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Abstract
Semi-supervised learning that leverages synthetic data for training has been widely adopted for developing automatic
post-editing (APE) models due to the lack of training data. With this aim, we focus on data-synthesis methods to
create high-quality synthetic data. Given that APE takes as input a machine-translation result that might include
errors, we present a data-synthesis method by which the resulting synthetic data mimic the translation errors found in
actual data. We introduce a noising-based data-synthesis method by adapting the masked language model approach,
generating a noisy text from a clean text by infilling masked tokens with erroneous tokens. Moreover, we propose
selective corpus interleaving that combines two separate synthetic datasets by taking only the advantageous samples
to enhance the quality of the synthetic data further. Experimental results show that using the synthetic data created by
our approach results in significantly better APE performance than other synthetic data created by existing methods.

Keywords: Automatic post-editing, synthetic-corpus generation, masked language modeling

1. Introduction

Automatic post-editing (APE) (Chatterjee et al.,
2015, 2018) is a study of correcting errors in ma-
chine translation (MT) outputs to provide high-
quality (publishable) translations. APE can be con-
ceptually framed as a multi-source sequence-to-
sequence problem, as depicted in Figure 1, which
concurrently takes both a source text (src) and its
machine-translated text (mt) to generate a post-
edited text (pe). This process can be succinctly
represented as a mapping of (src,mt) → pe, and
is typically addressed through supervised learning
methods.

Accordingly, APE models necessitate the use of
triplet data (src,mt, pe), commonly referred to as
an APE triplet, for supervised learning. This data
is established on the underlying assumption (Bojar
et al., 2015) that pe serves as the minimum cor-
rection of mt, and both src and pe are assumed
to be free from error and semantically equiv-
alent. Despite the potential of APE models, the
scarcity of high-quality human-made (gold) APE
data poses a significant challenge in the develop-
ment of robust APE models. To overcome this prob-
lem, semi-supervised learning, which leverages
synthetic data in addition to gold data for training,
has been instrumental in building APE models.

The central focus of this approach lies in the data-
synthesis method, which aims to generate synthetic
data that meets both quality and quantity require-
ments. Specifically, the resulting synthetic data
should possess sufficient volume and accurately
reflect the inherent characteristics found in the gold
data, such as statistical properties. For this pur-
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Automatic 
post-editing

Source (𝒔𝒓𝒄)
“Manipulates the 

shape of an item .”

Translation (𝒎𝒕)
“Bearbeitet die Form 
eines Elements an .”

Post edit (𝒑𝒆)
“Verändert die Form 

eines Elements .”

Figure 1: Overview of the APE process for an
English-German translation. Bold highlights indi-
cate erroneous words in mt and post-edited words
in pe.

pose, numerous studies (Junczys-Dowmunt and
Grundkiewicz, 2016; Negri et al., 2018; Lee et al.,
2020, 2021) have proposed methods to generate
synthetic APE data, including the methods (Negri
et al., 2018; Lee et al., 2020, 2021) that produce
synthetic APE data using a bilingual parallel corpus,
which have received significant attention (detailed
in Section 2). Although these have been proven
beneficial to APE training, their synthetic data have
drawbacks in that (1) the included translation errors
excessively outnumber those in gold data (Negri
et al., 2018; Lee et al., 2021) or (2) the errors are
not likely to appear in gold data (Lee et al., 2020).

In this study, we introduce a data-synthesis ap-
proach through the application of a noising mecha-
nism to the masked language model (MLM) frame-
work (Devlin et al., 2019; Conneau and Lample,
2019). This technique, we have termed MLM nois-
ing, aims to address and mitigate the shortcomings
prevalent in the existing data synthesis methods.
The objective of employing this method is to ensure
that the resulting synthetic data exhibit translation
errors that closely replicate those found in gold
data, both in quality and quantity. Specifically, we
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first manipulate a clean target text (i.e., a reference
text in a parallel corpus) by replacing a specific
portion with [MASK] tokens according to the error
statistics from gold data and then let our MLM sub-
stitute each [MASK] with an erroneous token that
is likely to appear in gold data. We note that fill-
ing masks with erroneous tokens deviates from the
standard approach of MLM, which aims to predict
the correct tokens.

Furthermore, we contend that our MLM noising
method and the existing method (Negri et al., 2018)
may offer complementary benefits due to their or-
thogonal advantages. To leverage the strengths
of both approaches, we introduce a corpus en-
semble method selective corpus interleaving.
This method selectively incorporates advantageous
samples from two synthetic datasets, choosing
those that most closely resemble the gold data.
We experimentally demonstrated that our synthetic
data significantly improves the model performance
compared to other synthetic data created by exist-
ing methods.

In summary, our key contributions to this work
are as follows:

• MLM noising: We introduce MLM noising,
a method that adapts the masked language
model (MLM) for creating synthetic APE data.
This approach strategically inserts [MASK] to-
kens into clean target texts and replaces them
with unnatural tokens that are likely to appear
as translation errors in gold data.

• Selective Corpus Interleaving: We present
a corpus ensemble strategy designed to com-
bine two distinct synthetic datasets. This
method makes an integrated dataset by care-
fully selecting the most advantageous samples
from two different datasets that better resem-
ble the characteristics of gold data.

2. Background

2.1. Problem Statement
APE has been mainly framed as a dual-
source sequence-to-sequence learning problem
(src,mt) → pe, taking two inputs: src, which is re-
sponsible for providing contextual information to
identify translation errors, and mt, which is the ob-
ject of correction. Formally, let D = {(x, ỹ,y)i}ni=1

denotes a set of n APE triplets (whether they are
gold or synthetic triplets), where x = (xi . . . xTx),
ỹ = (ỹ1 . . . ỹTỹ

), and y = (y1 . . . yTy) indicate src,
mt, and pe, respectively1. An APE model learns
to the estimate parameters θ that maximize the

1These notations will be applied across all mathemat-
ical formulations presented in this paper.

[0
, 5

)

[5
, 1

0)

[1
0,

 1
5)

[1
5,

 2
0)

[2
0,

 2
5)

[2
5,

 3
0)

[3
0,

 3
5)

[3
5,

 4
0)

[4
0,

 4
5)

[4
5,

 5
0)

[5
0,

 5
5)

[5
5,

 6
0)

[6
0,

 6
5)

[6
5,

 7
0)

[7
0,

 7
5)

[7
5,

 8
0)

[8
0,

 8
5)

[8
5,

 9
0)

[9
0,

 9
5)

[9
5,

 
)

TER intervals

0

5

10

15

%
 o

f s
am

pl
es

WMT
TRANS

Figure 2: Categorical distributions of gold (WMT)
and synthetic (Trans) APE data, representing the
proportion of samples belonging to a particular in-
terval of translation error rate (TER) [%], a similarity
measure based on the edit distance between mt
and its target (i.e., pe or ref ).

conditional probability on pe as:

P (y|x, ỹ) ≈ argmax
θ

Ty∑
i=1

logPθ(yi | y<i,x, ỹ). (1)

2.2. Existing Data-Synthesis Methods
In this section, we outline existing methods that
employ a bilingual parallel corpus to create syn-
thetic APE triplets. In section 2.2.1, we provide an
overview of an early method that continues to be
widely used. Subsequently, in sections 2.2.2 and
2.2.3, we discuss subsequent studies that have
expanded this foundational approach.

2.2.1. Translation Approach (Trans)

Translation approach (Trans), introduced in an
early study by Negri et al. (2018), motivates the
generation of synthetic APE data using a paral-
lel corpus. This method remains the predominant
method used in many studies. Given that the paral-
lel corpus consists of a source (src) and the corre-
sponding reference translation (ref ) pairs, namely,
(src, ref ), this method configures synthetic APE
triplets in the form of (src,mt, ref ), in which src
and ref are taken from the parallel corpus and mt
is the machine translation result of src.

Despite its simplicity, this method has an advan-
tage in mirroring the attributes of gold data, po-
tentially leading to consistency in quality with gold
data. Specifically, src and ref in the parallel corpus
are supposed to be error-free and have identical
semantics, replicating the relationship observed be-
tween src and pe in gold APE data. Additionally, mt
is generated following the same process as applied
to gold data.

However, a critical limitation of this approach is
the lack of assurance that the ref (serving as a
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proxy for pe) represents the minimal correction re-
quired for mt. This is because ref is generated
independently of mt—that is, ref is not created by
directly correcting mt—thereby deviating from the
fundamental principle that gold APE data should fol-
low. Consequently, the synthetic data may exhibit
a significantly higher number of errors compared
to gold data, potentially prompting the APE model
to apply overly aggressive corrections to mt. This
discrepancy, as demonstrated by the differing edit-
distance distributions between mt-ref and mt-pe
(Figure 2), indicates considerable potential for en-
hancing the quality of the method. By addressing
this discrepancy and more closely aligning with the
characteristics of gold data, we anticipate the pro-
duction of higher-quality synthetic data.

2.2.2. Back-Translation Approach (BT)

This approach (Lee et al., 2021) modifies the Trans
triplet (src,mt, ref ) by replacing the machine-
translated text (mt) with a synthesized counter-
part (m̃t), thus yielding the new configuration:
(src, m̃t, ref ). This is accomplished through an
adaptation of the back-translation (BT) technique,
which traditionally generates synthetic source texts
from target texts, by incorporating the APE process.
This method has proven effective in reducing the
edit distance to ref when m̃t is used instead of
mt, thereby mitigating the problem encountered by
the Trans method. This method introduced two
approaches for producing m̃t:

• Forward generation (BT-fg): This approach
involves applying a (src,mt) pair to the APE
process to create a partially corrected version
(m̃t), aiming for reduced distance to ref .

• Backward generation (BT-bg): This approach
applies a (src, ref ) pair to the reversed APE
process, (src, pe) → mt, to produce m̃t that
likely contains translation errors, presenting it
as a partially degraded reference.

However, the degree of reduction in the edit dis-
tance achieved by using their m̃t is insignificant,
so the discrepancy remains, and moreover, the re-
sulting synthetic data themselves improve the APE
performance less than Trans (Section 4.3).

2.2.3. Random Noising Approach (Rand)

As in the BT approach, this method (Lee et al.,
2020) substitutes mt of Trans triplet with its syn-
thetic machine translation m̃t. This method intro-
duces random noises (Rand) into ref to create m̃t,
aligning the number of introduced noises with the
error distribution observed in gold data. Specifically,
for each token in ref , the method probabilistically
applies one of four editing operations—keep, insert,

delete, or substitute—reflecting translation errors.
This selection is based on the categorical proba-
bility distribution of these operations derived from
gold data, yielding a collection of synthetic APE
triplets (src, m̃t, ref ).

The primary advantage of this approach is its
capacity to produce synthetic data whose error
frequency mirrors that of gold data. However, a
significant challenge arises from the qualitative dis-
agreement between the synthetic and gold data,
caused by the stochastic nature of the noising pro-
cess. This randomness is evident in the proce-
dures of word selection for insertion and substi-
tution, where choices are made indiscriminately
from the dictionary, and deletions similarly affect
randomly selected words. As a result, the their
synthetic machine translations m̃t may incorporate
words that machine translation systems are unlikely
to generate, leading to a qualitative deviation from
the expected output of such systems.

3. Approach

3.1. Overview and Motivation

It is apparent from the existing methods that BT-
bg and Rand have unique advantages. BT-bg
is prone to generating translation errors that are
likely to be found in (src, pe) pairs by learning of
(src, pe) → mt. On the other hand, Rand effectively
limits the quantity of errors to align with the distribu-
tion found in gold data. In response to these obser-
vations, we introduce a noising method by adapting
the masked language model (MLM), termed MLM
noising. This method learns (src, pe) → mt and
leverages the mask-infilling technique of MLM to
create synthetic machine translations m̃t by intro-
ducing plausible translation errors into the refer-
ence (ref ) of a parallel corpus while maintaining
the frequency of these introduced errors to align
with the error distribution found in gold data. Con-
sequently, it presents a hybrid method that com-
bines the advantages of both the BT-bg and Rand
methods, effectively balancing error realism with
controlled error quantity.

In addition, the Trans method is conspicuous in
that it utilizes raw machine translations (mt) that
are not synthesized, thus closely replicating the
generation process of mt found in gold data if the
error frequency in mt aligns with that of gold data.
To capitalize on the distinct advantages of both the
Trans and MLM noising methods, we propose a
corpus ensemble method called selective corpus
interleaving. This approach merges two distinct
synthetic datasets (e.g., the datasets created by
Trans and MLM noising) into a single, enhanced
dataset. This integration is achieved by comparing
corresponding samples from the two datasets and
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is an

Transformer encoder

Output embedding

Input embedding
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Figure 3: Overall architecture of our MLM noising model.

selectively incorporating those that more accurately
reflect the attributes of gold data, thereby expecting
to improve the overall quality and effectiveness of
the synthetic data.

3.2. MLM Noising

3.2.1. Architecture and Objective

Given a corrupted text in which some tokens are
replaced with [MASK], the objective of MLM (Devlin
et al., 2019) is to reconstruct the original text from
this corrupted text by infilling masks with original
tokens using the Transformer encoder (Vaswani
et al., 2017). Inspired by studies (Kumar et al.,
2020; Tuan et al., 2021) that employed MLMs for
the data augmentation, we adapt MLM to produce
a synthetic mt (i.e., m̃t) that serves as a proxy for
mt in our synthetic APE triplet.

As shown in Figure 3, given an APE triplet
(src,mt, pe), we mask pe tokens that are aligned
to mistranslated tokens in mt, after which we
feed src along with this masked pe (pemask) and let
the model learn to restore these erroneous mt to-
kens from the [MASK] tokens. In other words, this
training objective indicates that the model learns to
predict translation errors that may occur in (src, pe)
pairs, leading to the learning of (src, pe) → mt that
BT-bg likewise learns. We also note that our MLM
noising can be regarded as a cross-lingual MLM
(Conneau and Lample, 2019) because the two bilin-
gual inputs, src and pe, constitute a cross-lingual
representation by which the prediction is made on
[MASK]. Formally, given that ŷ denotes pemask, the
objective function can be defined as

max
θ

J (θ) = Pθ(ỹ | x, ŷ)

≈
∑
i

mi logPθ(ỹi | x, ŷ)

=
∑
i

mi log
exp

(
Hθ(ŷi)E

⊤
θ (ỹi)

)∑
y′ exp

(
Hθ(ŷi)E⊤

θ (y′)
) ,
(2)

where Hθ(·) and Eθ(·) are the hidden vector from
Transformer and the embedding vector, respec-
tively; and mi = 1 indicates that ŷi is masked to
correspond with mistranslated ỹi.

3.2.2. Training Data Configuration

For the learning process, it is imperative to con-
struct a set of triplets in the form of (src, pemask,mt).
At first, the alignment between mt and pe is neces-
sary to construct pemask, but it is generally invisible
in data. As an alternative, we utilize an alignment2

that can be obtained as a byproduct of the edit dis-
tance3 calculation between mt and pe. Given the
edit-distance alignments from pe to mt denoted as
a = {(y, ỹ)i}

Tỹ

i=1, each alignment corresponds to
one of four edit operations4: keep, insert, delete,
or substitute. Specifically, for each (y, ỹ) ∈ a, the
keep operation, where y = ỹ, represents that ỹ is
an accurate translation. Conversely, an alignment
where y ̸= ỹ indicates a mistranslation, which is
further categorized into (1) an insertion error if y
is NULL, indicating the addition of unnecessary to-
ken; (2) a deletion error5 if ỹ is NULL, indicating the

2We obtain the alignments by using tercom software:
https://github.com/jhclark/tercom.git

3The rationale for employing edit-distance alignment
stems from the premise that pe results from only minor
correction to mt, with the possibility that the majority of
words between them remain unchanged. Consequently,
we assume that discrepancies in word alignment be-
tween mt and pe—where aligned words are not identi-
cal—indicate that the word from mt is likely an erroneous
translation.

4Due to implementation difficulties with mask-infilling,
the shift operation employed in TER is not directly con-
sidered. Nonetheless, it is addressed indirectly, as it
is widely recognized that a shift can be accomplished
through a sequence of a deletion followed by an addition.

5In practice, we ignore alignments on deletion errors
because all deletion [MASK] are mapped onto a single
output token (i.e., null token ‘’), consequently causing
serious deletion-biased predictions. Instead, we simulate
deletion errors at the inference time.

https://github.com/jhclark/tercom.git
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Algorithm 1: refmask for training
Input: y, ỹ # ref and mt

D # distribution of error rate from gold data
a = {(y, ỹ)i}Tỹ

i=1 # alignments
Output: ŷ
ŷ← {}
e← Edit_distance(ỹ,y) # actual error rate
ê ∼ Categorical(D) # sampled error rate
aerr ← {(y, ỹ) | ∀a, ỹ ̸= NULL, y ̸= ỹ }
if e > ê then

num_mask← ⌈(Len(y) ∗ ê)⌉
â← random_choice(aerr, num_mask)

else
â← aerr

for each (y, ỹ) ∈ a do
if ⟨y, ỹ⟩ ∈ â then

ŷ← Append(ŷ,[MASK])

else
ŷ← Append(ŷ, y)

omission of necessary token; and (3) a substitution
error when both y and ỹ are present but differ, in-
dicating incorrect translation. Finally, we construct
pemask by replacing pe tokens, which are aligned
with mistranslated mt tokens, with [MASK] tokens.

Due to the limited availability of gold data, we
transform synthetic data from the Trans triplets
(src,mt, ref ) into (src, refmask, m̃t) for our training
needs. Notably, Trans typically exhibits a higher
error rate compared to gold data, necessitating the
use of m̃t to approximate the edit distance between
mt and pe found in gold data.

To align the error distribution of synthetic data
with that of gold data, we first calculate the propor-
tion of masking tokens based on the error rates
observed in the gold data (by sampling from the
categorical distribution in Figure 2). For each ref in
the Trans triplet, we sample the number of tokens
(k) to be masked and find the total tokens (n) that
are aligned with mistranslated mt tokens based
on edit-distance alignment. Next, we randomly
choose k tokens out of the n tokens, replace these
with their aligned mt tokens to form m̃t, and mask
them to create refmask. This procedure yields a
set S = {(ŷ, ỹi)}|Y|

i=1, where |Y| =
(
n
k

)
represents

the total number of potential masking scenarios,
each leading to distinct pairs of (refmask, m̃t). The
model is trained to recognize these masking pat-
terns across iterations, aiming for generating ap-
propriate errors at various positions by

max
θ

E(ŷ,ỹ)∼S

[∑
i

mi logPθ(ỹi | x, ŷ)

]
. (3)

We present our pseudo algorithm for constructing
refmask from the Trans triplet (src,mt, ref ) in Al-
gorithm 1.

Algorithm 2: refmask for inference
Input: y, µ = {µkeep, µins, µdel, µsub}
Output: ŷ
ŷ← {}
op ∼ Categorical(µ)
for each y ∈ ŷ do

if op is keep then
ŷ← Append(ŷ, y)

else if op is insert then
ŷ← Append(ŷ, y)
ŷ← Append(ŷ,[MASK])

else if op is delete then
continue

else if op is substitute then
ŷ← Append(ŷ,[MASK])

3.2.3. Inference: Synthetic APE Data
Construction

Once the training has finished, we use our MLM
model to produce m̃t from the parallel corpus, yield-
ing a new set of synthetic APE triplets (src, m̃t, ref ).
For every (src, ref ) pair, we initiate the masking
process for ref , wherein each token is masked
stochastically6 according to the categorical prob-
ability distribution7 of the edit operations µ =
{µkeep, µins, µdel, µsub} obtained from gold data, fa-
cilitates diverse outcomes resulting from the in-
formed masking decisions. We present this
stochastic masking process to obtain refmask in
Algorithm 2. Subsequently, we provide our MLM
model with (src, refmask) and let it perform mask
infilling to produce m̃t.

Eventually, m̃t can hold the number of errors sim-
ilar to gold data while these errors are expected to
appear convincing by learning. Moreover, because
our MLM stochastically determines masking pat-
terns of refmask at every inference time, we can
obtain m̃t in various forms from a single (src, ref )
pair, making a given resource scalable.

3.3. Selective Corpus Interleaving
Recall that although Trans is advantageous in us-
ing non-synthesized mt (which is most likely to cap-
ture the nature of mt in gold data), it has a limitation
in including excessive errors on mt to match ref .
We thus hypothesize that the benefit of synthetic mt
that approximates the error statistics of gold data
far outweighs the benefit of raw mt. However, it is
intuitively reasonable that a Trans triplet containing

6Note that the alignment used in the training phase is
intrinsically unavailable during inference.

7Each µ represents the probability that the corre-
sponding edit operation occurs. This distribution can
be obtained from the edit-distance calculation: https:
//github.com/jhclark/tercom.git

https://github.com/jhclark/tercom.git
https://github.com/jhclark/tercom.git
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Figure 4: Schematic architecture of the concat-
based APE model, one of the basic APE models
that performs well.

mt whose error quantity is already similar to that
of gold data can be regarded as an ideal training
sample for APE, which can be even more effective
than using m̃t instead (e.g., the overlapping region
in Figure 2).

In this regard, we suggest a selective corpus
interleaving approach that takes only advantageous
samples between Trans and ours depending on
whether the mt–ref edit distance is similar to the
mt–pe edit distance, thereby constructing a single
enhanced synthetic dataset. For every (src, ref )
pair, we select either mt or m̃t by applying the three-
sigma rule (Pukelsheim, 1994):

mt =

{
mt if |edit(mt, ref)− µ| ≤ λσ

m̃t otherwise,
(4)

where edit(·) denotes the edit distance; µ and σ
are the mean and standard deviation of the mt–
pe edit distances, respectively; and λ ∈ [1, 3] is a
hyperparameter.

4. Experiments

4.1. Setup
Evaluation Metric Following the WMT APE
shared task (Chatterjee et al., 2018), we adopted
TER (↓) (Snover et al., 2006)8 as our primary met-
ric, and BLEU (↑) (Koehn et al., 2007)9 as the sec-
ondary metric. We conducted all evaluations case-
sensitively.

Datasets We used the WMT’18 APE dataset as
the gold data, a human-made English-German (EN-
DE) APE dataset considered the de-facto standard
benchmark. The WMT data consists of 23K of
training data, 1K of development data, and three
separate test datasets (Test16, Test17, and Test18)

8https://github.com/jhclark/tercom
9https://github.com/moses-smt/

mosesdecoder

of 2K each. We also used EN-DE Trans synthetic
triplets10 consisting of approximately 7M samples.
All words in the datasets we used were tokenized
into subword units by SentencePiece11.

Model Configuration Our MLM noising model
was developed utilizing the RoBERTa architec-
ture (Liu et al., 2019)12, adhering largely to its de-
fault configuration. Specifically, the model com-
prises 12 layers, each with 12 attention heads, a hid-
den layer size of 768, and a feed-forward layer size
of 3,072. For training, we employed the AdamW
optimizer (Loshchilov and Hutter, 2019), configured
with β parameters of (0.9, 0.999), a learning rate of
2e-4 subject to linear decay, 7,000 warm-up steps,
and managed a batch size of 384 samples.

For the implementation of an APE model, we
utilized OpenNMT-py13, specifically deploying the
“concat-based” model (Figure 4) that aligns with
state-of-the-art standards. In line with established
practices, the model architecture was configured
with 6 layers, 8 attention heads, hidden layer sizes
of 512, and feed-forward network sizes of 2,048.
Training was conducted using the Adam optimizer
(Kingma and Ba, 2015) with β set to (0.9, 0.998), fol-
lowing the learning rate schedule recommended by
Vaswani et al. (2017), which includes 6,000 warm-
up steps. The model was trained with a batch size
capable of accommodating 48K tokens.

4.2. Experimental Details
In our experiment, we establish our baselines us-
ing four models trained on the existing synthetic
datasets discussed in Section 2: Trans, BT-fg14,
BT-bg14, and Rand. To ensure a fair and controlled
comparison, each model was trained under iden-
tical conditions, including hyperparameters, code-
base, and training seed, with the sole exception of
the synthetic training data. Furthermore, all syn-
thetic datasets, including our own, were created
using the same parallel corpus used to generate
Trans so that they only differed in the mt portion.

Since our MLM noising and Rand can diversify
their m̃t as stochastic, we empirically used five
different random seeds to construct them; namely,
one out of five different m̃t was selected for each
(src, ref ) pair at every iteration during training. The
training of the MLM model lasted 3 days with 8 A100
GPUs and the APE model lasted for 12 hours with
a single A5000 GPU.

10https://ict.fbk.eu/escape/
11https://github.com/google/

sentencepiece
12https://huggingface.co/roberta-base
13https://github.com/OpenNMT/OpenNMT-py
14https://github.com/wonkeelee/

APE-backtranslation.git

https://github.com/jhclark/tercom
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://ict.fbk.eu/escape/
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://huggingface.co/roberta-base
https://github.com/OpenNMT/OpenNMT-py
https://github.com/wonkeelee/APE-backtranslation.git
https://github.com/wonkeelee/APE-backtranslation.git
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Approach
Test16 Test17 Test18 Test Avg.

TER(↓) BLEU(↑) TER(↓) BLEU(↑) TER(↓) BLEU(↑) TER(↓) BLEU(↑)
Trans 16.87 73.95 17.30 73.08 17.80 72.41 17.32 73.15
BT-fg 17.26 73.56 17.56 72.78 17.89 72.14 17.57 72.82
BT-bg 17.61 73.04 17.60 72.49 18.01 71.89 17.74 72.47
Rand 17.23 73.59 17.61 72.69 17.81 72.38 17.55 72.88
MLM Noising (w/o interleave) 16.90 74.03 17.31 72.90 17.62 72.43 17.28 73.12
MLM Noising (w/ interleave) 16.71 74.58 16.74 73.79 17.43 72.88 16.96 73.75

Table 1: Comparison of learning effects on each synthetic data by presenting evaluation results of the
model trained on each specific synthetic data. In each column, the best-performing result is highlighted in
bold.

Test Avg. Sample Ratio
TER(↓) BLEU(↑) MLM Trans

λ = 0 (MLM Noising) 17.32 73.15 100.0% 0.0%
λ = 1 17.25 73.26 71.5% 28.5%
λ = 2 16.96∗∗ 73.75∗∗ 41.5% 58.5%
λ = 3 17.03∗∗ 73.48∗∗ 20.8% 79.2%
λ = ∞ (Trans) 17.28 73.12 0.0% 100.0%

Table 2: Effect of the selective corpus interleaving
with varying λ. ∗∗ indicates the improvement is
statistically significant compared to both λ = 0 and
λ = ∞ with p < 0.01. The bold highlights indicate
the best result in each column.

4.3. Results

We evaluated the APE models, each trained on
distinct synthetic datasets, by employing the WMT
test datasets. This allowed us to investigate how
each synthetic dataset impacts their performance.
Referring to Table 1, our observations yield two
key findings: (1) The utilization of synthetic data
generated through MLM noising improves the APE
performance compared to the baselines, and (2)
augmenting this with selective corpus interleaving
method further enhances the model performance.
In light of these results, we speculate that our find-
ings lend support to our initial hypothesis, suggest-
ing potential benefits for APE training. Specifically,
the combination of MLM noising, drawing from the
strengths of BT-bg and Rand, and interleaving
MLM noising with Trans, where the former focuses
on statistics while the latter aligns more closely with
gold data, demonstrates promise in improving the
APE performance.

Additionally, we performed experiments employ-
ing various values of λ for the corpus interleaving
method (Table 2). When λ = 0, it signifies the exclu-
sive use of the dataset generated by MLM noising,
while λ = ∞ indicates the exclusive use of the
Trans dataset. Notably, our results revealed that
taking approximately equal parts (λ = 2) from our
MLM noising and Trans data led to better APE per-
formance than the other ratios. These findings also
support our hypothesis that each synthetic dataset
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Figure 5: Effect of the selective corpus interleaving
when applied to other existing synthetic APE data.
The colored plots represent the best performance
for each data.
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Figure 6: Comparison of two corpus ensemble
methods applied to each synthetic APE dataset.

possesses unique advantages that complement
one another.

5. Analysis and Discussion

5.1. Effect of Selective Corpus
Interleaving

The versatility of the selective corpus interleaving
technique allows for its application across a variety
of pre-existing synthetic datasets, including BT-fg,
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Component Sentence
src It is worthless without knowing where to sell it .
ref Zu wissen , wo man es verkauft , ist sehr wichtig .

m̃t (MLM noising) Zu wissen , wo man es zu verkauft , wo sie sehr wichtig .
mt (Trans) Es ist nichts ohne zu wissen , wo sie zu verkaufen .

(a)

Component Sentence
src What happens if I want to leave ?
ref Was geschieht , wenn ich wieder gehen will ?

m̃t (MLM noising) Was passiert geschieht , wenn ich ich zu gehen wollen .
mt (Trans) Was passiert , wenn ich verlassen wollen ?

(b)

Table 3: Two examples showing the comparison between mt and m̃t for a given (src, ref ) pair. The bold
highlights indicate the mistranslated words compared to ref .

BT-bg, and Rand, provided that these datasets
feature synthetic machine translations m̃t aimed at
reducing the edit distance to ref . To investigate this
utility further, we undertook additional experiments
where selective corpus interleaving was employed
to integrate Trans data with each of the aforemen-
tioned datasets (BT-fg, BT-bg, and Rand). The
outcomes, illustrated in Figure 5, indicate that uti-
lization of the selective corpus interleaving with
these alternate synthetic datasets consistently im-
proves the quality of the synthetic dataset, thereby
contributing to enhanced performance of the mod-
els.

Moreover, we conducted a comparative anal-
ysis contrasting the selective corpus interleav-
ing method with a conventional corpus ensemble
technique that straightforwardly concatenates two
datasets without any selective filtering. The out-
comes (Figure 6) validate that the selective cor-
pus interleaving approach significantly surpasses
the straightforward concatenation method in per-
formance, even though the latter offers a twofold
increase in data resources. This finding highlights
the importance of excluding filtered samples, an
crucial step in the effective application of the selec-
tive corpus interleaving method, underscoring its
impact on improving data quality.

5.2. Case Study
In Table 3, we present two examples to examine
the differences between our modified translation
output by MLM noising, denoted as m̃t, and the raw
translation output, referred to as mt (representing
Trans). The first example, shown in Table 3a, illus-
trates that mt requires extensive post-processing to
align with the reference (ref ). In contrast, m̃t, gen-
erated through our approach, necessitates fewer
corrections, showing a closer resemblance to the

error statistics found in gold data. However, in our
second example, presented in Table 3b, the num-
ber of errors in mt is already within an acceptable
range, making it more compatible with the gold
standard. In such cases, the benefits of using m̃t
are less pronounced, and the selective corpus in-
terleaving method ultimately favors mt.

Additionally, our observations have identified sev-
eral potential weakness in our approach:

• Due to the nature of the masked language
modeling, all masked tokens are reconstructed
independently of one another. This indepen-
dence can occasionally lead to undesirable
words, such as repeated words especially
when consecutive positions in ref are masked
during the inference process. Nevertheless,
this independence may be acceptable as long
as it doesn’t occur excessively, as our primary
goal is to introduce errors intentionally.

• Unlike insert and substitute operations, delete
operations are applied randomly to construct
the masked reference (refmask) for MLM nois-
ing. While some level of randomness is ac-
ceptable for our error introduction purposes, it
can occasionally alter the semantics of the text
(e.g., "New York City" becoming "New City").

• The edit-distance alignment used to create the
masked post-edited text (pemask) for MLM train-
ing does not always correspond to semantic
errors. Consequently, m̃t may sometimes con-
tain unnatural or incorrect words.

6. Related Work

A similar approach involving the use of MLM for
generating synthetic data was proposed by Tuan
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et al. (2021) in the context of the quality estima-
tion task that is similar to the APE task in terms of
that models are trained on pairs of (src,mt) Their
method shares some similarities with ours: (1) they
employed MLM to create synthetic mt from a par-
allel corpus, and (2) for a given ref , they randomly
replaced tokens with [MASK] or deleted tokens and
inserted [MASK] tokens at random positions. Sub-
sequently, they input src and the masked ref into
their MLM model to perform mask infilling, resulting
in synthetic mt.

Nevertheless, there are several notable distinc-
tions between our approach and theirs: (1) In their
masking procedure, the choice of tokens for inser-
tion, deletion, and substitution was independent
of the statistical properties of the gold data; (2)
They employed a pre-trained, off-the-shelf multi-
lingual BERT model (Devlin et al., 2019), which
was trained on clean text, and thus, their MLM was
incapable of inducing errors in mt from [MASK]
tokens; (3) Despite addressing multilingual texts,
their multilingual BERT model did not incorporate
cross-lingual features, thereby limiting its ability to
establish a joint representation between src and
mt.

7. Conclusion

In this study, we introduce a method for adapting
MLM to generate synthetic APE data from a parallel
corpus. This method is further refined through the
incorporation of selective corpus interleaving. We
summarize our key findings as follows:

• We present a training approach for MLM,
designed to predict translation errors from
masked tokens. By utilizing this trained MLM
model, we generate synthetic mt data by in-
troducing errors into ref through a process
known as mask infilling.

• Additionally, we propose the selective corpus
interleaving method, a technique for effectively
merging two distinct datasets. This method
involves the selection of samples whose er-
ror profiles closely resemble those found in
the gold data, bridging the gap between the
datasets.

• Our experimental results and analysis highlight
the importance of ensuring that synthetic data
closely mirrors the error statistics of gold data.

We believe that our work offers opportunities
for further extensions and improvements by incor-
porating different MLM techniques. For instance,
approaches like ELECTRA (Clark et al., 2020) that
employ adversarial learning within MLM can help

determine the plausibility of mask prediction re-
sults, resulting in more natural and realistic syn-
thetic data.

8. Limitations

Our method, while promising, presents several chal-
lenges that need to be addressed in future:

• The edit distance-based alignments utilized
in our training may not always correspond to
semantic discrepancies, potentially resulting
in the generation of translation errors during
inference that fail to reflect actual translation
inaccuracies. This discrepancy might result in
the production of errors that appear unnatural.

• The inherent nature of MLM, which treats each
masked token independently, makes them
prone to generating plausible yet contextually
inappropriate tokens. Consequently, token
generation from our MLM noising process may
not always meet the nuanced requirements of
natural language generation.

• Although the MLM model’s error distribution
aims to mimic that of gold APE data (i.e.,
benchmark datasets), it is crucial to recognize
that these gold datasets do not capture ev-
ery possible translation error. As a result, the
MLM noising approach may inherently bias to-
wards the types of translation errors prevalent
in the benchmark datasets used for training,
potentially restricting the diversity of errors it
generates.
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