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Abstract
A text corpus centered on events is foundational to research concerning the detection, representation, reasoning,
and harnessing of online events. The majority of current event-based datasets mainly target sentence-level tasks,
thus to advance event-related research spanning from sentence to document level, this paper introduces Deie, a
unified large-scale document-level event information extraction dataset with over 56,000+ events and 242,000+
arguments. Three key features stand out: large-scale manual annotation (20,000 documents), comprehensive unified
annotation (encompassing event trigger/argument, summary, and relation at once), and emergency events annotation
(covering 19 emergency types). Notably, our experiments reveal that current event-related models struggle with
Deie, signaling a pressing need for more advanced event-related research in the future. Deie is now available at
https://github.com/Lilice-r/DEIE.
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1. Introduction

The world is the totality of facts, not of things
(Wittgenstein, 1994). In daily life, facts manifest
as concrete events. Countless interrelated events
constitute the real world, and these events conform
to the common cognitive rules. Intuitively, when
events occur, quick and precise identification or
analysis is vital for governments, relief agencies,
affiliated organizations, etc. With the recent surge
in global emergencies, the urgency to efficiently
extract relevant details from the deluge of news
reports and keenly monitor these events’ unfolding
trajectories is more pressing than ever.

Most existing event-based datasets, such as
ACE2005 (Christopher Walker and others, 2005)
and KBP2017 (Stephanie Strassel and others,
2016), primarily target sentence-level event extrac-
tion. This process involves extracting the event
trigger and its corresponding arguments from an
individual sentence. The CEC (Fu et al., 2010)
dataset, being auto-annotated, encompasses 332
emergency news documents, which is insufficient
to capture the vast array of real-world events. How-
ever, it’s noteworthy that in practical contexts, a sig-
nificant portion of event components span multiple
sentences. This observation has led us to adopt
"document" as the descriptive term to represent
comprehensive event information.

To promote document-level event-related re-
search, various datasets have been proposed to
capture precise event information. For instance,

* Yanan Cao is corresponding author

MUC-4 dataset (McLean, 1992) encompasses
1,700 documents addressing 4 event types, and
these types are close to each other and confined to
the terrorist attack topic. RAMS (Ebner et al., 2020)
narrows the context to a mere 5 sentences, which
poses a challenge to encapsulating document-level
event details. WikiEvents (Li et al., 2021) offers
only 246 annotated documents, of which a scant
22% incorporate cross-sentence argument annota-
tions. ChFinAnn (Zheng et al., 2019) is restricted
to the financial domain, featuring 5 event types and
35 argument types. DocEE (Tong et al., 2022),
although large-scale, is geared toward a one-event-
per-document situation, rendering it less adaptable
to multi-event scenarios. Furthermore, the exist-
ing event-related dataset is limited to support only
a single kind of event information and overlooks
the unified annotation with other event summaries
or relation information, etc. In summary, existing
event-based corpus annotation fails in the following
aspects: the small scale of data, limited coverage
of domain, multi-event adaptability, and uncompre-
hensive event knowledge. Therefore, it is urgent
to develop a manually labeled, unified large-scale
dataset to accelerate the research in document-
level event information extraction.

In response to the need for such large-scale and
high-quality datasets, we introduce Deie - a Unified
Large-scale Document-level Event Information Ex-
traction dataset. This resource meticulously anno-
tates 20,000 documents, spanning 64 event types
derived from publicly available Chinese news re-
ports. With such abundant event data — 242k
event arguments, 56k event summaries, and 35k

https://github.com/Lilice-r/DEIE
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Event 1
Event Trigger:沉没
Event Type:

Accident Disaster.Transportation

Date: 21日深夜
Location: 爱琴海海域
Vehicle: 船只

Death toll: 3人 

Event Summary：
21日深夜，一艘船只在爱琴海海域发生

沉船事故，造成3人死亡。

Temporal

Document

Event Trigger:死亡
Event Type: Life.Die

Date：21日深夜
Location：爱琴海海域
Cause：沉船事故

Dead: 3人

Event Summary：
21日深夜，在爱琴海海域发生沉船事

故，3人死亡。

Event Trigger:沉没
Event Type:

Accident Disaster.Transportation

Date: 23日下午
Location: 希腊南部海域
Vehicle: 船只

Death toll: 11 

Event Summary：
23日下午，一艘船只在希腊南部海域发

生沉船事故导致11人遇难。

Event Trigger:沉没
Event Type:

Accident Disaster.Transportation

Date: 24日晚
Location: 希腊帕罗斯岛附近爱琴海海
域

Vehicle: 船只
Death toll: 16 

Event Summary：
24日晚一艘船只在希腊帕罗斯岛附近爱

琴海海域发生沉船事故，16人遇难。

Event 2 Event 3 Event 4

Temporal

TemporalCasual

希腊官方雅典-马其顿通讯社25日报道，24日晚一艘载有非法移民的船只在希腊帕罗斯岛附近爱琴海海域沉没 ,船上63人获救并

被转移到帕罗斯岛上。目前救援人员已找到16具遇难者遗体，搜救工作仍在进行。这是希腊海域近日发生的第三起沉船事故。21

日深夜，一艘载有非法移民的船只在爱琴海海域沉没 ,有13人获救、3人死亡 ,另有多人失踪。23日下午，一艘载有非法移民的

船只在希腊南部海域沉没 ,船上有90人生还，目前已打捞出11具遇难者遗体，仍有不明数量的人员失踪。根据希腊海岸警卫队发

布的消息，这三艘船只均由土耳其驶往意大利。希腊海运和岛屿政策部长扬尼斯·普拉基奥塔基斯25日指责蛇头让非法移民“挤

在没有救生衣，甚至连基本安全标准都达不到的船里”，呼吁国际社会采取行动。2016年3月，土耳其和欧盟就非法移民管控问

题达成协议，经由土耳其偷渡到欧洲的非法移民人数一度大幅下降，但爱琴海仍是非法移民经由土耳其偷渡到欧洲的重要通道。

沉没

沉没

沉没

死亡

Figure 1: An accident disaster example from Deie. Each document annotates multiple events and their
relations. Each event contains an event trigger, type, arguments, and summary. We employ varied color
schemes to differentiate between events, with the underlined “tokens” marking their specific triggers.

event-event relations — Deie facilitates diverse
studies, including Document-level Event Extrac-
tion, Event Causality Identification, Event Temporal
Relation Extraction, and Event Summary Genera-
tion. The significance of Deie can be distilled into
three primary contributions: (1) Large-scale Man-
ual Annotation. Deie offers precise annotations
for 56,031 events, accompanied by 243,287 argu-
ments, tailored for intricate document-level event
tasks. (2) Comprehensive Unified Annotation.
To our understanding, Deie pioneers as the first
event-centric benchmark that concurrently incor-
porates event arguments, summaries, and rela-
tions. This integration not only propels research
in document-level event information extraction but
also aids in building an event-driven knowledge
base. (3) Emergency Event Annotation. Deie
covers 19 emergency types, thus providing de-
tailed insights into emergency situations, enabling
faster and more informed decision-making during
crises. Furthermore, Deie can better cope with real-
istic multi-event-per-document scenarios, with each
document annotating a minimum of two events.

Leveraging Deie as the benchmark, we under-
take extensive experiments to assess the state-of-
the-art natural language processing (NLP) tech-
nologies across tasks such as document-level
event argument extraction, event relation extrac-
tion, and event summary generation. Through rigor-
ous testing across these three tasks, our analyses
reveal that the introduced dataset poses distinct
challenges. Current event-related models exhibit

suboptimal performance, particularly in event ar-
gument extraction and temporal relation extraction.
Thus calling for more research efforts for event-
related studies in the future.

2. Related Datasets

Sentence-level Event Extraction Dataset. The
Automatic Content Extraction (ACE2005) dataset
includes 599 documents, spanning 8 event types
and 33 subtypes. The Text Analysis Conference
(TAC) has introduced three benchmark datasets
(Stephanie Strassel and others, 2014, 2016): TAC-
KBP 2015, TAC-KBP 2016, and TAC-KBP 2017,
featuring 9, 8, and 8 event types, along with 38,
18, and 18 event subtypes respectively. Chinese
Emergency Corpus (CEC) (Fu et al., 2010) is a
Chinese dataset pertinent to emergencies, which
provides 332 documents covering 5 categories.
MAVEN (Wang et al., 2020) concentrates on anno-
tating event triggers and contains 168 types within
11,832 sentences. These datasets have served as
the foundation for the development of numerous
models aimed at improving sentence-level event
extraction, resulting in significant achievements in
this field (Wang et al., 2019a,b; Yang et al., 2019;
Wadden et al., 2019; Tong et al., 2020; Wang et al.,
2021; Lu et al., 2021; Liu et al., 2022).

Document-level Event Extraction Dataset. Sev-
eral datasets offer cross-sentence event argument
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annotations. The MUC-4 dataset (McLean, 1992),
centered on Latin American terrorism news ar-
ticles, comprises 1,700 documents that span 4
event types and 5 argument types. RAMS (Ebner
et al., 2020) includes 3,993 annotated documents
sourced from news, featuring 139 event types and
65 roles. WikiEvents (Li et al., 2021) presents
246 annotated documents across 50 event types
and 59 roles, with each document capturing multi-
ple events. ChFinAnn (Zheng et al., 2019) is nar-
rowly defined, featuring 5 event types and 35 ar-
gument types within the Chinese financial domain.
DuEE-Fin (Han et al., 2022) is an expansive human-
annotated Chinese financial dataset, boasting 13
event types. Datasets like Cancer Genetics, EPM,
GENIA2011, GENIA2013, Pathway Curation, and
MLEE (Pyysalo et al., 2013; Ohta et al., 2011; Van
Landeghem et al., 2013) are tailored exclusively for
the biological domain. Researchers have made a
lot of progress in this field (Zhang et al., 2020; Xu
et al., 2021; Huang and Jia, 2021; Ren et al., 2022;
Ma et al., 2022; Xu et al., 2022; Du and Cardie,
2020; Liu et al., 2021b; Wei et al., 2021; Li et al.,
2021; Ren et al., 2023; Li et al., 2023). In summary,
these datasets are often confined to specific do-
mains, possess limited scale, or lack unified event
information annotations.

Event Relation Dataset. Adhering to the TimeML
specification (Pustejovsky et al., 2003a, 2010), tem-
poral relation datasets such as TimeBank (James
Pustejovsky and others, 2006) and TempEval (Ver-
hagen et al., 2009, 2010; UzZaman et al., 2013)
have been constructed. Yet, these works often
grapple with low annotation concordance and effi-
ciency challenges. Leveraging temporal insights,
causal relation datasets (Do et al., 2011; Mirza
et al., 2014; Mostafazadeh et al., 2016; Dunietz
et al., 2017; Caselli and Vossen, 2017; Tan et al.,
2022) have emerged. These resources seldom inte-
grate different relation types within a single dataset.
A few datasets (Caselli and Vossen, 2017; Ning
et al., 2018; Wang et al., 2022) annotate both tem-
poral and causal relations concurrently.

3. Deie Construction

Our primary objective is to assemble a unified large-
scale dataset to propel research in document-level
event information extraction. In the ensuing sec-
tions, we will detail the construction of the event
schema, outline the data collection process, and
describe the crowdsourced labeling process.

3.1. Event Schema Construction
Conventional event frameworks, like FrameNet
(Baker, 2014), predominantly focus on routine ac-

Primary Event Type Secondary Event Type

Accident Disaster Fire, Transportation, Ecological Pollution,
Industry and Mining, Public Facility

Financial Transaction
Stock Decline, Stock Rally, Sell,
Rise in Price, Reduce the Price,

Acquisition, Financing, Invest, Listing
Public Health Epidemic, Food Safety
Communicative Action Gratitude, Threat, Apologize, Meet, Contact

Product Action Recall, Removal, Manufacture,
Launch, Check-out

Movement Transport, Trip, Deliver
Competition Competiton, Promote, Suspend

Justice Arrest, Sue, Investigation, Fine,
Jail, Tip-off, Release

Social Security Attack, Procession, Demonstrate, Hijack,
Explosion, Religion, Economy

Life Die, Be-Born, Marry, Divorce,
Enrollment, Price-winning, Ill

Organizational Action Dismiss, Elect, Layoff,
Opening, Closing, Job-cut

Natural Disaster Flood and Drought, Weather,
Earthquake, Geology, Biohazard

Table 1: 12 primary event types and 64 secondary
event types of Deie.

tivities such as sleeping and shopping. To devise
an event schema with comprehensive coverage for
general-domain events suitable for our dataset, we
organize the event types into a hierarchical event
type schema. This comprises 12 primary types (e.g.
Accident Disaster, Life) further subdivided into 64
secondary types (e.g. Earthquake, Marry). No-
tably, our schema emphasizes emergency events
of significant public interest, including instances like
Social Security.Attack, Natural Disaster.Weather,
and Public Health.Epidemic. Such events often ne-
cessitate descriptions spanning multiple sentences,
as they are of substantial societal importance and
cannot be adequately conveyed at the sentence
level. All event types are listed in Table 1.

Following the hard/soft news category framework
presented in Lehman-Wilzig and Seletzky (2010),
we establish a comprehensive collection of 64 dis-
tinct event types. Within this schema, we define
19 emergency event types from hard news and 45
common event types from soft news. To construct
the schema for each event type, we identified the
most commonly occurring non-empty slots within
the Baidu1 infobox of events. These frequently
appearing slots provide essential information for
describing events of that specific type and are. In to-
tal, our established schema consists of 158 unique
event argument types, correlated to the 64 event
types. This implies that, on average, each event
type incorporates around 6 distinct event argument
types. Figure 2 exemplifies several of the event
argument types we have defined.

1https://baike.baidu.com/
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Movement.
Trip

- Traveler
- Travel tool
- Time
- Starting point
- End point
- Reason
- Car number or flight
  number

Financial Transaction.
Rise in Price

- Item
- Reason
- Time
- Location
- Price increase
- Owner
- Original price
- New price

Public Health.
Epidemic

- Date
- Location
- Virus
- Source of infection
- Infected person
- Number of infected   
  persons
- Death toll
- Lv.

Financial Transaction.
Stock Decline

- Stock
- Stock number
- Time
- Reason
- Firm
- Decline range
- New share price
- Original share price

Natural Disaster.
Earthquake

- Time
- Location
- Focal depth
- Epicenter
- Victim
- Number of injured
- Death toll
- Magnitude
- Duration

Figure 2: Five examples of event schema in Deie.

3.2. Data Collection
News serves as the primary source for current
events, and as a result, our emphasis lies in identify-
ing events within news articles. Our data collection
process involved gathering Chinese web pages
and employing a reliable business tool to identify
web pages that included mentions of events, with a
majority originating from news websites. To gather
sufficient events, we provide the keywords (defined
by domain experts) of each event type to the an-
notation company. This approach helped alleviate
the long-tail distribution of events in our dataset,
meanwhile ensuring diversity.

To compile a timeline of events, we opted to con-
sider news that occurred between 2013 and 2023.
To ensure a balanced article length, we filtered out
articles shorter than 120 tokens or exceeding 1200
tokens. Then to match the multi-event scenario, we
further moved out documents that reported fewer
than two events. In the end, we gathered a total of
20,000 news documents containing multiple events
from the Internet.

3.3. Crowdsourced Labeling
We cooperate with an annotation company to hire
human annotators. To ensure the quality of the
dataset, we provide principle guidelines and dedi-
cated training to the annotators. Following an ex-
tensive training program spanning three weeks,
we handpicked 30 proficient annotators. We de-
compose the overall annotation task into multiple
sequential stages, which reduces competence re-
quirements for annotators. Simultaneously, we en-
listed the participation of four experts to conduct
two rounds of annotation checking, ensuring the
quality and accuracy of the annotations.

Stage 1: Event Classification

This stage aims to extract the event triggers and
types in one document. Typically, an event trigger is
identified as a verb or noun that serves as an event
indicator. We initiated the process by providing 100
expertly annotated documents as references for the

annotators. Then we assigned two independent
annotators to evaluate each candidate event. If
their assessments differed, a third annotator was
consulted to make the final judgment.

Stage 2: Event Information Unified Annotation

Given the complexity of event information annota-
tion, we provided annotators with precise definitions
and labeling guidelines for event arguments, event
summaries, and event-event relations to maintain
annotation accuracy and consistency. For each
event, annotators are required to extract event ar-
guments from the whole document and determine
their argument type, then compose a concise sum-
mary of the event, and finally identify event-event
relation (causal or temporal). After stage 1, each
article will be labeled with the event type. To stream-
line the second stage, which demands attention to
intricate event details, we divided the annotators
into six distinct groups, with each group focusing
exclusively on one of the six event types. For the
event argument with multiple mentions in the docu-
ment, we will label the mention closest to the trigger.
For event summary, we use the shortest natural
language to cover all event arguments. We further
label the cause event & effect event of the causal
relation and the prior event & subsequent event of
the temporal relation.

Stage 3: Data Quality

Crowdsourced annotation proceeds in batches and
each batch undergoes two rounds of meticulous
quality checks. Only after successfully passing
these quality assessments are the instances incor-
porated into the final version of our dataset. It’s
worth noting that after annotating independently
for each task, the annotators collaborate, compare
their annotations, and discuss any discrepancies
to reach a consensus and finalize the data.
First-round Checking. Once a batch of crowd-
sourced annotations is finished, it undergoes eval-
uation by all authors to ensure compliance with
our annotation standards. Instances that do not
meet the quality criteria are returned for revision,
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Dataset #EventType #ArgType #Doc #Event #Arg #Sum #Rel
MUC-4 (McLean, 1992) 4 5 1,700 1,700 2,641 - -
WikiEvents (Li et al., 2021) 50 59 246 3,951 5,536 - -
RAMS (Ebner et al., 2020) 139 65 3,993 9,124 21,237 - -
ChFinAnn (Zheng et al., 2019) 5 6 32,040 48,000 289,871 - -
DuEE-Fin (Han et al., 2022) 13 92 11,900 15,850 81,632 - -
DocEE (Tong et al., 2022) 59 356 27,485 27,485 180,528 - -
Deie (Ours) 64 158 20,000 56,031 243,287 56,031 35,285

Table 2: Statistics of Document-level Event Extraction datasets. (ArgType: event argument type, Doc:
document, Arg: event argument, Rel: event-event relation, Sum: event summary)

Accident Disaster (3167)Accident Disaster (3167)
Financial Transaction (1750)Financial Transaction (1750)

Public Health (1557)Public Health (1557)
Communicative Action (539)Communicative Action (539)

Product Action (499)Product Action (499)
Movement (180)Movement (180)

Competition (46)Competition (46)

Justice (20081)Justice (20081)

Social Security (13671)Social Security (13671)

Life (10107)Life (10107)

Organizational Behavior (7552)Organizational Behavior (7552)

Natural Disaster (3686)Natural Disaster (3686)

Figure 3: The primary event types (most coarse-
grained) and their number of events.

along with detailed reasons for rejection. This iter-
ative process continues until the acceptance rate
reaches the threshold of 90%.

Second-round Checking. Following the first-
round checking, each batch of annotated instances
that meets the criteria is subjected to a dual check
by four experts. In this phase, the experts con-
duct a random evaluation of 30% of the instances
and return any unqualified instances to the experts,
providing reasons for rejection. Additionally, minor
adjustments to the annotation standards may occur
during this phase. This iterative process continues
until the acceptance rate reaches the level of 95%.

We measure the inter-annotator agreements
(IAA) of the event argument/summary/relation an-
notation between two annotators with Cohen’s
Kappa (Cohen, 1960). After first-round checking,
the results of event argument/summary/relation
annotations are 81.2% / 89.7% / 90.3%. After
second-round checking, the results of event ar-
gument/summary/relation annotations are 89.6% /
93.2% / 96.1%. These results show that although
the general domain event annotation is difficult,
Deie’s quality is satisfactory.

Primary Event Type Secondary Event Type Percentage
Justice Arrest 18.9%

Life Die 17.5%
Social Security Economy 11.7%

Justice Sue 9.6%
Social Security Attack 5.4%
Natural Disaster Earthquake 2.9%

Table 3: Top 6 secondary event types in Deie.

4. Dataset Statistics and Analysis

4.1. Data Size
In total, Deie labels 20,000 documents, encom-
passing 56,031 valid events, 243,287 event argu-
ments, 56,031 event summaries, and 35,285 event-
event relations. We show the main statistics of Deie
and compare them with some existing widely-used
document-level event datasets in Table 2, includ-
ing MUC-4, WikiEvents, RAMS, ChFinAnn, DuEE-
Fin and DocEE. Compared with existing document-
level event datasets, Deie significantly increases
the data scale of all the event-related tasks by pro-
viding the most events. Particularly notable is the
number of event arguments in Deie — an astound-
ing two orders of magnitude greater than MUC-
4. Furthermore, Deie introduces large-scale event
summaries and event-event relations, absent in
competing datasets. When compared to DocEE,
Deie might have fewer documents but boasts a
significantly higher number of events (56k versus
27k). This disparity arises from the one-event-per-
document annotation of DocEE, while Deie ensures
that each article carries a minimum of two events
in the crowdsourcing process. Hopefully, the large-
scale unified event dataset can accelerate joint re-
search on document-level event-related tasks.

4.2. Event Distribution
Figure 3 illustrates the distribution of the primary
event types in Deie. We can observe that Deie
also faces the challenge of inherent data imbal-
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ance. However, given the large-scale nature of
Deie, 91.7% and 66.7% of primary event types
have more than 100 and 500 event instances, re-
spectively. Compared with existing datasets like
DocEE (only 30.5% event types have more than
500 instances), Deie significantly mitigates the is-
sue of data scarcity, facilitating the advancement
of various event-related applications. Our intention
with Deie is for it to serve as a realistic representa-
tion of real-world event data, which naturally follows
a long-tail distribution. Hence, we refrained from
implementing data augmentation or rebalancing
strategies during dataset construction, preserving
the real-world distribution in Deie.

To support future exploration of handling the long-
tail challenge, we have devised a hierarchical event
schema. This structure aims to facilitate the trans-
fer of knowledge from primary event types to those
in the long-tail secondary types. Table 3 presents
the top six secondary event types alongside their
respective percentages: Justice.Arrest (18.9%),
Life.Die (17.5%), Social Security.Economy (11.7%),
Justice.Sue (9.6%), Social Security.Attack (5.4%),
Natural Disaster.Earthquake (2.9%).

4.3. Event Summary and Relation
Statistic

The Deie dataset annotates 56,031 valid event sum-
maries for the event summary generation task. On
average, the summaries have a length of 33 tokens.
Each event entry in Deie has a summary and a
content description, which can be seen as naturally
annotated data for training a model that generates
a summary based on a content description.

Moreover, Deie also captures inter-event infor-
mation, marking 35,285 event-event relations, of
which 22,264 are causal and 13,021 are temporal.
While relation extraction has been extensively stud-
ied in NLP, there is a scarcity of unified resources
available for event-event relation extraction, mak-
ing this aspect of Deie particularly valuable and
unique. Deie plays a pivotal role in addressing
this gap and providing a foundation for research
in document-level event relation extraction. The
inclusion of event-event relations opens up new
possibilities, such as the application of knowledge
inference techniques.

4.4. Emergency Event Annotation
The structured processing and semantic analysis
of large volumes of data on emergency events hold
significant importance in enabling their assessment
and prediction. For instance, when a natural disas-
ter occurs, relief organizations can consider event
analysis as one of the ways to capture different
types of information, such as the severity of the inci-
dent, the number of victims, and how to provide aid
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Figure 4: Document numbers containing different
numbers of events of two datasets.

Train Dev Test
#Document 15,987 1,996 2,017
#Event 44,670 5,671 5,690
#Argument 193,641 24,821 24,825
#Summary 44,670 5,671 5,690
#Relation 28,101 3,665 3,519

Table 4: The statistics of splitting Deie.

for them. Despite its value and significance, quick
and accurate identification of unspecified emergen-
cies remains an under-explored area. Motivated
by this, Deie annotates 22,081 emergency events,
constituting 39.4% of the total events. This encom-
passes four primary event types: Social Security
(24.4%), Natural Disaster (6.6%), Accident Disaster
(5.7%), and Public Health (2.8%), further divided
into 19 secondary event types.

4.5. Multi-event Scenario

Deie closely aligns with real-world multi-event sce-
narios, and event extraction models can benefit
from identifying correlations between these multiple
events to classify event types accurately. While the
multi-event has been explored in existing document-
level event datasets — such as WikiEvents, where
86.88% of documents cover multiple events — it’s
notable that in Deie, such scenarios are ubiquitous
with 100% of documents encompassing multiple
events. This heightened complexity presents a
challenging opportunity for event-related research.

In Figure 4, we compare Deie’s documents con-
taining different numbers of events with WikiEvents.
We can observe that due to Deie’s broader scope
covering general domain events, its multi-event sce-
narios are more intricate. There’s an exponential
surge in the number of documents containing mul-
tiple events in Deie when compared to WikiEvents.
Moreover, as more event types are defined in Deie,
the association relations between event types will
be much more complex than on WikiEvents. We
hope Deie can facilitate event research, particularly
in modeling inter-event correlations.
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Method Arg-I Arg-C Head-C
P R F1 P R F1 P R F1

BERT-CRF (Shi and Lin, 2019) 50.9 33.2 40.2 46.2 30.0 36.4 50.2 32.7 39.6
EEQA (Du and Cardie, 2020) 54.3 30.7 39.2 53.5 30.2 38.6 58.2 32.9 42.0
BART-GEN (Li et al., 2021) 55.4 44.4 49.3 54.3 43.5 48.3 60.1 48.2 53.5
PAIE (Ma et al., 2022) 59.7 47.9 53.2 58.8 47.2 52.4 65.4 52.4 58.2

Table 5: The overall event argument extraction performance of various models on Deie.

Method ROUGE-1 ROUGE-2 ROUGE-L
BART (Lewis et al., 2020) 76.91 64.91 72.33
CPT (Shao et al., 2021) 77.51 65.70 73.20

Table 6: The overall event summary generation
performance of various models on Deie.

5. Experiments

In this section, we present the challenges posed
by Deie through a series of comprehensive exper-
iments involving state-of-the-art (SOTA) models.
Our experiments encompass document-level event
argument extraction, event summary generation,
and event relation extraction tasks.

Dataset Division. Table 4 presents the statistics
of splitting Deie. For each event type, we randomly
select 80% of the data as the training set, 10% of
the data as the validation set, and the remaining
10% of the data as the test set.

5.1. Document-level Event Argument
Extraction

Baselines. For strictly consistent comparison, we
choose four representative state-of-the-art models:
(1) BERT-CRF (Shi and Lin, 2019), which uses a
BERT-based BIO-styled sequence labeling model;
(2) EEQA (Du and Cardie, 2020), the first question-
answer-based model designed for sentence-level
event argument extraction; (3) BART-GEN (Li et al.,
2021), which formulates the task as a seq2seq
task and uses BART to generate corresponding
arguments in a predefined format; and (4) PAIE
(Ma et al., 2022), which defines a prompt tuning
paradigm for event argument extraction.

Evaluation Metrics. Our results are reported as
F1 score of argument identification (Arg-I) and ar-
gument classification (Arg-C). For the WikiEvents
dataset, we follow Li et al. (2021) to additionally
evaluate argument head F1 score (Head-C).

• Arg-I: An event argument is considered correct if
its offsets match any of the argument mentions.

• Arg-C: An event argument is correctly classified
if its offset and role type match the ground truth.

Method Temporal Casual
P R F1 P R F1

BERT (Ethayarajh, 2019) 55.4 36.5 44.0 79.1 66.2 72.1
MAVEN-ERE (Wang et al., 2022) 47.2 45.6 46.4 79.2 81.8 80.5
Relative-Time (Wen and Ji, 2021) 56.8 35.6 43.8 - - -
CF-ECI (Mu and Li, 2023) - - - 77.5 65.7 71.1

Table 7: The overall event relation extraction per-
formance of various models on Deie.

• Head-C: only considers the matching of the head-
word of an argument.

For the predicted argument, we find the nearest
matched string to the golden trigger as the pre-
dicted offset. As an event type often includes multi-
ple roles, we use micro-averaged role-level scores
as the final metric.

Overall Performance. We present the event ar-
gument extraction results in Table 5, indicating that
document-level event argument extraction remains
a challenging task in Deie. Several key observa-
tions can be distilled from the data. Primarily, the
proficiency of the models on Deie across the three
metrics - Arg-I, Arg-C, and Head-C - is notably sub-
optimal, with the best average performance not
surpassing 54.6 F1. This indicates considerable
challenges in our dataset for future research. In
addition, the current state-of-the-art model, PAIE,
surpasses BART-GEN in overall performance, par-
ticularly distinguishing itself in the Head-C metric
with a substantial 4.7 F1 improvement. The failure
of existing baselines may be due to two reasons: (1)
Unlike sentence-level tasks, document-level event
argument extraction emphasizes the model’s pro-
ficiency in handling long texts, necessitating that
the model comprehensively processes the full text
before determining the argument type of a span. (2)
Current baselines suffer from inferior capability in
semantic understanding, which may lead to failing
to distinguish arguments of similar events or mistak-
ing unrelated entities for event arguments. Finally,
we find that BART-based methods (i.e., BART-GEN,
PAIE) generally outperform BERT-based ones (i.e.,
BERT-CRF, EEQA) for document-level event argu-
ment extraction models. Future research can thus
focus on BART to develop better event argument
extraction models in Deie.
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5.2. Document-level Event Summary
Generation

Baselines. Since document-level event summary
generation has not been explored in the past, we
choose two neural models as baselines and report
their performances on Deie. (1) BARTbase (Lewis
et al., 2020), a widely-used sequence-to-sequence
model for generation tasks. (2) CPT (Shao et al.,
2021), a Chinese language understanding and gen-
eration model.

Evaluation Metrics. Despite the fact that only
single reference summaries are available in bench-
mark evaluations, we are able to evaluate summary
quality using automatic metrics based on lexical
similarity (Lin, 2004). We report the full-length F1
score of the ROUGE-1, ROUGE-2, and ROUGE-L
metrics with the Porter stemmer option2.

Overall Performance. Table 6 reports the F1
scores of ROUGE-1, 2, and L for two models. The
results show that the event summary annotations
within Deie render it a compelling benchmark for
evaluating event summary systems. The experi-
ments discussed in this section were intended to
be groundwork for the introduced document-level
event summary generation task and we leave de-
veloping more tailored methods for future work.

5.3. Document-level Event Relation
Extraction

Baselines. We reproduce four representative
neural models and report their performances on
Deie, including (1) BERTbase (Ethayarajh, 2019), a
widely-used PLM, we adopt it as the backbone and
build classification models on top of it. (2)MAVEN-
ERE (Wang et al., 2022), which provides simple
but strong baselines for 4 event relation extraction
tasks. (3) Relative-Time (Wen and Ji, 2021), which
targets to event temporal relation classification. (4)
CF-ECI (Mu and Li, 2023), which proposes counter-
factual reasoning for event causality identification.

Evaluation Metrics. We adopt Precision (P), Re-
call (R), and F1 score (F1) as evaluation metrics.

Overall Performance. Experimental results for
temporal/casual relation extraction are shown in
Table 7. We can observe that: (1) The joint model
(BERTbase, MAVEN-ERE) outperforms the relation-
specific model (Relative-Time, CF-ECI), demon-
strating improvements of 0.5%-5.9% for Temporal
F1 and 1.4%-13.2% for Casual F1. The perfor-
mance indicates that considering the rich interac-
tions between event relations is promising for han-

2https://tartarus.org/martin/PorterStemmer/

dling the complex event relation extraction tasks,
and demonstrates the benefits of our unified anno-
tation. (2) The achieved performances for the tem-
poral relation extraction task are far from practically
usable, which better reflects the inherent challenge
of temporal understanding. Specifically, the perfor-
mances of MAVEN-ERE are higher than Relative-
Time (2.6 F1 gap). This is because straightfor-
wardly joint training on relation extraction tasks can
bring certain improvements, especially on the tasks
with fewer data, i.e., temporal relation extraction.
(3) For casual relation extraction, this performance
is far from perfect, thus suggesting the challenges
for event casual identification and presenting ample
research opportunities to improve the performance
in the future. (4) Deie annotates global event pairs
within documents, and the lower performance bet-
ter demonstrates that understanding the diverse
and complex event relations is a huge challenge
for NLP models and needs more research efforts.

6. Applications

Every event entry in Deie encompasses both
intra-event information (i.e., event trigger, type,
argument, summary) and inter-event information
(i.e., event-event relation). The comprehensive
event information within Deie has profound impli-
cations for the following tasks and applications: (1)
Document-level event extraction. With such rich
event element information, Deie is extremely mean-
ingful for training an event detection and argument
extraction joint model for typical event extraction at
the document level. (2) Event summary genera-
tion. Deie serves as an invaluable training founda-
tion for creating event summaries from detailed text
descriptions or generating the text description of
(role, argument) pair of an event. (3) Event-event
relation extraction and inference. Deie can plug
the gap of unified event-event relation extraction
and further make it possible to infer event-event
relations. For instance, by having relations like
Temporal (A, B) and Temporal (B, C), we can infer
Temporal (A, C), which can be invaluable for con-
structing event taxonomies and enhancing our un-
derstanding of event relations. (4) Event-centric
knowledge base construction. Upon complet-
ing the aforementioned steps, the event profile is
established, serving as an event entry for an event-
centric knowledge base. In other words, the above
three steps can be seen as the subtasks of event
knowledge base construction.

7. Conclusion

In this paper, we introduce Deie, a unified large-
scale document-level event information extraction
dataset designed to advance event-related re-
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search spanning from sentence to document level.
Compared to existing datasets, Deie significantly
enhances the data scale, featuring over 56,031
events and 243,287 arguments. Moreover, it pro-
vides other detailed event information, including
event summary and event-event relation. Through
our experimental evaluations, we demonstrate that
Deie stands as a challenging and yet untapped
benchmark, promising to catalyze further break-
throughs in event-related research.
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