π(a|s),
and π is updated based on the one that yields the
highest action value according to the Q-function.
We can show that the renewed policy by more re-
sponses has a higher state value (i.e., a better
performance). When the sampling size is large
enough to cover the entire action space, π can the-
oretically iterate to the optimum. We also show
that the renewed policy by responses with a higher
Q-value has a higher state value. We formalize
the results in Theorem 1 and 2, respectively. The
detailed proofs are presented in Appendix A.
Theorem 1. Given a policy π and the number of
sampled actions L, if we update the new policy by

∀s, π′
L = argmax

a∈{ai}L
i=1∽π(a|s)

Qπ(s, a),

then for any N , M , such that N ≥ M ≥ 1, ∀s,
V π′

N (s) ≥ V π′
M (s) always holds.

Theorem 2. Given the policy πα, πβ , and π, s.t.
Ea∽πα(a|s)[Q

π(s, a)] ≥ Ea∽πβ(a|s)[Q
π(s, a)], if the

number of sampled actions is L, and we update
the new policy by

∀s, π′
1 = argmax

a∈{ai}L
i=1∽πα(a|s)

Qπ(s, a),

∀s, π′
2 = argmax

a∈{ai}L
i=1∽πβ(a|s)

Qπ(s, a),

then ∀s, V π′
1(s) ≥ V π′

2(s) always holds.
Since it is impractical to exhaust all possible re-

sponses, we focus on constructing the sampling
process in a more organized manner instead of
randomly in order to yield responses with a higher
Q-value and learn an agent with better performance
with the same sample size. We call response a the
fine-grained action and its category representation
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Algorithm 1 Dual-granularity Q-function
Input:

The dataset D = {Di = (s, a, r, s′, a′)}Mi=1, the classifier F with action category set {āi}Ni=1.
Output:

The agent with policy πµ.
1: Initialization:
2: Build the dataset Dc = {Dci = (s, ā, r, s′, ā′)}Mi=1 base on the dataset D using the classifier F .
3: Initialize the critic and target network parameters ϕ, ϕ̂, θ, θ̂, control generator πψ, and agent πµ.
4: Fine-tuning the control generator πψ using (s, a, ā) triples, where s and a are from dataset D.
5: for i = 1 to until Qϕ and Qθ converge do
6: # The iteration stops for the first converged Q-function, while the rest continue until convergence.
7: # Policy Evaluation on the dual-granularity Q-function.
8: ϕ← argmin

ϕ
(r + γQϕ̂(s

′, ā′)−Qϕ(s, ā))
2 (s, ā, r, s′, ā′) = Dci

9: θ ← argmin
θ

(r + γQθ̂(s
′, a′)−Qθ(s, a))

2 (s, a, r, s′, a′) = Di

10: Every n step ϕ̂← ϕ, θ̂ ← θ.
11: end for
12: for i = 1, s ∈ Di to until πµ converge do
13: # Policy Improvement for the agent.
14: ā∗ = argmax

ā
Qϕ(s, ā) ā ∈ {āi}Ni=1

15: {ai}Li=1 = πψ(a|s, ā∗)

16: a∗ = argmax
a

Qθ(s, a) a ∈ {ai}Li=1

17: µ← argmin
µ

−log πµ(a∗|s)

18: end for

ā the coarse-grained action, where ā belongs to
a finite set of categories {āi}Ni=1 and ā can obtain
by argmaxāiF (āi|a), where F is a classifier. The
coarse-grained Q-function searches the category
ā∗ with the highest Q-value from {āi}Ni=1, where
policy evaluation is given by

ϕ← argmin
ϕ

E(s,ā,r,s′,ā′)∽Dc

[(r + γQϕ̂(s
′, ā′)−Qϕ(s, ā))

2],
(4)

where ϕ and ϕ̂ are the parameters of the critic and
target networks (Mnih et al., 2015), and the same
is true for θ and θ̂ in Eq.(5). Dc is a new dataset
built on D that replaces fine-grained actions with
coarse-grained actions. Then, a fine-tuned con-
trol generator with policy πψ generates a set of
responses {ai}Li=1 under the specified category ac-
cording to πψ(a|s, ā∗). The fine-grained Q-function
selects the response a∗ with the highest Q-value
from {ai}Li=1, where policy evaluation is as follows.

θ ← argmin
θ

E(s,a,r,s′,a′)∽D

[(r + γQθ̂(s
′, a′)−Qθ(s, a))

2].
(5)

Finally, the agent with policy πµ is optimized by

µ← argmin
µ

Es∽D[−log πµ(a∗|s)]. (6)

Our pseudocode is presented in Algorithm 1.

2.3. Rewards
Our goal is to develop an agent that is sufficiently
intrinsically motivated to enrich the interactive con-
tent by capturing affective cues in human reactions.
To achieve this, we devised four reward functions
that assess how empathetic the response is to the
conversation. (1) The average cosine similarity be-
tween the agent’s response and dull responses. An
expression that lacks emotional engagement may
limit the development of dialogue. (2) The outpour-
ing of the emotion of surprise. It benefits to build
trust and hold the partner’s attention throughout the
conversation (Shum et al., 2018). (3) The length of
response (i.e., the number of tokens in a response).
It is a critical signal of engagement in conversation
(Zhou et al., 2020). (4) Asking questions. It is an
active listening skill that links to conversation man-
agement and responsiveness (Bodie et al., 2012).
The total of the above rewards was used as r, and
more details on the scoring design are presented
in Appendix B.

3. Experiments

3.1. Corpus
We evaluated our approach on the DailyDialog
dataset, which was crawled from websites that
serve English dialogue in daily life. This dataset is
human-rewritten and manually labeled with com-
munication intention and emotion. We referred to
its labels of action and emotion for assigning re-
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Agent Training Method
Dataset-based Simulator-based

CS ↓ SE LR AQ CS ↓ SE LR AQ

GPT-2
MLE 0.712 0.082 10.396 0.308 0.685 0.146 11.276 0.390

Standard 0.645 0.126 13.020 0.550 0.644 0.206 13.778 0.526
Ours 0.596 0.191 14.463 0.555 0.597 0.238 15.636 0.566

DialoGPT
MLE 0.714 0.069 9.761 0.345 0.687 0.142 10.838 0.492

Standard 0.645 0.142 12.182 0.579 0.654 0.206 13.772 0.538
Ours 0.598 0.171 13.055 0.586 0.588 0.240 14.466 0.604

T5
MLE 0.720 0.063 9.704 0.316 0.651 0.088 10.242 0.396

Standard 0.621 0.147 13.291 0.532 0.605 0.224 13.676 0.510
Ours 0.567 0.202 14.834 0.565 0.553 0.268 15.134 0.552

GODEL
MLE 0.718 0.064 9.507 0.318 0.689 0.112 10.132 0.414

Standard 0.625 0.165 13.553 0.529 0.615 0.235 13.108 0.614
Ours 0.571 0.232 15.272 0.557 0.571 0.258 14.608 0.628

Table 1: Automatic evaluation results. For the standard offline RL algorithm and our approach, we use
L = 5 for the number of candidate responses {ai}Li=1. For the simulator-based evaluation, we conducted
1000 dialogues of 5 consecutive turns between the simulator and each method. Each metric is measured
per response, and the best score in each metric is in bold. The statistical test revealed that the differences
are significant, with a p-value < 0.05.

wards (2) and (4) designed in Section 2.3 to each
response. This dataset contains 11,118 / 1,000 /
1,000 multi-turn dialogues for train / test / dev, re-
spectively. We used the set of train and dev for
Q-function training and fine-tuning agents and the
set of test for evaluation and discussion.

3.2. Agents
The following four state-of-the-art generative meth-
ods were considered as agents in our experiments.
GPT-2 proposed by Radford et al. (2019), is an
unsupervised autoregressive language model for
textual generation. DialoGPT is a pre-trained di-
alogue model proposed by Zhang et al. (2020).
This model is based on GPT-2, using the Reddit
comments dataset. T5 is a unified framework pro-
posed by Raffel et al. (2020) that converts all text-
based language tasks into a text-to-text format via
the transfer learning technique. GODEL is a pre-
trained dialogue model proposed by Peng et al.
(2022). This model is based on T5, using the Red-
dit discussion dataset. All the agents used the base
version of the corresponding pre-trained model.

3.3. Implementation
The critic and target networks are the BERT mod-
els (Kenton and Toutanova, 2019) with a fully con-
nected head on top. The classifier1 is a RoBERTa

1It is available in the official repository of Cardiff NLP :
https://huggingface.co/cardiffnlp
Note that many other ways for the category decision are
also feasible. Since TweetTopic and DailyDialog were

model fine-tuned on the TweetTopic dataset (An-
typas et al., 2022), which divides the responses
into 19 pre-defined topics as its action category.
Further, the control generator is initialized by the
corresponding agent model. To drive the control
generator to respond for the specified category, we
append the category representation at the begin-
ning of the input for GPT-2 and DialoGPT during
the learning and inference, the injection scheme for
which followed Cho et al. (2022). In addition, for T5
and GODEL, we added the category representa-
tion into the task prefix of the T5 framework during
the learning and inference. The task prefix was set
as “Instruction: given a dialog context, you need to
respond related to <category>.” Our implementa-
tion was based on PyTorch (Paszke et al., 2019)
and HuggingFace libraries (Wolf et al., 2019).

All agents and the control generator were fine-
tuned before executing RL. The patience for early
stopping was set to 5. The batch size was fixed at
32. The Adam algorithm (Kingma and Ba, 2015)
was utilized for optimization, with a learning rate
of 2.6e-5 and a warmup step of 6000. The control
generator constructs the actions using multinomial
sampling with a temperature setting of 1.5 to collect
diverse responses. In addition, the update rate of
the target network is set as 2.4e-5. The synchro-
nized interval for the target networks was 30 steps.
The discount factor was set as 0.9. We considered
the target network to have converged and termi-
nated the iteration when the change in the loss for
10 consecutive epochs is less than 0.01.

both crawled from social networking, we consider this
classifier is more appropriate for our task.

https://huggingface.co/cardiffnlp
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Agent Training Method Quality Informativeness Empathy Engagingness

GPT-2
MLE 1.4 1.3 1.2 1.1

Standard 1.7 1.3 1.4 1.4
Ours 1.5 1.5 1.5 1.6

DialoGPT
MLE 1.3 1.1 0.7 0.7

Standard 1.5 1.4 1.2 1.2
Ours 1.4 1.5 1.6 1.6

T5
MLE 1.2 0.9 0.5 0.6

Standard 1.1 0.8 0.6 0.7
Ours 1.4 1.4 1.4 1.3

GODEL
MLE 1.5 1.3 0.8 1.0

Standard 1.6 1.2 1.1 1.1
Ours 1.7 1.6 1.7 1.6

Table 2: Human evaluation results. The final scores for each metric were calculated by taking the average
of the annotator ratings. Each metric is measured per dialogue, and the best score in each metric is
presented in bold. The Fleiss’ kappa (Fleiss, 1971) score with human judges was approximately 0.29,
which can be regarded as “fair agreement.”

3.4. Evaluation

3.4.1. Automatic Metrics

We apply the reward perspective designed in Sec-
tion 2.3 to automatic evaluation. In particular, for
the view of reward (2), we count the number of
generated responses that contain a word that ex-
presses surprise (i.e., Aha, Oh, Wow, Whoa, Gee,
Really?, Amazing) by conservative string-matching
heuristics. For the view of reward (4), we count
the number of generated responses that contain
a question word or a question mark. We denote
CS, SE, LR, and AQ as cosine similarity, surprise
emotion, response length, and asking questions,
respectively. In our automatic evaluation and dis-
cussion, each metric is measured per response,
and its score is obtained by taking the average
across all samples.

3.4.2. Human Metrics

Ten native speakers were recruited to evaluate all
agents trained using different methods. We asked
the annotators to engage in a conversation with
all agents regarding daily life topics (e.g., hobbies
and interests) for at least five consecutive turns and
rate their overall experience based on the following
metrics. The scale of these metrics is [0, 1, 2].
Quality measures the coherence and grammatical
accuracy of the agents’ responses. Score 0: Most
responses are incoherent or contain grammatical
errors, thereby preventing the dialogue from pro-
ceeding. Score 1: Although certain responses are
incoherent or contain grammatical errors, the dia-
logue can continue. Score 2: Only a few (or no)
incoherent or grammatical errors in the responses,
and the overall dialogue flows fluently.

Informativeness measures the diversity and hallu-
cination of the agents’ responses. Score 0: Most re-
sponses simply repeat information from the context
or are generic. Score 1: The information conflicts
with common sense or contradicts the previous
statement. Score 2: Most responses have the ap-
propriate information.
Empathy measures the degree to which agents
respond with concern or affectivity. Score 0: Most
responses were short or showed little concern for
the users in the dialogue. Score 1: Although not
very coherent, certain responses convey an emo-
tional tone or ask a question. Score 2: Certain
responses are both coherent and show care for or
emotional attachment to the user.
Engagingness measures the desire to engage the
agents in a long conversation. Score 0: The replies
are lackluster, thereby making it difficult to sustain
the dialogue. Score 1: The responses are not par-
ticularly engaging, but they are fair for continuing
the dialogue. Score 2: The responses are engag-
ing and have the potential to further the dialogue.

3.4.3. Results

We assessed the performance of our approach us-
ing dataset-based evaluation and compared it with
baseline methods, which include a standard offline
RL algorithm (i.e., Eq.(3) and Eq.(2), where Eq.(3)
is equivalent to our fine-grained Q-function, and it is
referred to as the standard method in the following
account) and MLE without RL. We also conducted
a simulator-based evaluation by interacting with the
user simulator Blenderbot (Roller et al., 2021) to
assess the performance of different methods in a
long-term dialogue. Table 1 reports the automatic
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(a) DialoGPT (b) T5

Figure 2: Case study. DialoGPT and T5 are used as the agents in the case study. For brevity, the standard
method is abbreviated as stan. The ground truth for responding to each user utterance is the next user
utterance in the dialogue.

evaluation results. The standard method shows
better performance than MLE, which can be cred-
ited to the policy improvement introduced by RL. In
contrast, our approach achieved substantial gains
in all metrics, thereby demonstrating the effective-
ness of the dual-granularity Q-function.

We used a messenger APP as our platform, cre-
ating a specialized account for annotators to inter-
act with agents and provide ratings via their smart
devices. Table 2 summarizes the results of hu-
man evaluation. Despite the varied strengths and
weaknesses of each agent according to individual
human ratings, our approach exhibited markedly
better results compared to baseline methods. Fur-
thermore, RL-based agents displayed better pro-
ficiency than MLE-based agents in empathy and
engagement by utilizing knowledge of the rewards
outlined in Section 2.3. In terms of quality, most
agents scored higher than other metrics because of
the capacity of large-scale models to generate re-
sponses that are similar to human language and the
stable one-step policy improvement of offline RL,
which prevents the divergence of responses from
human language. With regard to informativeness,
upon analyzing instances of failure, we identified
several agents that provided unrealistic informa-
tion. Nevertheless, our approach generated more
diverse responses, thereby resulting in a more fa-

vorable outcome than other methods. The interface
and platform details for human evaluation are pre-
sented in Appendix C.

4. Discussion

4.1. Case Study
To conduct a comprehensive qualitative compari-
son between our approach and the baseline meth-
ods, we randomly selected four dialogues with vary-
ing topics from the testing set and shortened each
dialogue into four consecutive utterances, thereby
yielding four contexts per dialogue. We then in-
structed all agents to generate a response for each
context based on their respective training methods.
Figure 2 presents the varied responses generated
by different methods across two agents. We found
that our algorithm and the standard method gener-
ated longer responses compared to MLE, thereby
indicating that RL-trained agents have better conver-
sational engagement. Both the standard method
and ours tend to ask questions, but our algorithm
produces a more expressive tone of voice that con-
veys surprise, such as “Oh!,” “Wow!,” “Really?” and
so on. Although our approach and the standard
method received similar scores in the quality eval-
uation, a closer examination of the generated in-
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(a) CS (b) SE

(c) LR (d) AQ

Figure 3: The evolution of the agent’s performance for each metric with the increased sampling size.
The scale for the X-axis is a multiple of 4, and 0 represents the MLE without RL. Bands indicate half a
standard deviation.

stances reveals that the responses produced by
our method are slightly more coherent than those
of the standard one. We consider that this may be
attributed to the coarse-grained Q-function, which
tends to determine the category of context-related
actions, as we will explain later.

4.2. Further Verification
First, to validate Theorem 1 and illustrate the im-
pact of sampling size on policy performance, we
conducted an additional trial. Figure 3 presents a
comparison of the performance between the GPT-2
agents trained using the standard method and our
approach, which was under the simulator-based
setting with varying numbers of response candi-
dates. As suggested by our theoretical derivation,
increasing the sample size generally led to better
performance. Our algorithm outperformed the stan-
dard method even when using the same number of
actions for policy improvement, thereby indicating
its efficiency in iterating policy. This result empha-
sizes the significance of sample size as a constraint
on policy performance and highlights the efficacy
of our approach in addressing this issue.

Next, we sought to verify whether our approach
satisfies the hypothesis Ea∽πα(a|s)[Q

π(s, a)] ≥
Ea∽πβ(a|s)[Q

π(s, a)] in Theorem 2. With this in-
tention, our control generator, which relies on the
coarse-grained Q-function to provide the optimal

category, can be represented as πα, the agent that
learned by the standard method can be consid-
ered as πβ , and Qπ is the fine-grained Q-function.
The expected value was approximated by averag-
ing the Q-value of each sample. The results re-
veal that for the GPT-2, DialoGPT, T5, and GODEL
agents, Ea∽πα(a|s)[Q

π(s, a)] increases by 8.76%,
8.71%, 10.14%, and 9.61%, respectively, com-
pared to Ea∽πβ(a|s)[Q

π(s, a)]. This indicates that
the categories selected by the coarse-grained Q-
function can produce responses with a higher Q-
value, thereby supporting the hypothesis in Theo-
rem 2. Overall, these findings emphasize the poten-
tial of employing a coarse-to-fine-grained approach
to narrow the scope of action for policy improve-
ment to enhance dialogue agent performance.

Then, we examined the behavior of the coarse-
grained Q-function in selecting action categories.
We extracted 3000 contexts from the testing set
and obtained the corresponding optimal action cat-
egory by ā∗ = argmaxāQϕ(s, ā) ā ∈ {āi}N=19

i=1 .
The classifier was used to assign topics to these
contexts. We then tallied the number of action cat-
egories selected by the coarse-grained Q-function
for each context under each topic and this is visual-
ized in Figure 4. It was revealed that the selections
made by the coarse-grained Q-function largely
align with human intuition. For example, when the
context pertains to the “film tv and video topic,” the
coarse-grained Q-function often selects categories
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Figure 4: Behavioral analysis of coarse-grained Q-function. The label on the Y-axis represents the topic
of each context, whereas the label on the X-axis represents the selected action category. The color bar
represents the number of occurrences of the corresponding selection.

related to “fashion and style” and “celebrity and pop
culture.” Similarly, when the context relates to the
“other hobbies” topic, it tends to select categories
related to “travel and adventure,” “gaming,” “music,”
and “sports.” We also observed a significant pro-
portion of choices concentrated along the matrix’s
main diagonal, thereby indicating its propensity to
select action categories similar to the context topic.
It is worth noting that “travel and adventure” also
constitute a considerable part of the selected cate-
gories. After closely analyzing the dialogues in the
corpus, we observed that discussions on travel are
typically lengthier and require higher participation
from both parties. This may have led the coarse-
grained Q-function to learn the extensive relevance
of this category in dialogues.

Finally, we wanted to check if our control gener-
ator can generate responses for the specified cat-
egory. For each ā ∈ {āi}N=19

i=1 , we used πψ(a|s, ā)
to obtain a response and then used the classifier
to determine if this response belongs to ā. The
empirical results reveal that the percentage of ac-
curate responses to a given category for the control
generator performed by GPT-2, DialoGPT, T5, and
GODEL are 28.16%, 29.89%, 35.42%, and 36.37%,
respectively. This ratio is significantly higher than
the correct percentage obtained by randomly gen-
erating responses over the 19 categories of the

classifier (i,e., 1/19 ≈ 5.26%).

5. Related Work

Since the RL for dialogue requires multiple steps of
expensive human interaction, several prior studies
have updated the agent’s policy by the self-play
method or the interaction with simulators (Li et al.,
2016; Shah et al., 2018; Peng et al., 2018; Liu et al.,
2020b). However, these online RL methods suffer
from the issue of diverging from human language
(Lewis et al., 2017; Zhao et al., 2019; Jang et al.,
2020). On the other hand, offline RL (Fujimoto et al.,
2019; Kumar et al., 2020; Brandfonbrener et al.,
2021; Kostrikov et al., 2021) eliminates all need
for environmental interaction or user simulators,
instead of operating purely on static datasets of
prior human interaction.

There are many closely related works (Jaques
et al., 2019, 2020; Snell et al., 2022; Cohen et al.,
2022; Verma et al., 2022; Jang et al., 2022) based
on offline RL that lead to policy improvement via be-
havior cloning of self-generated utterances, which
inherits the ability of pre-trained language models to
generate human-like responses. Nevertheless, un-
like RL tasks in which the actions are finite, such as
Atari games (Mnih et al., 2015), the dialogue setting
is hard to explore all probability space. Therefore,
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the policy obtained through the aforementioned
methods is suboptimal. Some studies (Tiwari et al.,
2022; Liu et al., 2020a; Rohmatillah and Chien,
2023; Liao et al., 2020; Saha et al., 2020) apply
hierarchical RL to task-oriented dialogue, which
consists of sub-tasks with a clear goal. The learn-
ing problem of the master policy is formulated as a
Semi-Markov decision process (Sutton et al., 1999),
requiring multiple-step environment interactions for
each sub-task, thereby making offline learning chal-
lenging. Our dual-granularity Q-function focuses
on the more structured action choices to implement
policy improvement effectively for open-domain di-
alogue, which is suitable not only for offline but can
also be extended to online learning.

6. Conclusion and Future Research

This paper presented a dual-granularity Q-function
for mitigating suboptimal policy improvement due
to the hard-to-traverse action space in RL, and
we applied our method to the dialogue generation
task. Theoretical and experimental results demon-
strate the reliability of our algorithm, which signifi-
cantly enhances the performance of the dialogue
agent. Moving forward, we intend to design addi-
tional abstract categories for actions, such as those
based on sentence embedding, to allow the coarse-
grained Q-function to account for not only content
but also utterance structure and expression. We
will also investigate the affinity between the number
of action categories and policy improvement. Ulti-
mately, we plan to test our algorithm on other online
RL tasks in NLP to confirm its broad applicability.
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A. Proofs of Theorem

See Preliminary Derivation, Proof of Theorem 1,
and Proof of Theorem 2 on the next page.

B. Details regarding Rewards

(1) Cosine Similarity: We manually created a list
of dull responses consisting of utterances such as
“I don’t know,” etc., which are short and frequently
occur in the corpora. We penalize the cosine sim-
ilarity between the agent’s response and the dull
responses to avoid the generation of dull responses
by the agent. The response representations are
computed by leveraging a state-of-the-art sentence
embedding model (Conneau et al., 2017), and the
score of this reward ranges from 0 to 1. Although
there are more ways to generate a dull response,
similar expressions are likely to fall into an adjacent
vector space. The user “keeps away” from the ut-
terances in the list, thereby also keeping away from
other similar dull responses.
(2) Surprise Emotion: Since each utterance in the
DailyDialog dataset was annotated by one of six
universal emotions in human beings, we used the
emotional label of “Surprise” to allocate a reward
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Preliminary Derivation :

Eπ′ [ max
a∈{ai}L

i=1

Qπ(s, a)]

= Eπ′ [R(st, argmax
a∈{ai}L

i=1

Qπ(st, a)) + γR(st+1, at+1) + γ2R(st+2, at+2) + ...|st = s, {an ∽ π(a|sn)}Tn=t+1]

= Eπ′ [R(st, argmax
a∈{ai}L

i=1

Qπ(st, a)) + γV π(st+1)|st = s, a ∽ π′(a|st)]

Proof of Theorem 1.
Premise : ∀s, π′

L(·|s) = argmax
a∈{ai}L

i=1∽π(a|s)
Qπ(s, a)

Lemma : if N ≥M ≥ 1, then Eπ[ max
a∈{ai}N

i=1

Qπ(s, a)] ≥ Eπ[ max
a∈{ai}M

i=1

Qπ(s, a)]

V π′
N (s)

= Eπ′
N
[R(st, at ∽ π′

N (a|st)) + γR(st+1, at+1 ∽ π′
N (a|st+1)) + ...|st = s]

= Eπ[R(st, argmax
a∈{ai}N

i=1

Qπ(st, a)) + γR(st+1, argmax
a∈{ai}N

i=1

Qπ(st+1, a)) + ...|st = s]

= Eπ[ max
a∈{ai}N

i=1

Qπ(s, a)− γV π(st+1)|st = s] + γEπ[ max
a∈{ai}N

i=1

Qπ(st+1, a)− γV π(st+2)|st = s] + ...

≥ Eπ[ max
a∈{ai}M

i=1

Qπ(s, a)− γV π(st+1)|st = s] + γEπ[ max
a∈{ai}M

i=1

Qπ(st+1, a)− γV π(st+2)|st = s] + ...

= Eπ[R(st, argmax
a∈{ai}M

i=1

Qπ(st, a)) + γR(st+1, argmax
a∈{ai}M

i=1

Qπ(st+1, a)) + ...|st = s]

= Eπ′
M
[R(st, at ∽ π′

M (a|st)) + γR(st+1, at+1 ∽ π′
M (a|st+1)) + ...|st = s] = V π′

M (s)

Proof of Theorem 2.
Premise 1 : ∀s, π′

1(·|s) = argmax
a∈{ai}L

i=1∽πα(a|s)
Qπ(s, a), π′

2(·|s) = argmax
a∈{ai}L

i=1∽πβ(a|s)
Qπ(s, a)

Premise 2 : Ea∽πα(a|s)[Q
π(s, a)] ≥ Ea∽πβ(a|s)[Q

π(s, a)], σ2
a∽πα(a|s)[Q

π(s, a)] ≈ σ2
a∽πβ(a|s)[Q

π(s, a)]

Lemma : ∵ Premise 2 ∴ Eπα
[ max
a∈{ai}L

i=1

Qπ(s, a)] ≥ Eπβ
[ max
a∈{ai}L

i=1

Qπ(s, a)]

V π′
1(s)

= Eπ′
1
[R(st, at ∽ π′

1(a|st)) + γR(st+1, at+1 ∽ π′
1(a|st+1)) + ...|st = s]

= Eπα
[R(st, argmax

a∈{ai}L
i=1

Qπ(st, a)) + γR(st+1, argmax
a∈{ai}L

i=1

Qπ(st+1, a)) + ...|st = s]

= Eπα [ max
a∈{ai}L

i=1

Qπ(s, a)− γV π(st+1)|st = s] + γEπα [ max
a∈{ai}L

i=1

Qπ(st+1, a)− γV π(st+2)|st = s] + ...

≥ Eπβ
[ max
a∈{ai}L

i=1

Qπ(s, a)− γV π(st+1)|st = s] + γEπβ
[ max
a∈{ai}L

i=1

Qπ(st+1, a)− γV π(st+2)|st = s] + ...

= Eπβ
[R(st, argmax

a∈{ai}L
i=1

Qπ(st, a)) + γR(st+1, argmax
a∈{ai}L

i=1

Qπ(st+1, a)) + ...|st = s]

= Eπ′
2
[R(st, at ∽ π′

2(a|st)) + γR(st+1, at+1 ∽ π′
2(a|st+1)) + ...|st = s] = V π′

2(s)
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to each sentence, for which the scale is [0, 1].
(3) Response Length: From an empathetic stand-
point, we prefer that the agents generate responses
that are more elaborate and longer. The reward is
defined in the following manner.

if the number of generated tokens < 5:
reward = -0.2

elif the number of generated tokens < 10:
reward = 0

elif the number of generated tokens < 15:
reward = 0.2

else:
reward = 0.5

(4) Asking Questions: Each utterance in the Dai-
lyDialog dataset was also labeled as one of four
dialogue act classes. We used the act label of
“Questions” to allocate a reward to each sentence.
The scale of this reward is [0, 1].

C. Details regarding Interactive

We utilized LINE2 as our platform and set up a spe-
cialized account for human evaluation, which eval-
uators accessed through their smart device to inter-
act with each agent and provide ratings. The server
was equipped with an NVIDIA A6000 (48G) graph-
ics card, and the program was developed using the
LINE Messaging API SDK and ran continuously in
the background, ready to receive requests at any
time. Each agent extended an abstract class that
defined key methods for conversation generation
and was registered to a dictionary via a decorator.
To ensure a randomized order of appearance of
agents for annotators during the evaluation process,
we implemented a randomized selection of dictio-
nary indices. Furthermore, due to the substantial
startup times of the agents, all agents were kept
in memory at all times in the background process.
The current configuration was able to support hun-
dreds of simultaneous users and concurrently host
more than 20 agents. Figures 5 (a) and (b) depict
the conversation interface utilized by annotators
for interacting with the agents during the human
evaluation process. This interface enabled partici-
pants to engage in a dialogue of at least five turns
before initiating the rating phase by entering the
word “end.” In contrast, Figures 5 (c), (d), (e), and
(f) exhibit the interface used for rating the agents
after having a conversation of at least five turns
with them as part of the human evaluation.

D. Details regarding Instructions

For the human evaluation, the full text of instruc-
tions given to annotators is as follows:
Thank you for participating in our experiment. You

2https://line.me/en/

will sequentially have conversations with 12 dif-
ferent chatbots and have at least 5 exchanges
with each chatbot. After each conversation with
a chatbot, you will rate the experience based on
the four criteria. Detailed instructions will be pro-
vided throughout the experiment. The experiment
will take approximately 2 hours, but you are free to
take breaks as needed. ※Please note the follow-
ing:
(1) Please try to cooperate with the chatbot and
engage in role-playing to ensure a smooth conver-
sation. (if necessary)
(2) Please keep the conversation topics to daily life
such as hobbies and interests, and avoid political,
religious, and racial topics.
(3) Please avoid disclosing any personal informa-
tion during the conversation.
(4) You can only rate each chatbot once, and after
evaluation, you will move on to the next chatbot for
conversation.
(5) Please wait for the chatbot to reply before send-
ing the next message.
(6) Please avoid sending messages that contain
anything other than English and commonly used
punctuation marks, such as emojis, stamps, and
special characters.

E. Details regarding Annotators

All the annotators are graduate students unrelated
to this study recruited through an internal university-
based recruitment process. For the human evalua-
tion, annotators were required to engage in a dia-
logue for at least 5 turns with 12 agents, sending
over 60 messages while understanding the con-
text. Additionally, the annotators need advanced
expertise in native-level English proficiency and
natural language processing, as they will score the
user experience for each agent based on four cri-
teria. Considering the complexity of the task and
the guidelines regarding the school’s public fund-
ing, the hourly rate was set at 2,500 yen. Since
the estimated duration of this task is 2 hours per
person, the remuneration for the work would be ap-
proximately 5,000 yen (2,500 yen/hour × 2 hours).
Considering that the minimum hourly wage for an-
notators residing in the city is 1,072 yen, we believe
this payment is adequate.
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(a) Chat Interface 1 (b) Chat Interface 2 (c) Ratings Interface 1

(d) Ratings Interface 2 (e) Ratings Interface 3 (f) Ratings Interface 4

Figure 5: The chat and rating interfaces used for human evaluation.
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