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Abstract

Underpinning much of the recent progress in deep learning is the transformer architecture, which takes as
input a sequence of embeddings E and emits an updated sequence of embeddings E′. A special [CLS]
embedding is often included in this sequence, serving as a description of the sequence once processed and
used as the basis for subsequent sequence-level tasks. The processed [CLS] embedding loses utility, however,
when the model is presented with a multi-entity sequence and asked to perform an entity-specific task. When
processing a multi-speaker dialogue, for example, the [CLS] embedding describes the entire dialogue, not any
individual utterance/speaker. Existing methods toward entity-specific prediction involve redundant computation or
post-processing outside of the transformer. We present a novel methodology for deriving entity-specific embeddings
from a multi-entity sequence completely within the transformer, with a loose definition of entity amenable to
many problem spaces. To show the generic applicability of our method, we apply it to widely different tasks:
emotion recognition in conversation and player performance projection in baseball and show that it can be used to
achieve SOTA in both. Code can be found at https://github.com/c-heat16/EntitySpecificEmbeddings.
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1. Introduction

Representation learning - learning representation
of things that are useful in performing tasks related
to those things (Bengio et al., 2013; Guo et al.,
2019; Zhang et al., 2018) - is at the core of much
of modern deep learning (DL). Underpinning much
of the work in this discipline is the transformer ar-
chitecture (Vaswani et al., 2017). At a high level,
the architecture takes as input a sequence of em-
beddings E and outputs an updated sequence of
embeddings E’ of the same shape. A special [CLS]
token is often appended to the sequence, serving
as a summary of the input once processed.

While directly useful for many downstream tasks,
the processed [CLS] embedding is not as useful
for performing entity-specific tasks based on se-
quences influenced by multiple entities. For exam-
ple, consider the task of utterance-based emotion
and/or sentiment classification in a multi-speaker
dialogue in the MELD dataset (Poria et al., 2018),
pictured below in Figure 1. The processed [CLS]
embedding would describe the conversation as a
whole, not an individual utterance.

Accordingly, a number of works have explored
how the [CLS] embedding can be directed to accu-
mulate information describing a specific subsection
of the sequence being processed, such as a spe-
cific utterance in a dialogue (Song et al., 2022a,b).
Although useful in directing [CLS] towards a spe-
cific utterance, such approaches incur a significant
amount of redundant computation as they can only
derive an embedding for one utterance at a time.
That is, a dialogue containing N utterances must
be processed N times to derive an embedding for

Figure 1: Example from MELD (Poria et al., 2018).

each utterance therein.
Most often, an language model (LM) processes

the sequence of text and outputs an updated
embedding of each word/token which is post-
processed before being used as basis for mak-
ing the utterance-based classification (Heaton and
Schwartz, 2020; Liu et al., 2023a; Shmueli and Ku,
2019; Song et al., 2022b). This post-processing
can serve two roles: 1) deriving utterance-specific
embeddings and/or 2) leveraging the relationships
between utterance-specific embeddings, often via
a Graph Neural Network (GNN) module. In some
cases, utterance-specific embedding are taken as
the average of their associated contextual embed-
dings. We speculate this could be improved, as
Reimers and Gurevych (2019) have demonstrated
a simple average of contextual embeddings pro-
vides less utility than a learned function of the same.
Furthermore, under such a formulation, the rela-
tionships between utterances are not leveraged
until the very end of the processing pipeline. We

https://github.com/c-heat16/EntitySpecificEmbeddings
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question if such relationships should perhaps be
leveraged throughout the entire processing pipeline.
Since transformers can be viewed as a special
type of GNN (Veličković, 2023), such an approach
seems plausible.

To this end, we present a general method for
deriving entity-specific embeddings for all entities
in a multi-entity sequence via the introduction of
new special tokens and the manipulation of the
attention mask presented to the model. Our en-
tity embeddings can be seen as a special case of
the traditional [CLS] embeddings, absorbing sig-
nal describing a specific subset of the correspond-
ing input sequence. Furthermore, we enable the
model to leverage the relationships between enti-
ties at each layer of the LM by further manipula-
tion of the entity-to-entity attention mask, resulting
in a fully-connected graph between entity embed-
dings. Application on the task of emotion recogni-
tion in conversation (ERC) yields new SOTA on the
EmoryNLP benchmark (Zahiri and Choi, 2017), and
ensemble of ours and the previous SOTA pushes
the SOTA even higher on the MELD benchmark
(Poria et al., 2018). To demonstrate the generic
nature of our proposed approach, we apply it to
the task of performance projection in Major League
Baseball (MLB), surpassing statistical baselines
that are traditionally used.

Our contributions are as follows:

• Present a novel method for deriving entity-
specific embeddings from a multi-entity se-
quence and leveraging the relationship be-
tween said entities, completely within a trans-
former model

• Empirically show that our solution improves
performance in both pre-training and fine-
tuning, establishing a new SOTA on the MELD
and EmoryNLP ERC datasets

• Demonstrate the generic nature of the pro-
posed methodology via application on a com-
pletely different task: player performance pre-
diction in the MLB, outperforming statistical
baselines that have been previously used for
this task.

2. Related Work

Here we describe previous approaches towards
making entity-specific predictions from multi-entity
sequences and a brief introduction on player per-
formance projection in professional baseball.

2.1. Analyzing Multi-Entity Sequences
Dialogues are a well-known example of a sequence
of text involving two or more entities (Ni et al., 2023).

The meaning of “entity of interest” (hereafter we
just use "entity” as a shorthand) can change based
on the task at hand. In the MELD benchmark (Poria
et al., 2018) (Figure 1), for example, the entity is
assumed to be the utterance - the task is to make
a classification with respect to a particular utter-
ance. In tasks such as speaker attribute classifi-
cation (i.e. inferring a speaker’s age/gender), one
or more speakers can effectuate one or more utter-
ances, and the task is to infer some characteristic of
the speaker given their utterances (Tigunova et al.,
2019; Welch et al., 2019). The entity is assumed
to be each speaker in such case.

Many models designed for such applications are
only able to make predictions for an individual entity
at once, even though they analyze multiple entities
in the course of doing so. Song et al. (2022a,b),
for example present a RoBERTa model (Liu et al.,
2019) model with a dialogue formatted as

Xi = [< s >, st−k, ut−k, ..., st, ut, < /s >,Q]

where si and ui denote the speaker and spo-
ken utterance at timestep t = i, while Q contains
the text “for ut, st feels [MASK].” Q is included to
help the model “hone-in” on the task at hand, de-
noting the speaker and utterance pair about which
questions will be asked.

The InstructERC model applies a similar tech-
nique to the Llama2 model (Lei et al., 2023) and
currently sits atop the leaderboard for the emotion
recognition benchmarks MELD1(Poria et al., 2018)
and EmoryNLP2(Zahiri and Choi, 2017). In addition
to prompting the model to generate an emotional
label for a particular utterance within the dialogue,
they augment each record by retrieving example
utterances with similar semantic content and their
corresponding labels.

Although current SOTA on the two aforemen-
tioned benchmarks, InstructERC is not with-
out downsides, primarily redundant computation.
When processing a dialogue containing N utter-
ances, the model is required to process the dia-
logue N times to make N predictions, incurring a sig-
nificant amount of redundant computation. While
this formulation may be desired in some applica-
tions, a more computationally efficient approach
would have the model make emotion predictions
for all utterances it is given at once.

Methods that derive entity-specific embeddings
typically combine a language model “backbone”
and a supplemental entity processing module
(Heaton and Schwartz, 2020; Huang et al., 2019;
Shmueli and Ku, 2019; Song et al., 2022b). Liu et al.

1https://paperswithcode.com/sota/emotion-
recognition-in-conversation-on-meld

2https://paperswithcode.com/sota/emotion-
recognition-in-conversation-on-4
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(2023b), for example, utilize RoBERTa (Liu et al.,
2019) to process a multi-speaker dialogue before
extracting embeddings for each utterance/speaker,
which are further processed by RNNs. Similarly,
Lee and Choi (2021) use a graph neural network
(GNN) module in conjunction with a recurrent neu-
ral network (RNN) module to process embeddings
emitted by RoBERTa, which correspond to each
utterance . While these methods provide utility, a
first-step in many of the post-processing phases is
the averaging of context embeddings correspond-
ing to a particular utterance/speaker before being
post-processed by a supplemental module. We
posit that this could be improved, as Reimers and
Gurevych (2019) have demonstrated that a sim-
ple average of processed contextual embeddings
provides less utility than a well-learned function of
the same. Furthermore, post-processing is done
without regard for the original context, which may
be sub-optimal.

2.1.1. Attention Mask Manipulation

The RoBERTa-based HiDialog is the only model
we are aware of that constructs entity-specific em-
beddings from a multi-entity sequence completely
within the transformer backbone without the use
of averaging (Liu et al., 2023a). They introduce
special speaker and turn embeddings added to
the model’s vocabulary. By appending the new
embeddings to the input sequence and carefully
manipulating the attention mask, the authors aim
to capture speaker and turn specific information
that can be used towards downstream prediction.
Instead of biasing the entire model by manipulating
the input sequence, the model’s attention mask is
manipulated to bias a particular sub-sequence of
the input. Once processed by RoBERTa, the [CLS],
speaker, and turn embeddings are extracted from
the output sequence and processed by a “heteroge-
neous graph module” to model the intra-utterance
relations before making utterance-level predictions.
The attention mask is presented in Figure 2.

Figure 2: Visualization of the HiDialog attention
matrix as proposed by Liu et al. (2023a).

As we can see in Figure 2, the turn embeddings
are given symmetric attention between themselves
and the contextual embeddings in that turn, and the
[CLS] embedding is allowed to tend to the turn em-
beddings, but not vice-versa. While this approach
has shown to be efficacious, sitting at #3 on the
MELD leaderboard, we can improve upon it. For ex-
ample, if multiple entity embeddings can be derived
in one pass of a transformer, can the relationships
between the utterances also be modeled within
the transformer? Transformers can be viewed as
GNNs (Veličković, 2023), so this seems plausible.

2.2. Player Performance Projection
The vast majority of methods underpinning sports
analytics, particularly player performance projec-
tion in professional baseball, are reminiscent of
the “bag-of-words” (BoW) approach from the early
days of computational linguistics (Harris, 1954). An
“expert” identifies important in-game events and
players are evaluated based on how often these
important events occur while they are in the game.
While such methods provide some utility, they incur
the same limitations as the BoW approach, namely
(for this application) the lack of word-sense (event-
sense) disambiguation. We posit more insights can
be gained by presenting a machine learning model
with a description of the game as a sequence of
pitches, allowing it to construct rich, contextual em-
beddings for each event. See the work of (Costa
et al., 2019) for an in-depth discussion of the field.

3. Deriving Entity-Specific
Embeddings

In this section, we present our general method
for deriving entity-specific embeddings from multi-
entity sequences. The proposed approach can be
leveraged to train a model from scratch or applied
to an already pre-trained model.

First, an [ENTITY] token is added to the model’s
vocabulary. Records are then constructed as they
would be normally - i.e. vanilla construction of the in-
put sequence (token IDs), attention mask, padding
mask, etc. Entity-related construction begins by
identifying the entities E = {e1, ..., eN} for which
embeddings should be derived. We assume no
strict definition of entity, using simply to denote
sub-sections of the context which are of interest.

Once identified, a boolean mask denoting por-
tions of the input sequence with which each en-
tity interact T = {te1 , te2 , ..., teN }, where tei ∈
[0, 1]1×SeqLen, is constructed. This is often as sim-
ple as identifying the speaker or utterance ID corre-
sponding to a particular timestep. Then, |E| entity
embeddings are appended to the input sequence,
and T is used to update the attention mask such
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Figure 3: Example manifestation of our approach. White/transparent cells denote a closure of the attention
mask. “Ent. ID” denotes the entity to which contextual embeddings correspond, included for illustration
purposes only. Optional entity-to-entity attention is denoted in yellow - when not employed, the attention
denoted in yellow is closed (white). Enabling entity-to-entity attention results in a fully connected graph,
visualized in the left portion of the image.

that the embedding for ei can only tend to indices
with which ei participates or interacts. All entity em-
beddings are allowed to tend to themselves. Each
entity begins the same, but accumulates different
information based on the portion of the sequence
to which it can tend. The [ENTITY] tokens act as
a special case of the [CLS] token - the latter de-
scribes the entire sequence, the former a particular
subsequence thereof.

One important feature to note is the ability of two
or more entity embeddings to attend to the same
set of contextual embeddings. In the HiDialog ap-
proach (Liu et al., 2023a), for example, one and
only one turn (entity) embedding can tend to a
particular timestep. This formulation makes sense
for their domain of application, as only one speaker
can effectuate an utterance at any given time. How-
ever, it limits the number of potential applications
for such approaches. In the audio domain, for ex-
ample, one may want to derive an embedding for
each instrument in a symphony, similar to (Shi et al.,
2022). In such cases, multiple instruments play at
once, a scenario HiDialog can not handle. Addition-
ally, in the domain of sport, it is common for two or
more players to mutually influence the events at a
particular timestep, e.g., a pitcher, batter, and one
or more outfielders may be involved in one play.

3.1. Entity-to-Entity Attention
While the formulation above will be sufficient in
many applications, there exist applications in which
leveraging the relationship between entities in the
sequence is desired, such as emotion recognition
in conversation (Liu et al., 2023a). For example, if
all of the utterances in the surrounding context of
utterance (entity) ui express the emotion joy, while
occasionally possible, it is perhaps unlikely that

ui would express an emotion such as fear. Thus,
a method for leveraging the relationship between
entities in the sequence is desired. While existing
work has shown this can be done outside of the
transformer architecture, we explore if this can be
done within the transformer architecture.

Specifically, we propose a method for allowing
a transformer model to leverage the “global”, bidi-
rectional relationship between the entities. First,
we simply open the attention mask between all
entities E present in the sequence, resulting in a
fully-connected graph between entity embeddings,
visualized in the left side of Figure 3. Next, we in-
troduce new additive position embeddings and add
them to the E embeddings present in the sequence.
These position embeddings are distinct from the
position embeddings already learned by the model.
During training, we randomly mask a subset of the
entity-to-entity (E2E) attention, removing the ability
of the entities to tend to a portion of surrounding en-
tities. A visual representation of our approach when
entity-to-entity attention is enabled is presented in
Figure 3, with E2E attention depicted in yellow.

4. Experiments

We demonstrate the efficacy of our method and its
generic nature by experimenting with two widely
different domains: NLP and sports analytics. NLP
experiments are performed “on top” of pre-trained
models, while we trained models from scratch for
our baseball application, achieving SOTA and thus
demonstrating the versatility of our approach.
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4.1. Emotion Recognition In
Conversation

We begin with the pre-trained RoBERTa (Liu et al.,
2019) when applying our method to this task. In-
stead of learning a special entity embedding from
scratch, we instantiate the entity embedding as the
pre-trained [CLS] embedding. The token serves
a similar role - deriving summary information from
the context to which it has access - and is thus a
good starting point for the entity embedding.

Special care must also be taken when implement-
ing the entity-to-entity attention. While each en-
tity could be given the same positional embedding,
such approach would not instill a temporal order on
the entity embeddings themselves. To this end, we
create a new set of learnable position embeddings,
for use only with entity embeddings. These em-
beddings are instantiated from the model’s vanilla
positional embeddings, but optimized separately.

We leverage utterance IDs present in each
dataset to equip RoBERTa with the tooling to derive
embeddings for each utterance in the dialogue. The
model is first subjected to extended-pre-training via
dynamic masked language modeling (MLM) (Liu
et al., 2019) to learn how to leverage the new entity
embeddings before being fine-tuned for the task of
ERC. In fine-tuning, the model optimizes a combi-
nation of cross-entropy and prototype-cosine simi-
larity loss (Song et al., 2022a), weighted 9:1. The
prototype for each label is computed by randomly
sampling 64 of the 256 most recent records for
each label, taking the average.

4.1.1. Attention Analysis

In addition to evaluating the models on the tasks
they were trained to perform, we also explore the
behaviour of the attention heads within the models
to better understand how the newly introduced en-
tity embeddings are utilized. To this end, we record
and dissect the attention probabilities constructed
by the model during processing.

First, we explore the extent to which utterance
(entity) embeddings and contextual embeddings
tend to each other during processing. In previous
approaches which use a GNN to post-process ut-
terance embeddings emitted by a LM backbone,
inherent is the assumption that the inter-utterance
relationships need not be leveraged until the final
stages of processing. We are curious if our model
manifests with the same behavior or if it leverages
the entity-entity relationships earlier in the pipeline.

We also explore if and how the emotion ex-
pressed in each utterance influences attention be-
havior. Specifically, we explore the propensity for
utterance embeddings to tend to other utterance
embeddings according to their emotion. The most
populous emotion classes will inherently draw more

attention from utterances in the corresponding con-
text, regardless of emotion, so we account for the
co-occurrence between emotions in our analysis.

4.1.2. Datasets

We identify three multi-speaker dialogue datasets
for use in this study, MELD (Poria et al., 2018),
EmoryNLP (Zahiri and Choi, 2017), and IEMOCAP
(Busso et al., 2008). MELD and EmoryNLP have
prescribed train/test splits which are used when
appropriate for pre-training and fine-tuning, but the
same can’t be said for IEMOCAP. For that reason,
IEMOCAP is only used for pre-training.

MELD (Poria et al., 2018) and EmoryNLP (Zahiri
and Choi, 2017) are both derived from the Friends
sitcom and serve as ERC benchmarks for the com-
munity. MELD includes 1,433 dialogues containing
13,708 utterances annotated as one of seven emo-
tions: anger, disgust, fear, joy, neutral, sadness,
and surprise. EmoryNLP contains 897 scenes (dia-
logues) and a total of 12,606 utterances annotated
as one of seven emotions: sad, mad, scared, pow-
erful, peaceful, joyful, and neutral. Models applied
to EmoryNLP are trained on both ERC corpora,
with scared mapped to fear and mad to anger.

4.2. Sports Analytics
To demonstrate the generic nature of the proposed
method, we also apply it to the task of player per-
formance projection in the MLB (professional base-
ball). At a high level, the game of baseball can be
viewed as a sequence of pitches with two players
influencing the result of each pitch - i.e. a multi-
entity sequence. We describe the application in
this domain at a high level, but direct the interested
reader to related work by Heaton and Mitra (2022).

Application begins by pre-training a transformer
model from scratch. We equip the model with the
tooling to derive entity embeddings for the 5 pitch-
ers and 45 batters who appear most frequently in
each sequence. The model is pre-trained with an
infilling task similar to BERT’s masked language
modeling (MLM) (Devlin et al., 2018) which we term
masked gamestate modeling (MGM). When pre-
sented with a sequence of events, roughly 15% of
the timesteps are masked and the model is tasked
with discerning what happened at said timesteps.
The model predicts what happened in terms of two
categorical values - the event and the gamestate
delta. The event describes what happened in terms
fans of the game typically use - single, home run,
flyout, etc. - while the gamestate delta describes
the structural changes in the game - base occu-
pancy, ball-strike count, run-count, and out-count.

Once pre-trained, the model is fine-tuned to
make predictions about future player performance
given the sequence describing said player’s last 15
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games. During fine-tuning the model can be trained
to predict various aspects of a player or team’s per-
formance. We fine-tune the models to predict the
number of strikeouts, walks, and hits that will be
recorded by the starting pitcher and starting batters
against the opposing starting pitcher. These tar-
gets were selected as they are general indicators
of in-game player performance and are commonly
discussed by fans/analysts of the game3.

4.2.1. Dataset

We construct our dataset using the same method-
ology as Heaton et al. (Heaton and Mitra, 2022),
updated to included data through the 2021 MLB
season. Our resulting dataset contains 4.6 million
pitches, 1,884 unique pitchers, 2,229 unique bat-
ters and 15,743 games. This data is converted to
a pitch-by-pitch sequence describing the 1) game-
state when each pitch was thrown, 2) the pitcher
and batter involved, and 3) change in gamestate
resulting from the pitch via real-valued statistics
and learned embeddings. Data is presented to the
model the same as in (Heaton and Mitra, 2022) and
we direct the curious reader to that paper as it is
beyond the scope of this work.

5. Results

5.1. NLP

5.1.1. Extended Pre-training

The results of performing extended pre-training as
described above is presented in Table 1. RoBERTa
is subjected to 15 epochs of extented pre-training
with an Adam optimizer, batch size of 32, l2 weight
of 0.01, a learning rate of 1e−5 with a cosine sched-
ule and 150 iterations of warmup. We perform ex-
periments with and without our entity embedding
method, with and without fine-tuning, to determine
its efficacy.

Entity
Embeddings Fine-tune Ppl

2.79
✓ 2.32

✓ 2.58
✓ ✓ 2.26

Table 1: MLM perplexity scores.

The presented evaluation metric for MLM predic-
tions is perplexity adapted for the bidirectional case,
computed as PPL(P ) = 1

N

∑N
i=1 2

H(pi), where pi
is the probability distribution for MLM prediction i

3https://www.mlb.com/glossary/standard-stats

and H(pi) is the cross-entropy for prediction dis-
tribution pi. Perplexity has a range of [1,∞), with
lower values indicative of a stronger model.

We see that even without fine-tuning the model,
adding entity embeddings to the input sequence
and corresponding manipulation of attention mask
lowers uncertainty score by 7.5%. Finetuning the
model results in a decrease in uncertainty score
of almost 19%. Comparing the fine-tuned models
reveals that the model equipped with entity em-
beddings achieves a 2.5% lower uncertainty score.
This suggests careful manipulation of the input se-
quence and attention mask is able to improve the
performance of a pre-trained model without any
updates, a frontier perhaps related to the growing
field of prompt engineering (White et al., 2023).

Model MELD EmoryNLP # Records
Processed

EmotionIC 66.40 40.01 D
HiDialog 66.96 N/A D

SPCL-CL-ERC 67.25 40.94 D × U
InstructERC 69.15 41.39† D × U
EE (Ours) 66.53 40.69 (41.39†) D

EE+E2E (Ours) 66.91 41.98 (42.43†) D
EE+E2E (Ours)
& SPCL-CL-ERC 70.26 47.61 (51.85†) (D × U)

+D

Table 2: Fine-tuning results (w-F1). D/U denote
the number of dialogues/utterances in each dataset.
†COSMIC test split (Ghosal et al., 2020).

5.1.2. Emotion Recognition

In Table 2 we present the results of fine-tuning
RoBERTa on MELD and EmoryNLP after extended
pre-training. Models are trained using an Adam
optimizer, batch size of 32, l2 weight of 0.01, and
learning rate of 2e − 5. For MELD, models were
trained for 10 epochs and 120 warmup iterations,
while for EmoryNLP models were trained for 12
epochs with 160 warmup iterations. Scores on
EmoryNLP reflect a model trained on both datasets.

We also explore how our model can be en-
sembled with the SPCL-CL-ERC model, retrain-
ing the model using the codebase provided by
the authors (Song et al., 2022a). Our reproduc-
tion achieved a w-F1 score of only 65.97/39.73
on MELD/EmoryNLP; the authors report scores of
67.25 and 40.94. A checkpoint for InstructERC
is not available, and we were unable to train a
model to convergence using provided code. Upon
inspection, it became apparent InstructERC was
applied to the COSMIC (Ghosal et al., 2020) test
split for EmoryNLP, which only contains ∼75% of
the records. We also apply our model to this subset,
denoting it with † in Table 2.
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Figure 4: Attention behavior in RoBERTa-Large af-
ter a) pre-training (MLM) and b) fine-tuning (ERC).

Model checkpoints/codebases are not provided
for each model in Table 2, so we cannot evaluate
the run-time of each model. As a proxy for gen-
eral run-time we present the number of records
processed by each model to make predictions for
all utterances in each dataset, highlighting the re-
dundant compute in many approaches.

Comparing the efficacy of our approach with and
without entity-to-entity attention demonstrates the
ability of RoBERTa to leverage relationships be-
tween entities. Enabling entity-to-entity attention
improves performance on MELD by 0.6% and on
EmoryNLP by 3.1% compared to the base entity
embedding model. The score of 66.91 weighted-
F1 is on-par with the performance of HiDialog,
which leverages a “heterogeneous graph module”
outside of RoBERTa. Our approach establishes
new SOTA on EmoryNLP, surpassing InstructERC
which is based on the significantly larger Llama2
(7B vs 350M parms) and processes more records
by a factor of U . When our predictions are ensem-
bled with those of SPCL-CL-ERC a new SOTA is
established at 70.26/47.61 on MELD/EmoryNLP.

5.2. Attention Analysis
To better understand how the model utilizes the
newly introduced entity embeddings, we visual-
ize the attention patterns exhibited by the model.
First, we explore the propensity for embeddings
of each type - entity (uttterance) embeddings and
traditional contextual embeddings - to tend to differ-
ent portions of the sequence during both stages of
training (Figure 4). As we can see, the attention of
context tokens (i.e. Context-to-Entity and Context-

Figure 5: Analysis of how the emotion of an utter-
ances influences attention behavior.

to-Context) is largely the same after both phases
of training. The context tokens devote more atten-
tion towards entity embeddings in the early layers
(1-6) of the model, but then largely tend to each
other in subsequent layers. The attention behaviour
of the entity embeddings change significantly for
ERC compared to MLM. Trained for MLM, entity
embeddings primarily tend to each other after the
first layer, although they gradually tend to more of
the context with each layer of processing. This
behavior changes in fine-tuning, particularly in the
upper layers of the model, where entity embeddings
tend to the context more than other entity embed-
dings. This learned behavior is in stark contrast
with the way the relations between entities (utter-
ances) have previously been leveraged. Previous
approaches (§2.1) would leverage contextual in-
formation first, and then the relationship between
entities. Our results suggest that the relationship
between entities (utterances) should be leveraged
earlier in the processing pipeline.

Furthermore, we explore if the emotion ex-
pressed in each utterance influences the behavior
of attention in the model, presenting the results in
Figure 5. As we can see, the average attention that
an utterance expressing one emotion prescribes
to an utterance expressing some other emotion is
highly correlated with the co-occurrence of each
emotion pair. However, when the co-occurrence of
each emotion pair is considered - subtracting co-
occurrence frequency from from the average atten-
tion probability - we see that utterances expressing
emotions that seldom appear in the same context
garner a relatively larger amount of attention. Intu-
itively, this makes sense - uncommon artifacts are
useful in discerning the emotional landscape.
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Strikeouts (K) Walks (BB) Hits (H)
Config Pitcher Batter Pitcher Batter Pitcher Batter Average

MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 Strk MSE R2

Stat 5.43 0.20 0.43 0.05 1.73 0.04 0.19 0.02 4.48 0.07 0.43 0.03 10 2.11 0.07
Embd Avg 5.46 0.20 0.44 0.04 1.49 0.03 0.17 0.01 4.71 0.06 0.43 0.03 5 2.12 0.06

Entity Embd 5.34 0.22 0.43 0.06 1.48 0.05 0.17 0.02 4.57 0.08 0.43 0.04 11 2.07 0.08

Table 3: Fine-tuning results. (Mean Squared Error (MSE) and the coefficient of determination (R2)). Embd
Avg denotes a transformer-baseline in which embeddings corresponding to each entity are extracted and
averaged. STAT denotes a statistics-based baseline comparable to industry-standard models.

5.3. Sports Analytics
5.3.1. Pre-training

We pre-train our models to understand sequences
describing all types of player records - starting pitch-
ers, relief pitchers, and starting batters. However,
because relief pitchers can enter the game in the
middle of the inning, such records would not make
for a fair analysis, akin to trying to generate the
correct continuation without access to the context.
Thus, we present our trained models’ MGM perfor-
mance on sequences of starting players only.

Config Ppl F1
Vanilla 1.43 0.55

Entity Embeddings 1.28 0.63

Table 4: MGM performance after pre-training. Met-
rics are perplexity and weighted F1.

Specifically, an 8 layer, pre-norm transformer
model (Xiong et al., 2020) with an internal dimen-
sion of 768 and 8 attention heads was trained using
an Adam optimizer with a learning rate of 5e-4, L2
weight of 1e-4, and a batch size of 30. When per-
forming MGM, event/gamestate delta predictions
were given a weight of 0.1/0.9, respectively, in com-
puting the overall MGM loss. Models were pre-
trained on 5M records, with repeats. Pre-training
results are presented in Table 4. Metrics were ob-
tained by having each model perform MGM on the
same set of 25k records for the 2021 season.

Pre-training results presented in Table 4 show
that our entity-embedding approach improves over-
all modeling performance. Compared to baseline,
our methodology yields a decrease in perplexity
of 10.49% and increase in F1 score of 14.55%.
These findings are in agreement with those from
the realm of language, in which RoBERTa saw a
2.50% decrease in perplexity. We speculate our
method provides our method yields more improve-
ment in the sports domain because a weaker base-
line model, resulting from a smaller training corpus
(4.6M vs 100M unique tokens). Lower perplexity
magnitude is likely due to the smaller vocabulary
size (∼100 vs ∼50k tokens), and baseball games
having a more stringent structure than language.

These findings perhaps suggest that our method
can provide benefits in low-resource domains.

5.3.2. Fine-tuning

We then took the pre-trained models and fine-tuned
them to make predictions about future player perfor-
mance. During fine-tuning, models were trained on
data from the 2015-2020 seasons and evaluated
on data from the 2021 season. Simple, linear pre-
diction heads were added on top of our pre-trained
models and fine-tuned using an Adam optimizer
with a learning rate of 2e-4 and L2 of 1e-6 for
up to eight epochs. Predictions were evaluated
directly, but also used to identify how many days
in a row each model could successfully identify a
batter to reach base (Strk), similar to MLB’s “Beat
the Streak” competition4.

As a baseline, we also explore how a model
trained without our entity embedding method per-
forms. To this end we select the subset of event
embeddings in which each player participated,
taking the average as that player’s embedding.
“Stat” denotes a statistics-based baseline compara-
ble with industry-standard approaches to this task
(Bailey, 2017). Statistics describing each player
in the 15 games leading up to game G are cal-
culated, filtered via a mutual-information-based
feature selection process in the python package
SKLearn(Pedregosa et al., 2011), and used to train
an XGBoost model (Chen and Guestrin, 2016).

In analyzing the results in Table 3 we see that
the model equipped with our entity embeddings
outperforms both baseline methods. The statisti-
cal baseline yields a lower MSE when predicting
pitcher hits, but upon inspection, it is because the
statistical model emits predictions that are much
closer to the population mean than our approach.
Specifically, the statistical model has a range of
4.58 in terms pitcher hit predictions, while our ap-
proach has a range of 6.62, leaving ours preferred.
Improvement of our approach over the embedding
average baseline also reinforces the notion that a
simple average of contextual embeddings provides
less utility than a well-learned function of the same.

4https://www.mlb.com/apps/beat-the-streak
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6. Conclusion

We proposed and evaluated a simple, effective,
and versatile approach for deriving entity-specific
embeddings from a multi-entity sequence. Appli-
cation of our approach yields significant improve-
ments during pre-training and fine-tuning in the
disparate domains of NLP and sports analytics.
Alone, our approach improves over the previous
SOTA for ERC on the EmoryNLP dataset by 1.43%.
Ensembled with the SPCL-CL-ERC model, we ad-
vance SOTA by 15.03% on EmoryNLP and 1.61%
on MELD. Applied to player performance projec-
tion, we outperform previous approaches by 1.90%
and 14.29% in MSE and R2, respectively. In doing
so, we explore the attention patterns within each
layer of our model, finding interesting behavior with
respect to model layer and utterance emotion.
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