
LREC-COLING 2024, pages 4685–4696
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

4685

DET: A Dual-Encoding Transformer for Relational Graph Embedding

Lingbing Guo1,2,3,∗ , Zhuo Chen1,2,3, Jiaoyan Chen4,
Qiang Zhang1,5, Huajun Chen1,2,3

1College of Computer Science and Technology, Zhejiang University
2Zhejiang University - Ant Group Joint Laboratory of Knowledge Graph

3Donghai Laboratory
4Department of Computer Science, The University of Manchester

5ZJU-Hangzhou Global Scientific and Technological Innovation Center
{lbguo, chenzhuo98, qiang.zhang.cs, huanjunsir}@zju.edu.cn, jiaoyan.chen@manchester.ac.uk

Abstract
Despite recent successes in natural language processing and computer vision, Transformer faces scalability issues
when processing graphs, e.g., computing the full node-to-node attention on knowledge graphs (KGs) with million
of entities is still infeasible. The existing methods mitigate this problem by considering only the local neighbors,
sacrificing the Transformer’s ability to attend to elements at any distance. This paper proposes a new Transformer
architecture called Dual-Encoding Transformer (DET). DET comprises a structural encoder to aggregate information
from nearby neighbors, and a semantic encoder to seek for semantically relevant nodes. We adopt a semantic
neighbor search approach inspired by multiple sequence alignment (MSA) algorithms used in biological sciences. By
stacking the two encoders alternately, similar to the MSA Transformer for protein representation, our method achieves
superior performance compared to state-of-the-art attention-based methods on complex relational graphs like KGs
and citation networks. Additionally, DET remains competitive for smaller graphs such as molecules.

Keywords: knowledge graph completion, node classification, science for AI, Transformer

1. Introduction

Transformer has become one of the most preva-
lent neural models for natural language processing
(NLP) (Vaswani et al., 2017; Devlin et al., 2019).
The self-attention mechanism leveraged by Trans-
former has also been extended to graph neural net-
works (GNNs), e.g., GAT (Velickovic et al., 2018)
and its variants (Wu et al., 2019; Sun et al., 2020;
Guo et al., 2020; Chen et al., 2021b; Kim and Oh,
2021; Chen et al., 2022; Bi et al., 2022). Neverthe-
less, these models only consider the near (usually
one-hop) neighbors, which may violate the orig-
inal intention of Transformer that attends to the
elements at distant positions.

Recently, Graphormer (Ying et al., 2021) starts to
leverage the standard Transformer for graph repre-
sentation learning and has achieved superior perfor-
mance on many benchmarks. However, in its sce-
narios of graph property prediction, the datasets are
small graphs (e.g., small molecules). The full node-
to-node attention is inapplicable to large graphs
with millions of connected nodes, such as knowl-
edge graphs (KGs) or citation networks (Bordes
et al., 2013; Chen et al., 2017; Sun et al., 2018;
Guo et al., 2019; Vashishth et al., 2020).

In addition to many self-attention-based methods
considering only local neighbors (Schlichtkrull et al.,
2018; Wu et al., 2019; Ye et al., 2019; Chen et al.,
2021b; Kim and Oh, 2021), some existing works

*Corresponding author

introduce multi-hop (usually 2- or 3-hop) neigh-
bors (Sun et al., 2020; Guo et al., 2020; Zhao et al.,
2021; Chen et al., 2023). They concentrate on the
local information and ignore the useful nodes far
from the node of interest. However, capturing the
remote correlations is one of the most important
characteristics for Transformer.

In this paper, we propose a Dual-Encoding Trans-
former (DET). We consider two types of neighbors,
i.e., structural neighbors and semantic neighbors.
Structural neighbors are the near neighbors lever-
aged by most existing GNNs (Velickovic et al., 2018;
Wang et al., 2018; Sun et al., 2020; Kim and Oh,
2021; Bi et al., 2022), while semantic neighbors
are the non-local nodes that share similarities with
the node of interest in embedding space.

Figure 1 shows the workflow of DET. For struc-
tural encoding, we use the standard Transformer
layer to encode the structural neighbors. For se-
mantic encoding, we use the semantic operator �
to find and encode the semantic neighbors. The
dual encoding ensures both local aggregation and
global connection, and also enables them to benefit
from each other through back propagation.

Our idea of reaching remote neighbors is inspired
by multiple sequence alignment (MSA) Trans-
former (Rao et al., 2021). As illustrated in Figure 2,
MSA Transformer queries the genetic database to
fetch similar proteins as “family members” to the
protein of interest. The difference is that the fam-
ily members in DET (i.e., semantic neighbors) are



4686

node of interest

se
m

an
tic

 n
ei

gh
bo

rs

feed to the structural encoder

structural neighbor
no

de
 o

f i
nt

er
es

t

feed to the semantic encoder

stack
structural encoder

semantic encoder
output node 
embeddings

Figure 1: Overview of DET. Structural neighbors are local neighbors connected with the node of interest
on the graph, while semantic neighbors are remote nodes with similar embeddings to the node of interest.
The two encoders focus on encoding different aspects of neighboring information, and thus are capable
of complementing each other.

obtained via self-supervised learning rather than
resorting external tools.

Take Figure 2 as an example, AlphaFold (Jumper
et al., 2021) uses the proteins with high MSA
scores as augmented data to predict the 3D struc-
tures. Its input is not in the form of protein se-
quence but the alignment results produced by the
MSA algorithms (Smith et al., 1981; Altschul et al.,
1990). Specifically, even closely related proteins
may have different lengths, encoding and non-
encoding regions. Different amino acids can be
also replaced with each other safely in certain cir-
cumstances. The alignment algorithms (e.g. Smith-
Waterman (Smith et al., 1981)) aim to find an align-
ment path with maximal score to support the com-
parison between proteins. In the left subfigure,
the result alignments have identical lengths to the
query protein, but some elements in the result se-
quences are different from those in the query se-
quence. They can be insert/delete operations or
other amino acids, and the scores depend on the
substitution matrices like BLOSUM and PAM (Day-
hoff and Eck, 1972; Henikoff and Henikoff, 1992). In
our scenarios, the embeddings are the sequences
to be aligned, and the similar semantics may also
reside at different dimensions. To obtain such align-
ment paths and scores, we choose to estimate the
mutual information rather than dimension-level sim-
ilarity between embeddings.

The proposed DET is capable of achieving
promising results in many GNN tasks: (1) DET
obtains the state-of-the-art performance on en-
tity prediction (a.k.a., KG completion) with com-
plex knowledge graphs as input; (2) It also ob-
tains competitive or better performance than the
best-performing Transformer-based methods in
node classification; (3) For conventional graph
property prediction with small molecules as in-
put, DET outperforms Graphormer (Ying et al.,
2021) on PCQM4M-LSCv1 (Nakata and Shi-
mazaki, 2017) and ZINC (Dwivedi et al., 2020).
The source code and datasets are available at
github.com/zjukg/DET.

Semantic neighborsMSA

Results 

Query travelmoveturnintercommunicatechange
Figure 2: A comparison between MSA and se-
mantic neighbors. The left figure is sliced from
AlphaFold (Jumper et al., 2021). The right figure is
an example from WordNet (Miller, 1995).

2. Related Works

Transformer Self-attention-based neural models,
such as Transformer, have recently become the de
facto choice in NLP, ranging from language model-
ing and machine translation (Vaswani et al., 2017;
Devlin et al., 2019) to question answering (Yang
et al., 2019; Yavuz et al., 2022) and sentiment anal-
ysis (Xu et al., 2019a; Cheng et al., 2021). Without
loss of generality, Transformer has significant ad-
vantages over conventional sequential models like
recurrent neural networks (RNNs) (Williams and
Zipser, 1989; Hochreiter and Schmidhuber, 1997;
Guo et al., 2019) in both scalability and efficiency.

Position embedding is one of the most important
modules to Transformer. Transformer variants in
different fields customize different designs in this
module. For example, ViT and its followers (Doso-
vitskiy et al., 2021; Fan et al., 2021; Han et al.,
2021) sequentially index the patches and encode
the indices as 1D position embeddings. In addition
to the position information, other prior knowledge
can also be injected as attention biases or posi-
tion embeddings into Transformer, which becomes
the key to applying Transformer on graphs (Ahn
et al., 2021; Chen et al., 2021a,b; Dwivedi and
Bresson, 2021; Kreuzer et al., 2021; Ying et al.,
2021; Bi et al., 2022; Chen et al., 2022). For exam-
ple, GT (Dwivedi and Bresson, 2021) replaces the
sinusoidal positional embeddings by the Laplacian
eigenvectors. Graphformer (Ying et al., 2021) and
its followers (Zhao et al., 2021; Chen et al., 2023)



4687

encodes centrality and shortest path distance into
position embeddings. Relphormer (Bi et al., 2022)
add the edge type (i.e., relation) information of KGs
when encoding entity embeddings.

Non-local GNNs Some existing works also study
how to capture the relationships of node of the
interest to disconnected nodes (Pei et al., 2020;
Yao et al., 2020; Liu et al., 2021; Min et al., 2022).
Specifically, Geom-GCN (Pei et al., 2020) learns
the aggregation purely based on embedding dis-
tance. Non-local-GNNs (Liu et al., 2021) computes
the distance from a virtual node to all other nodes
as a sorting metric to find non-local neighbors. (Yao
et al., 2020; Min et al., 2022) leverage hand-crafted
features to find the useful remote nodes as a com-
plement to the local neighbors. However, most of
them focus only on node classification and perform
worse than the best-performing methods. Also,
they usually do not distinguish between remote
nodes and direct neighbors.

3. Methodology

In this section, we present the details of DET. We
start from the preliminaries and then introduce the
two encoding processes. Finally, we illustrate how
to implement a DET.

3.1. Preliminaries
We first introduce the terminologies and notations
that will be used in the following sections.

Graph We define a graph as G = (V, E), where
V = {v1, v2, ..., vn} is the node set, and E =
{e1, e2, ..., em} is the edge set. n and m denote
the number of nodes and edges, respectively. In
practice, different tasks often have more compli-
cated graph structures. For example, molecular
graphs and KGs have edge types (i.e., chemical
bonds and relations). We do not discuss the de-
tails and follow the general setting to process these
specific features (Chen et al., 2021b; Ying et al.,
2021; Bi et al., 2022).

We consider three types of graphs in this pa-
per. Knowledge graphs (KGs) are characterized as
complex relational graphs, typically consisting of
millions of nodes interconnected by thousands of
relationships. The task of KG completion involves
predicting missing entities from a vast set of can-
didate entities, making the modeling of KGs with
Transformers a challenging endeavor. The graphs
employed in node classification are also complex
graphs, albeit with fewer labels and relationship
types compared to KGs. Node classification are
generally simpler than KG completion since the
label space is not large. Molecules are regarded

as small and simple graphs. A single molecule
contains significantly fewer nodes than networks or
KGs, and the types of chemical bonds are also lim-
ited. It is trivial to compute the full attention matrix
on molecular graphs.

GNN and Self-attention Without loss of gener-
ality, we define a GNN as a neural network that
learns a group of weights to aggregate the embed-
dings of the one-hop or multi-hop neighbors for the
node of interest. In this sense, self-attention can be
naturally treated as a GNN model. Let Q ∈ R

n×h,
K ∈ R

n×h, V ∈ R
n×h denote the query, key, and

value matrices, respectively. In this paper, they
are the same node embedding matrix. h denotes
the hidden layer size. Self-attention calculates the
attention scores as follows:

A = Softmax(QK�
√
h

), (1)

where A ∈ R
n×n records the node-to-node atten-

tion scores. We then aggregate the node embed-
dings with the following equation:

H = AV , (2)

where H ∈ R
n×h is the output embedding matrix,

with each row denoting the embedding of a node.

3.2. Structural Encoding
An easy way to extend Transformer on small graphs
is adding a virtual node vc (Devlin et al., 2019) as
the context node connected with all nodes in G.
Then, the output embedding for vc can be regarded
as the embedding of G. For the large graphs like
KGs or networks, we should perform self-attention
only on the local (e.g., one-hop) subgraph Gi given
the node of interest vi. Thus, the output embedding
for node vi is

hst
i =

∑
vj∈{vi}∪N (vi)

Acjvj , (3)

where hst
i denotes the output of the structural en-

coder for vi. Acj denotes the attention score from
the context node c to the neighbor vj . We set c = i
in node classification (Zhao et al., 2021; Chen et al.,
2023). N (vi) is the set of local neighbors for vi. We
also accordingly add the centrality, relation type,
or shortest distance path information as special
position embeddings to the encoder (Chen et al.,
2021b; Ying et al., 2021; Zhao et al., 2021).

3.3. Semantic Encoding
The local structural features may be insufficient for
identifying a node. However, if we directly aggre-
gate more-hop nodes, the sheer quantity of avail-
able information will overwhelm the neural network.



4688

Table 1: The occurrence frequency of entities in
FB15K-237 and WN18RR, in term of hops.

Dataset 1-hop 2-hop 3-hop 5-hop
WN18RR 2.7 8.9 30.5 483.8

FB15K-237 20.3 1781.4 64,774.9 -

Table 1 summarizes the average frequency of enti-
ties appearing as others’ neighbors in different hops.
We can find that the three- or more-hop neighbors
of a node are shared by many others, which is why
current GNNs rarely consider multi-hop (≥ 3) neigh-
bors (Sun et al., 2020; Chen et al., 2023). To make
the node of interest more distinguishable to the
classifier, weighting its local neighbors is reason-
able due to their less redundancy. This observation
inspires us to make the first hypothesis:
Hypothesis 1. The local neighbors are the most
informative features to identify and represent the
node of interest.

Recent successes (Jumper et al., 2021; Rao
et al., 2021; Baid et al., 2023) in biological science
demonstrate that using the information provided
by the family members greatly helps the structure
prediction of proteins. Specifically, they leverage ex-
ternal MSA tools to collect the biological sequence
alignments to protein of the interest, which enables
them to capture the protein information within an
evolutionary family.

If we regard the embedding as sequences with
fixed lengths, then the desired remote node should
have similar embeddings to the node of interest.
We have illustrated this idea with Figure 2, where
the semantic encoding finds the family members
by estimating their mutual information rather than
resorting external tools. The similar semantics may
be encoded differently and reside at different di-
mensions. Thus, estimating the mutual information
is more reliable than the dimension-level measure-
ments, such as L1/L2 similarity.
Hypothesis 2. The distant nodes with high mutual
information scores are important features to identify
and represent the node of interest.

Our mutual information density function (van den
Oord et al., 2018; Belghazi et al., 2018) fs : Rh ×
R

h → R can be written as follows:

fs(vi,vj) = vi � vj

= α(v̂i − v̂j)Wl

+ (1− α)vT
i Wmvj , (4)

where � is the mutual information estimator. We
implement it as a combination of two terms with co-
efficient α = 0.1 to control the ratio. The first term
(vi − vj)Ws is L1 distance with learnable weight
Wl ∈ R

h×1, while the second term vT
i Wmvj is a

standard mutual information density function with

Wm ∈ R
h×h the product matrix. v̂i, v̂j denote the

copy values of v̂i and v̂j , respectively. We also
apply vector and layer normalization in implemen-
tation for stability. Intuitively, the first term weights
the precise match at every dimension, and the sec-
ond term estimates the cross-dimension mutual
information density.

Semantic Neighbor Fetching We seek for the
semantic neighbors by empolying a self-supervised
loss:

Lsn(vi) =− E
vj∈N (vi)

log
(
fs(vi,vj)

)

+ E
vk∈N−(vi)

log
(
fs(vi,vk)

)
. (5)

where we set N (vi) as the positive example set
that includes the local neighbors of vi plus vi itself,
and N−(vi) is the negative example set that com-
prises of randomly-sampled distant nodes. The
above loss is different from a typical contrastive
loss or a mutual information maximization loss. We
additionally use the local neighbors as positive ex-
amples. As stated in Hypothesis 1, local neighbors
provide most informative and discriminative fea-
tures. They should have high mutual information
scores to the node of interest. Therefore, desired
semantic neighbors are as important as the local
neighbors (Hypothesis 1) and with high mutual in-
formation scores (Hypothesis 2):
Definition 1 (semantic neighbor). Semantic neigh-
bors are those with high mutual information scores
and not in the local neighbors:

N se(vi) = {vj |vj ∈ V\N (vi), Î(vi,vj) ≥ δi}, (6)

where Î(vi,vj) denotes our parameterized mu-
tual information score, a normalized version of fs.
δi controls the threshold and can be set according
to different strategies. We choose top-T candidates
for each node as the semantic neighbors.

Semantic Encoding Now, we introduce how to
encode the semantic neighbors with Transformer.
Although we can leverage the standard dot-product
attention (i.e., Equation (1)) to encode the semantic
neighbor embeddings, our experiment finds that us-
ing the density function fs (Equation (4)) to estimate
the attention scores achieves better performance.
It can be viewed as a mix of weighted dot-product
and weighted L1 distance. We denote the corre-
sponding attention score matrix by B ∈ R

n×n and
formulate semantic encoding as follows:

hse
i =

∑
vj∈N se(vi)

Bijvj

=
∑

vj∈N se(vi)

fs(vi,vj)vj . (7)



4689

LayerNorm

structural 
encoder

structural 
encoder

LayerNorm

LayerNorm

LayerNorm

structural neighbors

semantic neighbors

DET block

DET block

semantic 
encoder

semantic 
encoder

Figure 3: Example of a two-layer DET. The struc-
tural encoder and semantic encoder are stacked
alternatively and feed with their neighborhood infor-
mation respectively.

where N se(vi) denotes the set of semantic neigh-
bors for vi. For efficiency, we only calculate the
attention scores between the semantic neighbors
and node of the interest.

3.4. Dual-encoding Transformer
DET Block We first introduce how to combine the
structural encoding and semantic encoding. Un-
like the existing GNN method (Pei et al., 2020; Yao
et al., 2020; Liu et al., 2021) that concatenate the
output embeddings of different encoding layers, we
build our DET block by stacking the structural en-
coding layer and the semantic encoding layer in an
alternative fashion. As illustrated in Figure 3, DET
block ensures local aggregation and global con-
nection. It starts from a structural encoding layer
whose output embeddings will contain the local
neighborhood information, functioning like encod-
ing the amino acid sequences of proteins. Then,
the following semantic encoding layer will estimate
the importance of the “ family members” by their
local context information. By alternative stacking
these two layers, these two types of encoding lay-
ers can support and enrich each other.

Implementation We illustrate the implementation
of DET by Algorithm 1 and summarize the overall
training process as follows: We first initialize all
parameters of DET. For every few epochs, we draw
semantic neighbors from the top candidates with
high scores. This process can be run in parallel
with the main training procedure to save time. For
each DET block in each mini-batch, we stack a

Algorithm 1 Dual-encoding Transformer
1: Input: the input graph G = (V, E), the main

prediction loss Lmain, the DET model M;
2: Initialize all parameters;
3: repeat
4: Update the semantic neighbors if necessary;

5: for each batch data (X,Y ) do
6: H ← X;
7: for each DET block (Mst,Mse) do
8: H ← Mst(H) (Equation (3));
9: H ← Mse(H) (Equation (7));

10: end for
11: L ← Lmain(H,Y ) + Lsn(H);
12: Update the parameters of M;
13: end for
14: until the loss L converges;

structural encoder and a semantic encoder and
feed them different types of neighbors. Finally we
jointly minimize the main task loss and semantic
neighbor fetching loss, and update the parameters
of DET via back-propagation.

Computational Cost The design of fs in the se-
mantic encoder is concise and increases only a
small number of parameters. Although fetching the
semantic neighbors needs to iterate all nodes, we
update semantic neighbors every few epochs which
can be in parallel with the main procedure. Hence,
the overall training time remains at the same level
(please see Figure 5 in Section 5.3).

4. Experiment

We conducted extensive experiments to verify the
effectiveness of DET. We are committed to releas-
ing the source code if the paper is accepted.

4.1. KG Completion
Settings We conducted experiments on the KG
completion task. The main target of KG comple-
tion is to predict the subject entity (or object entity)
given an incomplete triple. We evaluated DET on
two benchmark datasets FB15K-237 (Toutanova
and Chen, 2015) and WN18RR (Dettmers et al.,
2018), which are sampled from the real-world
KGs Freebase (Bollacker et al., 2008) and Word-
Net (Miller, 1995), respectively. We chose the best-
performing methods for comparison: the TransE-
family methods TransE (Bordes et al., 2013), Ro-
tatE (Sun et al., 2019), and TuckER (Balaze-
vic et al., 2019); and the GNN-based methods
RGCN (Schlichtkrull et al., 2018), CoKE (Wang
et al., 2019), CompGCN (Vashishth et al., 2020),
and Relphormer (Bi et al., 2022). Specifically,



4690

Table 2: The entity prediction results on FB15K-237 and WN18RR. The results of the baselines are
extracted from (Bi et al., 2022). The best and second-best results are boldfaced and underlined, respec-
tively. ↑: higher is better; ↓: lower is better. -: unavailable entry.

Model FB15K-237 WN18RR

MRR↑ MR↓ Hits@1↑ Hits@10↑ MRR↑ MR↓ Hits@1↑ Hits@10↑
TransE (Bordes et al., 2013) .310 199 .218 .495 .232 5,249 .061 .522
RotatE (Sun et al., 2019) .338 177 .241 .533 .476 3,340 .428 .571
TuckER (Balazevic et al., 2019) .358 - .266 .544 .470 - .443 .526

RGCN (Schlichtkrull et al., 2018) .273 221 .182 .456 .402 2,719 .345 .494
CoKE (Wang et al., 2019) .364 - .272 .549 .484 - .450 .553
CompGCN (Vashishth et al., 2020) .355 197 .264 .535 .479 3,533 .443 .546
Relphormer (Bi et al., 2022) .371 - .314 .481 .495 - .448 .591

DET .376 150 .281 .560 .507 2,255 .465 .585

Table 3: The accuracy results of node classification on five benchmarks.

Model Cora↑ Citeseer↑ Pumbed↑ Computer↑ Photo↑
GCN (Kipf and Welling, 2017) 87.33±0.38 79.43±0.26 84.86±0.19 89.65±0.52 92.70±0.20
GraphSage (Hamilton et al., 2017) 86.90±0.94 79.23±0.53 86.19±0.18 90.22±0.15 91.72±0.13

GAT (Velickovic et al., 2018) 86.29±0.53 80.13±0.62 84.40±0.05 90.78±0.13 93.87±0.11
GT (Dwivedi and Bresson, 2021) 71.84±0.62 67.38±0.76 82.11±0.39 91.18±0.17 94.74±0.13
SuperGAT (Kim and Oh, 2021) 82.70±0.60 72.50±0.80 81.30±0.50 77.44±0.26 84.53±0.32
SAN (Kreuzer et al., 2021) 74.02±1.01 70.64±0.97 86.22±0.43 89.83±0.16 94.86±0.10
Graphormer (Ying et al., 2021) 72.85±0.76 66.21±0.83 82.76±0.24 OOM 92.74±0.14
Gophormer (Zhao et al., 2021) 87.85±0.10 80.23±0.09 89.40±0.14 90.72±0.24 95.39±0.18
NAGphormer (Chen et al., 2023) 88.15±0.22 80.12±0.23 89.70±0.19 91.22±0.14 95.49±0.11

DET 90.64±0.27 80.14±0.35 89.96±0.20 92.15±0.11 95.81±0.13

CoKE and Relphormer also leverage Transformer
to encode the structural information.

Results The main results are presented in Ta-
ble 2. It is clear that DET surpassed all the base-
line methods for almost all metrics. Specifically,
the improvement on MR (mean rank) and MRR
(mean reciprocal ranking) was most significant,
which implies that DET learned better embeddings
for all entities, not only for the top ones favored by
Hits@1. Compared with the second-best method
Relphormer, our DET has more significant ad-
vantages over the conventional triple-based meth-
ods, as it completely outperformed these methods
across all metrics and datasets. on almost all met-
rics. We also find that the performance superiority
was more significant on FB15K-237, which is a
more complicated KG (has 237 different relations
and 310, 116 triples) than WN18RR (has only 11
different relations and 93, 003 triples).

4.2. Node Classification
Settings Node classification aims to predict the
labels of nodes in a single graph based on the
node features and their relationships. We evalu-
ated DET on five well-used benchmarks, i.e., Cora,
CiteSeer, PubMed, Amazon Computer, and Ama-
zon Photo (McAuley et al., 2015; Yang et al., 2016).
We selected the following methods for comparison:
the attention-based GAT (Velickovic et al., 2018),

GT (Dwivedi and Bresson, 2021), SuperGAT (Kim
and Oh, 2021), SAN (Kreuzer et al., 2021),
Graphormer (Ying et al., 2021), Gophormer (Zhao
et al., 2021) and NAGphormer (Chen et al., 2023);
and the GNN-based GCN (Kipf and Welling, 2017)
and GraphSage (Hamilton et al., 2017).

Results The results are presented in Table 3.
On four of five datasets, DET significantly out-
performed all baseline methods, including the
Transformer-based ones and those considering
multi-hop or non-local nodes. The unanimously
promising results on all datasets empirically veri-
fied the effectiveness of the proposed semantic en-
coding. The performance of DET on Citeseer was
slightly below that of Gophormer (Zhao et al., 2021),
a multi-hop method that adapts Graphormer (Ying
et al., 2021) to node classification. However, we
believe that there is no contradiction to incorporate
Gophormer as the structural encoder into DET to
obtain a more powerful model.

4.3. Graph Property Prediction
Settings Graph property prediction aims to pre-
dict the properties of a set of small graphs. We
evaluated DET on PCQM4M-LSCv1 (Hu et al.,
2021) and ZINC (Dwivedi et al., 2020). The for-
mer is used in the recent Open Graph Benchmark
Large-Scale Challenge, while the latter is a popular
dataset in molecular graph representation learn-



4691

travel proceed (0.36)

precede (0.32)

accompany (0.37)

walk (0.65)

movement (0.47)

move (0.64)intercommunicate (0.60)

move into (0.58)

turn (0.56)

change (0.59)

(b) WN18RR(a) FB15K-237

Nintendo

Shigeru Miyamoto (0.71)

USA (0.46)

English Language (0.53)

Video game industry (0.97)
Customer service (0.62)

Sony Computer Entertainment(0.88)

From Software (0.86)

Ubisoft (0.87)

Atlus (0.83)

Mattel (0.86)

structural neighbors

node of interest

semantic neighbors

unnormalized 
semantic score

(·)

Figure 4: Examples of the semantic attention scores to different types of neighbors.

Table 4: Graph property prediction results on
PCQM4M-LSCv1.

Model #param. train MAE↓ validate MAE↓
GCN (Kipf and Welling, 2017) 2.0M 0.1318 0.1691
GraphSage (Hamilton et al., 2017) - - -
GIN (Xu et al., 2019b) 3.8M 0.1203 0.1537
GT (Dwivedi and Bresson, 2021) 83.2M 0.0955 0.1408
Graphormer (Ying et al., 2021) 47.1M 0.0582 0.1234
DET 47.1M 0.0546 0.1212

Table 5: Graph property prediction results on ZINC.

Model #param. test MAE↓
GCN (Kipf and Welling, 2017) 505,079 0.367
GraphSage (Hamilton et al., 2017) 505,341 0.398
GIN (Xu et al., 2019b) 509,549 0.526
GAT (Velickovic et al., 2018) 531,345 0.384
SAN (Kreuzer et al., 2021) 508,577 0.139
GT (Dwivedi and Bresson, 2021) 588,929 0.226
Graphormer (Ying et al., 2021) 489,321 0.122
DET 489,562 0.113

ing. Due to the number of nodes in each graph
(molecule) is very small (usually less than 50), we
directly performed attention operations on each
graph. Therefore, semantic neighbor fetching mod-
ule was removed. The main target of this experi-
ment is to investigate whether semantic encoding
is still helpful when all nodes can easily reach each
other. We set Graphormer (Ying et al., 2021) as our
structural encoder, and also selected the following
methods for comparison: the attention-based meth-
ods GAT (Velickovic et al., 2018), GT (Dwivedi and
Bresson, 2021), and SAN (Kreuzer et al., 2021);
the GNN-based methods GCN (Kipf and Welling,
2017), GraphSage (Hamilton et al., 2017), and
GIN (Xu et al., 2019b).

Results Table 4 and Table 5 summarize the ex-
perimental results measured by mean average er-
ror (MAE) on the two datasets. Due to the inacces-
sibility of the testing data on PCQM4M-LSCv1, we
reported the MAE results on training and validation
sets. Overall, DET outperformed all the baseline
methods on both two datasets. Compared with
Graphormer that encoded only structural informa-
tion, DET had 6.2% and 7.4% MAE decline on

PCQM4M-LSCv1 and ZINC, respectively. Mean-
while, the number of model parameters maintained
the same level to that of baselines. Therefore, lever-
aging semantic neighbors was also helpful for en-
coding small graphs.

Overall, DET achieved competitive performance
on all three types of tasks, empirically verifying its
effectiveness and generality in modeling graphs.

5. Further Analysis

In this section, we delve deeper into DET and gain
a more comprehensive understanding of its capa-
bilities and performance.

5.1. Ablation Study
We conducted ablation studies to verify the effec-
tiveness of each module in DET. We used six
datasets in different tasks and present the results in
Table 6. We removed the modules from DET step-
by-step while keeping identical hyper-parameter
settings throughout the experiments.

Semantic Neighbor Fetching The semantic
neighbor fetching loss was undoubtedly important
to DET. No matter if combining two encoders or
not, integrating with the semantic fetching module
always had better performance. The improvement
was most notable on PubMed, where it yielded
3.7% and 3.8% of accuracy increases, respectively.
The mean rank results on WN18RR also got worse
without the fetching loss.

Semantic Encoder If we do not consider the se-
mantic neighbor fetching loss (i.e., regarding the
semantic encoder as a special attention layer), is
the semantic encoder itself still useful to DET? It
depends. For Cora, PubMed, and WN18RR, when
we did not employ the fetching loss, DET with the
semantic encoder performed worse than DET with-
out the semantic encoder. But we observe that the
situation was reversed on CiteSeer and FB15K-237.
We believe that the semantic encoder may have
its pros and cons compared with the standard dot-
product attention layer on different datasets. The



4692

Table 6: Ablation studies on different graphs. St. and Se. are the abbreviations of Structural and Semantic.

St. encoder Se. encoder Fetching loss ZINC Cora CiteSeer PubMed FB15K-237 WN18RR
MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Mean Rank↓ Mean Rank↓

√ √ √ - 88.15 80.12 89.70 150 2,255√ √ 0.113 86.21 80.07 85.63 151 2,305√ 0.122 87.79 77.95 87.97 158 2,268√ √ - 87.94 79.94 89.04 - -√ 0.515 86.64 77.60 84.20 - -

27.7 h 14.4 h 4.4 m

6.3 m

31.6 h

70.7 h

26.5 h 14.2 h 4.4 m

6.2 m

30.4 h

68.3 h

DET DET w/o Semantic Encoding

Figure 5: The training time (hours/minutes) of DET
and DET w/o semantic encoding on six datasets.

semantic fetching loss is who endows the semantic
encoder with the characteristic.

On the ZINC dataset, where the model performed
attention operations on the whole graph, the seman-
tic encoder was capable of estimating the semantic
scores of remote nodes without the help of the
fetching loss. Therefore, we can see that the dual-
encoding version of DET significantly outperformed
the structural encoder only version. Overall, the ef-
fectiveness of the semantic encoder is conditioned:
it must get in touch with the remote nodes.

Structural Encoder The structural encoder also
has merits. From the results of the 3-rd and 5-th
rows in Table 6, we find that it had better perfor-
mance than the semantic encoder on all datasets
except CiteSeer. We also noticed that only using
the semantic encoder had the worst MAE on ZINC,
due to the absence of all structural information.

5.2. How does the Semantic Encoder
Help the Structural Encoder?

It is worth exploring how the semantic encoder af-
fects the structural encoder. In Figure 4, we illus-
trate two examples sampled from FB15K-237 and
WN18RR, respectively.

The semantic scores for the structural neighbors
were in line with human intuition. In the left figure,
the entity USA has a low score although it is directly
connected to Nintendo by relation service_location.
Also, the verb precede and accompany obtain rel-
atively low scores in the right figure. These neigh-
bors are not very related to the entities of interest
from the human perspective. By contrast, some

one-hop neighbors get high semantic scores, e.g.,
the well-known director Shigeru Miyamo of Nin-
tendo in FB15K-237 and the verb walk in WN18.
They are the more informative entities.

For the semantic neighbors, we can see that the
exploited remote neighbors are closely related to
the entity of interest. For example, Atlus is an im-
portant game developer to Nintendo. Aggregating
such information may be helpful when the model
is asked to predict the games related to Nintendo.
For the verb travel in WN18RR, move also shares
many key features with it. We also analysed the
effects of the semantic encoder to the structural
encoder during the training phase.

5.3. Computational Cost
We conducted experiments to investigate the actual
computational cost of DET. We employed a 32GB
V100 GPU to train DET in comparison with DET
w/o semantic encoding. We used same parame-
ter settings for these two methods. The average
training time are presented in Figure 5. It is clear
that incorporating the semantic encoder only had a
small increase in the training time on all six datasets.
Particularly, the training time on Cora and CiteSeer
was almost identical for two methods.

5.4. Improvement on Different Relations
We conducted an analysis of DET’s performance
based on relation types on the WN18RR dataset.
WN18RR comprises 3,034 validation examples
across 11 different relations, The mean recipro-
cal rank (MRR) results for DET compared with DET
without the semantic encoder are listed in Table 7.

Overall, the proposed DET outperformed DET
without the semantic encoder for most relations.
However, we observed minor improvements and
even negative gains in verb group and derivation-
ally related form, respectively. We attribute this
to these examples already possessing sufficient
context information from local neighbors.

5.5. Different Semantic Operators
We conducted experiments to investigate the
performance of using other semantic operators.
Specifically, we evaluated the following variants:



4693

Table 7: The MRR results of DET w/o semantic
encoder and DET, in terms of relation types on
WN18RR.

Relation Count DET w/o Se. encoder DET Gain
hypernym 1,174 .144 .201 39.6%
derivationally related form 1,078 .947 .945 -0.2%
member meronym 273 .237 .338 42.6%
has part 154 .200 .247 23.5%
instance hypernym 107 .302 .340 12.6%
synset domain topic of 105 .350 .415 18.6%
verb group 43 .930 .931 0.1%
also see 41 .585 .602 2.9%
member of domain region 34 .201 .336 57.2%
member of domain usage 22 .373 .451 18.2%
similar to 3 1.000 1.000 0.0%

0.281 

0.560 

0.376 0.271 

0.554 

0.368 0.239

0.514

0.3270.242

0.507

0.331
0

0.2

0.4

0.6

0.8

Hits@1 Hits@10 MRR

Proposed InfoNCE L1 L2

Figure 6: The performance of DET with different
semantic operators on FB15K-237.

(1) InfoNCE: we replaced the proposed mutual-
information-based operator (Equation (4)) with an
identical estimator to that in InfoNCE (van den Oord
et al., 2018); (2) L1: we replaced the proposed oper-
ator with L1 measurement; (3) L2: we replaced the
proposed operator with L2 measurement. The re-
sults on FB15K-237 are presented in Figure 6. DET
with L1/L2 estimators had the worst performance.
Our DET significantly outperformed all the variants,
including InfoNCE, demonstrating the advantages
of the proposed operator.

6. Conclusion and Limitations

In this paper, we propose DET which achieves state-
of-the-art performance across 9 different datasets.
In DET, the structural encoder aggregates local
nodes while the semantic encoder seeks for the
remote nodes. Inspired by recent advances in bi-
ological sciences, DET finds the semantic neigh-
bors with a mutual-information-based operator and
stacks the two encoders alternatively. We hope
DET can bring more insights and inspirations in de-
veloping new Transformer architectures. Currently,
the main limitation of DET is the additional compu-
tation in ranking semantic neighbors. We plan to
investigate more flexible solutions in future.

Acknowledgment

We would like to thank all anonymous reviewers
for their insightful and invaluable comments. This
work is funded by New Generation AI Develop-
ment Plan for 2030 of China (2023ZD0120802),
National Natural Science Foundation of China
(NSFC62302433, USFCU23A20496), and Zhe-
jiang Provincial Natural Science Foundation of
China (No.LQ24F020007).

Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and
Le Song. 2021. Spanning tree-based graph gen-
eration for molecules. In ICLR.

Stephen F Altschul, Warren Gish, Webb Miller, Eu-
gene W Myers, and David J Lipman. 1990. Basic
local alignment search tool. Journal of molecular
biology, 215(3):403–410.

Gunjan Baid, Daniel E Cook, Kishwar Shafin,
Taedong Yun, Felipe Llinares-López, Quentin
Berthet, Anastasiya Belyaeva, Armin Töpfer,
Aaron M Wenger, William J Rowell, et al. 2023.
Deepconsensus improves the accuracy of se-
quences with a gap-aware sequence transformer.
Nature Biotechnology, 41(2):232–238.

Ivana Balazevic, Carl Allen, and Timothy M.
Hospedales. 2019. Tucker: Tensor factorization
for knowledge graph completion. In EMNLP-
IJCNLP, pages 5184–5193.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai
Rajeswar, Sherjil Ozair, Yoshua Bengio, R. De-
von Hjelm, and Aaron C. Courville. 2018. Mutual
information neural estimation. In ICML, pages
530–539.

Zhen Bi, Siyuan Cheng, Ningyu Zhang, Xiaozhuan
Liang, Feiyu Xiong, and Huajun Chen. 2022.
Relphormer: Relational graph transformer for
knowledge graph representation. arXiv preprint
arXiv:2205.10852.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: A
collaboratively created graph database for struc-
turing human knowledge. In SIGMOD, pages
1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS, pages 2787–2795.

Jianwen Chen, Shuangjia Zheng, Ying Song, Ji-
ahua Rao, and Yuedong Yang. 2021a. Learn-
ing attributed graph representations with commu-
nicative message passing transformer. In IJCAI.



4694

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun
He. 2023. Nagphormer: A tokenized graph trans-
former for node classification in large graphs. In
ICLR. OpenReview.net.

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo
Zaniolo. 2017. Multilingual knowledge graph em-
beddings for cross-lingual knowledge alignment.
In IJCAI, pages 1511–1517.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian
Jiao, Ruofei Zhang, and Yangfeng Ji. 2021b.
Hitter: Hierarchical transformers for knowledge
graph embeddings. In EMNLP, pages 10395–
10407.

Zhuo Chen, Jiaoyan Chen, Wen Zhang, Lingbing
Guo, Yin Fang, Yufeng Huang, Yuxia Geng,
Jeff Z Pan, Wenting Song, and Huajun Chen.
2022. Meaformer: Multi-modal entity alignment
transformer for meta modality hybrid. arXiv
preprint arXiv:2212.14454.

Junyan Cheng, Iordanis Fostiropoulos, Barry
Boehm, and Mohammad Soleymani. 2021. Multi-
modal phased transformer for sentiment analysis.
In EMNLP, pages 2447–2458.

Margaret O Dayhoff and Richard V Eck. 1972. At-
las of protein sequence and structure. National
Biomedical Research Foundation.

Tim Dettmers, Pasquale Minervini, Pontus Stene-
torp, and Sebastian Riedel. 2018. Convolutional
2D knowledge graph embeddings. In AAAI,
pages 1811–1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language un-
derstanding. In NAACL-HLT, pages 4171–4186.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. 2021. An
image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR.

Vijay Prakash Dwivedi and Xavier Bresson. 2021. A
generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs:
Methods and Applications.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas
Laurent, Yoshua Bengio, and Xavier Bresson.
2020. Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yang-
hao Li, Zhicheng Yan, Jitendra Malik, and

Christoph Feichtenhofer. 2021. Multiscale vision
transformers. In ICCV, pages 6824–6835.

Lingbing Guo, Zequn Sun, and Wei Hu. 2019.
Learning to exploit long-term relational depen-
dencies in knowledge graphs. In ICML, pages
2505–2514.

Lingbing Guo, Weiqing Wang, Zequn Sun, Cheng-
hao Liu, and Wei Hu. 2020. Decentralized
knowledge graph representation learning. CoRR,
abs/2010.08114.

William L. Hamilton, Zhitao Ying, and Jure
Leskovec. 2017. Inductive representation learn-
ing on large graphs. In NIPS, pages 1024–1034.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chun-
jing Xu, and Yunhe Wang. 2021. Transformer in
transformer. NeurIPS, 34.

Steven Henikoff and Jorja G Henikoff. 1992. Amino
acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sci-
ences, 89(22):10915–10919.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9:1735–1780.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho
Nakata, Yuxiao Dong, and Jure Leskovec.
2021. Ogb-lsc: A large-scale challenge for
machine learning on graphs. arXiv preprint
arXiv:2103.09430.

John Jumper, Richard Evans, Alexander Pritzel,
Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Au-
gustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A A Kohl, Andrew J
Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas
Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals,
Andrew W Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. 2021. Highly
accurate protein structure prediction with Al-
phaFold. Nature, 596(7873):583–589.

Dongkwan Kim and Alice H. Oh. 2021. How to
find your friendly neighborhood: Graph attention
design with self-supervision. In ICLR.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolu-
tional networks. In ICLR.

Devin Kreuzer, Dominique Beaini, William Hamil-
ton, Vincent Létourneau, and Prudencio Tossou.



4695

2021. Rethinking graph transformers with spec-
tral attention. arXiv preprint arXiv:2106.03893.

Meng Liu, Zhengyang Wang, and Shuiwang Ji.
2021. Non-local graph neural networks. IEEE
Transactions on Pattern Analysis and Machine
Intelligence.

Julian J. McAuley, Christopher Targett, Qinfeng Shi,
and Anton van den Hengel. 2015. Image-based
recommendations on styles and substitutes. In
SIGIR, pages 43–52. ACM.

George A. Miller. 1995. WordNet: An electronic
lexical database. Communications of the ACM,
38.

Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian,
Peilin Zhao, Junzhou Huang, Da Luo, Kangyi
Lin, and Sophia Ananiadou. 2022. Masked trans-
former for neighhourhood-aware click-through
rate prediction. arXiv preprint arXiv:2201.13311.

Maho Nakata and Tomomi Shimazaki. 2017. Pub-
chemqc project: a large-scale first-principles
electronic structure database for data-driven
chemistry. Journal of chemical information and
modeling, 57(6):1300–1308.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan
Chang, Yu Lei, and Bo Yang. 2020. Geom-
gcn: Geometric graph convolutional networks.
In ICLR. OpenReview.net.

Roshan Rao, Jason Liu, Robert Verkuil, Joshua
Meier, John F. Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. 2021. Msa transformer.
bioRxiv.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. 2018. Modeling relational data with
graph convolutional networks. In ESWC, pages
593–607.

Temple F Smith, Michael S Waterman, et al.
1981. Identification of common molecular
subsequences. Journal of molecular biology,
147(1):195–197.

Zequn Sun, Wei Hu, Qingheng Zhang, and
Yuzhong Qu. 2018. Bootstrapping entity align-
ment with knowledge graph embedding. In IJCAI,
pages 4396–4402.

Zequn Sun, Chengming Wang, Wei Hu, Muhao
Chen, Jian Dai, Wei Zhang, and Yuzhong Qu.
2020. Knowledge graph alignment network with
gated multi-hop neighborhood aggregation. In
AAAI, pages 222–229.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and
Jian Tang. 2019. Rotate: Knowledge graph em-
bedding by relational rotation in complex space.
In ICLR.

Kristina Toutanova and Danqi Chen. 2015. Ob-
served versus latent features for knowledge base
and text inference. In CVSC, pages 57–66.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive
predictive coding. CoRR, abs/1807.03748.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin,
and Partha P. Talukdar. 2020. Composition-
based multi-relational graph convolutional net-
works. In ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In NIPS, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. 2018. Graph attention networks.
In ICLR.

Quan Wang, Pingping Huang, Haifeng Wang,
Songtai Dai, Wenbin Jiang, Jing Liu, Yajuan Lyu,
Yong Zhu, and Hua Wu. 2019. Coke: Contextual-
ized knowledge graph embedding. arXiv preprint
arXiv:1911.02168.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and
Yu Zhang. 2018. Cross-lingual knowledge graph
alignment via graph convolutional networks. In
EMNLP, pages 349–357.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recur-
rent neural networks. Neural computation, 1:243–
248.

Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang,
Rui Yan, and Dongyan Zhao. 2019. Relation-
aware entity alignment for heterogeneous knowl-
edge graphs. In IJCAI, pages 5278–5284.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019a.
BERT post-training for review reading compre-
hension and aspect-based sentiment analysis.
In NAACL-HLT, pages 2324–2335.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Ste-
fanie Jegelka. 2019b. How powerful are graph
neural networks? In ICLR.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering
with bertserini. In NAACL-HLT, pages 72–77.



4696

Zhilin Yang, William W. Cohen, and Ruslan
Salakhutdinov. 2016. Revisiting semi-supervised
learning with graph embeddings. In ICML, vol-
ume 48, pages 40–48.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for
graph-to-sequence learning. In ACL, pages
7145–7154.

Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
Nitish Shirish Keskar, and Caiming Xiong. 2022.
Modeling multi-hop question answering as single
sequence prediction. In ACL, pages 974–990.

Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and
Mingzhong Wang. 2019. A vectorized relational
graph convolutional network for multi-relational
network alignment. In IJCAI, pages 4135–4141.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. 2021. Do transformers really perform
badly for graph representation? In Thirty-Fifth
Conference on Neural Information Processing
Systems.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi
Wang, Yuming Liu, Hao Sun, Xing Xie, and
Yanfang Ye. 2021. Gophormer: Ego-graph
transformer for node classification. CoRR,
abs/2110.13094.


