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for Māori ‘Avaiki Nui (Cook Islands Māori)
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Abstract
In this paper we describe the development of a text-to-speech system for Māori ‘Avaiki Nui (Cook Islands Māori). We
provide details about the process of community-collaboration that was followed throughout the project, a continued
engagement where we are trying to develop speech and language technology for the benefit of the community.
During this process we gathered a group of recordings that we used to train a TTS system. When training we used
two approaches, the HMM-system MaryTTS (Schröder et al., 2011) and the deep learning system FastSpeech2
(Ren et al., 2020). We performed two evaluation tasks on the models: First, we measured their quality by having
the synthesized speech transcribed by ASR. The human produced ground truth had lower error rates (CER=4.3,
WER=18), but the FastSpeech2 audio has lower error rates (CER=11.8 and WER=42.7) than the MaryTTS voice
(CER=17.9 and WER=48.1). The second evaluation was a survey amongst speakers of the language so they could
judge the voice’s quality. The ground truth was rated with the highest quality (MOS=4.6), but the FastSpeech2 voice
had an overall quality of MOS=3.2, which was significantly higher than that of the MaryTTS synthesized recordings
(MOS=2.0). We intend to use the FastSpeech2 model to create language learning tools for community members both
on the Cook Islands and in the diaspora.
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1. Introduction

Text-to-speech synthesis, or TTS, is used to trans-
form an input string of text into a synthesized voice
for a specific language. These systems are help-
ful as an assistive technology (Kewley-Port and
M Nearey, 2020), as a tool for language learning
(Cardoso et al., 2015), and as a way to add enter-
tainment value to existing software such as chat
agents and games (Cohn et al., 2019; Mayor et al.,
2011). The quality of these synthetic voices has in-
creased with the adoption of neural techniques in re-
cent years (Vaswani et al., 2017), to the point where
it is possible to make natural-sounding voices out
of relatively small data sets. This allows for the
expansion of TTS technology to under-resourced
languages.

In this paper we describe the creation of a TTS
system for Māori ’Avaiki Nui, also known as Cook Is-
lands Māori (glottolog raro1241). This language,
which we will refer to as CIM, is spoken by approx-
imately 12500 people in the Cook Islands (Min-
istry of Finance and Economic Management, Gov-
ernment of the Cook Islands, 2021), and an ad-
ditional 10,000 amongst the diaspora in Aotearoa
New Zealand and Australia (Nicholas, 2018). CIM
is an East Polynesian language, Indigenous to
the Realm of New Zealand. The language is en-

dangered in the main island of Rarotonga, which
means most of the children do not speak the lan-
guage and that the chain of intergenerational trans-
mission is being broken. The language enjoys bet-
ter health in the outer islands of the archipelago,
where it is vulnerable. This means that most, but
not necessarily all, children speak the language
and that intergenerational transmission of the lan-
guage still exists.

1.1. TTS in Indigenous Languages

Implementing natural language processing tools
for Indigenous languages is a helpful step in aid-
ing their revitalization and normalization. This is
because they allow the language to extend to new
domains of usage (Fishman, 2012). For example,
a tool as simple as a virtual keyboard might help
speakers write text messages in their language,
thereby extending the language beyond traditional
environments, and taking it to where younger peo-
ple lead their lives. Other tools, such as speech
recognition and parsing, can help create algorithms
that understand the under-resourced language,
thereby creating a “symbolic impact" (Galla, 2016)
and impressing upon younger members of the com-
munity the idea that the language can be useful
in every sphere of their lives. TTS systems in par-
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ticular would be useful because of their potential
as a teaching tool: They can provide a means for
learners to listen to example words and sentences
in the language, for example in a digital dictionary.
It could also allow learners to have a conversation
in their Indigenous language with a computer even
when no speakers are available. In summary, NLP
tools have the potential to bring these smaller lan-
guages into the digital domains where people lead
their lives, and creating more opportunities for their
everyday use.

The main challenge of course is that Indigenous
languages often have few reliable datasets that
could be used to train NLP tools, let alone TTS
voices. Most languages have no available datasets
(Joshi et al., 2020), and for many that do, lack of
standardization and noise in the data is a major
obstacle to their use in NLP tasks that are help-
ful to the community. Large existing datasets like
the CMU-Wilderness dataset (Black, 2019) usually
base their transcriptions on orthographies used for
Bible making, with little consultation with the com-
munity and with unrepresentative corpora. This
makes them unusable when trying to develop tools
that will work for most community members. One
solution would be for community members to cre-
ate their own datasets, but this process is usually
time-consuming and expensive, given the fact that
there might be few people who can consistently
transcribe the language and who have the time to
do so. (Most people who have this knowledge are
school teachers, who already are incredibly busy
supporting their communities).

Despite these difficulties, there are a few
Indigenous languages for which TTS has been
developed. These include languages in Canada
like Ojibwe (Hammerly et al., 2023; Pratap
et al., 2023), Plains Cree (Harrigan et al.,
2019), Nakyen’kéha/Iroquoian, Gitksan and
SENĆOTEN/Saanich (Pine et al., 2022). TTS
has also been developed for Cherokee (Conrad,
2020), Navajo (Sproat and Shih, 1997), Quechua
(Zevallos, 2022; Zevallos et al., 2022), Rarámuri
(Urrea et al., 2009), Sámi languages (Hiovain-
Asikainen and Moshagen, 2022; Makashova,
2021) and Kalaallisut (Oqaasileriffik, 2020). As for
the languages of Polynesia, there is work on TTS
systems for te reo Māori (James et al., 2020; Laws,
2003; Shields et al., 2019).

1.2. NLP for Cook Islands Māori
There has been previous work on natural language
processing for CIM. There are both statistical and
deep-learning based models for CIM speech recog-
nition (Foley et al., 2018; Coto-Solano et al., 2022a),
as well as work on untrained forced alignment
at the phoneme level (Nicholas and Coto-Solano,
2019; Coto-Solano et al., 2022b). There is also

work on parsing using Universal Dependencies
(Karnes et al., 2023) and part-of-speech tagging
(Coto-Solano et al., 2018).

2. Methodology

In this paper we will test two types of TTS mod-
els. The first one will be the HMM-based MaryTTS
(Schröder et al., 2011). Given the data limitations
for CIM, it is possible that the older probability-
based methods might have better performance with
this smaller dataset. The second method we will
use is the deep learning-based FastSpeech2 (Ren
et al., 2020). This system uses an encoder-decoder
architecture to transform strings into synthesized
spectrograms. There is a growing body of evidence
that low-resource conditions can be successfully
modeled by neural methods, and therefore we will
use this for the CIM data.

In order to evaluate the performance of the mod-
els, we conducted two experiments. First, we eval-
uated the intelligibility of the voice using automatic
speech recognition. This provides us with a quan-
titative measure of the difference between a hu-
man’s voice and the synthesized samples. In the
second experiment, we carried out a survey where
we asked speakers of CIM to evaluate both human-
produced and synthetic samples and to report on
the quality of the voices.

2.1. Data preparation

In order to train the TTS models we used 1.5
hours of transcribed CIM speech from a single
speaker of CIM, a resident of Rarotonga with roots
in Ngā Pū Toru (Ma’uke island of the Cook Islands
archipelago) (There is more information about the
speaker in Section 4.2 below). These recordings
were transcribed according to the orthography in
(Nicholas, 2018), with a first pass by students of
CIM, and a second pass by an expert speaker and
writer of CIM. The transcriptions were time-aligned
at the phrase level.

After this, we created a dictionary with the words
of the corpus. This dictionary contained the indi-
vidual words, and a mapping of the words into a
phoneme representation. Table 1 shows examples
of words in CIM and their corresponding mappings.

Word Phonemes English
tēta'i t e: t a P i one
runga R u N a top
mānga m a: N a a little bit

Table 1: Example of CIM words and their map-
ping to phonemes (only the first two columns are
included in the dictionary)
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Using this dictionary and the phrase-level align-
ments, we created transcriptions that were aligned
at the phoneme level. These were formatted as
Praat TextGrids (Boersma and Weenink, 2023),
and made using the Montreal Forced Aligner (MFA)
(McAuliffe et al., 2017).

2.2. Text-to-Speech Models
The phoneme-level transcriptions were used as in-
put for the training of both TTS algorithms. The first
one used was MaryTTS (Schröder et al., 2011).
This is based on Hidden Markov Models (HMMs):
It extracts the probabilities of transition between
phone n-grams, and it uses the words in the cor-
pus to calculate the transition probabilities between
word n-grams. Using these two sets of probabilities,
the model attempts to assign the transcription that
has the highest probability of matching the speech
signal. This method is popular with low-resource
languages because these probabilities can be cal-
culated for very small quantities of data, without
having to calculate the large number of connections
in a neural network. The data was randomly split
into 97.1% training and 3.9% validation sets. This
training took approximately one hour of process-
ing time. The hyperparameters for MaryTTS are in
Appendix 1.

The second system used was FastSpeech2 (Ren
et al., 2020). This algorithm uses deep learning to
transform a string of phonemes into a waveform.
It uses an encoder to encode phoneme embed-
dings, and has an additional module to predict pitch,
energy and phoneme duration, potentially making
recordings sound more natural. This data was also
randomly split into 97.1% testing and 3.9% valida-
tion sets. It took approximately 10 hours to train
a full model1. The hyperparameters for the model
are in Appendix 2.

2.3. Evaluation
We used both the models from both the MaryTTS
and the FastSpeech2 algorithms to create a syn-
thetic version of 28 sentences in CIM. These were
accompanied by their ground truth audio (a version
of the phrase spoken by the same person we used
for the training data), and a target transcription of
the ground truth, made by an expert writer of CIM.

We ran all the utterances through an ASR model
for CIM (Coto-Solano et al., 2022a). The ASR
model was trained using four hours of transcribed
audio, using the Wav2Vec2 algorithm (Baevski
et al., 2020). From this model we got an auto-
mated transcription for all the utterances, and then

1This was trained using an Apollo Workstation with a
dual 3090 GPU, 256GB of RAM, and an AMD Threadrip-
per 3970X CPU with 32 cores and a 128MB cache.

we compared those automated transcriptions with
the human expert’s target transcription. From this
we calculated the character error rate (CER) and
the word error rate (WER) of the automated tran-
scriptions for the three types of recordings (human
ground truth, sentence synthesized with MaryTTS,
and the same sentence synthesized with Fast-
Speech2).

This first method of evaluation provides us with a
quantitative measurement of the clarity of the syn-
thetic recordings. In addition to this, we also wanted
to measure the human perception of the synthe-
sized speech. We created an online questionnaire
so that speakers of CIM could listen to the three
types of recordings and report their opinion across
four dimensions: (i) overall quality, (ii) naturalness,
(iii) speaking rate and (iv) intelligibility. We asked
the participants to listen to 10 recordings for each
of the three conditions (ground truth, FastSpeech2,
MaryTTS); the recordings were presented in a ran-
dom order. The participants’ answers were mea-
sured along a Likert scale from 1 to 5, where 5 was
considered “best". A total of 15 speakers of CIM
answered the questionnaire. Their ages ranged be-
tween 30 and 66 years old, and their fluency levels
in CIM ranged from learner to completely fluent.

3. Results

In this section we present the results of the ASR and
opinion evaluations of the synthetically generated
speech, compared to the human-produced ground
truth. In general, the deep-learning based Fast-
Speech2 system performed better than the HMM-
based MaryTTS in both experiments.

3.1. ASR evaluation results
Figure 1 shows a summary of the results; Table 2
shows the averages and standard deviations for
the error rates of the two ASR systems, compared
to the ground truth.

A statistical experiment confirms that the Fast-
Speech2 system performs significantly better than
MaryTTS. An ANOVA test showed that there were
significant differences in the character error rates
(F(2,81)=15.5, p<0.00001). A Bonferroni-corrected
post-hoc test revealed that the ground truth had
significantly lower CER when compared to Fast-
Speech2 (CERGT = 4.3, CERFS2 = 11.8, p<0.01)
and MaryTTS (CERMT = 42.7, p<0.00001). How-
ever, FastSpeech2 does have a significantly lower
error rate than MaryTTS (CERFS2 = 11.8, CERMT

= 42.7, p<0.05).
These improvements of the FastSpeech2 over

MaryTTS were not found for the word error rate.
An ANOVA test showed that there were signifi-
cant differences (F(2,81)=11.7, p<0.00001), but
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Figure 1: Error rates for speech samples when
transcribed by an ASR system

CER WER
Ground truth 4.3 ±3.8 17.6 ±18.3
FastSpeech2 11.8 ±8.3 42.7 ±29.9
MaryTTS 17.9 ±12.9 48.1 ±26.6

Table 2: Average and standard deviation for the
error rates of the transcription of speech samples

these were present only between the ground
truth and each of the training conditions. A
Bonferroni-corrected post-hoc test indicated that
the ground truth has significantly lower word er-
rors than the speech generated by both the Fast-
Speech2 and the MaryTTS models (WERGT = 17.6,
WERFS2 = 42.7, WERMT = 48.1; pGT/FS2=0.005,
pGT/MT=0.00001). However, there was no signifi-
cant difference in the WER when transcribing from
the synthetic systems (pFS2/MT=1.0).

Table 3 has examples of transcriptions with high,
low, and average error rates for the three condi-
tions.

3.2. Text-to-Speech evaluation results

A total of 15 participants listened to ten samples
from each of the experimental conditions (ground
truth recordings, speech synthesized from Fast-
Speech2, and speech synthesized from MaryTTS).
They had to provide their opinion about the sam-
ple’s overall quality, naturalness, speaking rate and
intelligibility. This opinion was recorded in a scale
from 1 to 5, where 5 is best. Figure 2 summarizes
the distribution of answers to the opinion surveys

for each of the questions, and table 4 provides
the average and standard deviation for the opinion
scores.

Figure 2: Opinion of recordings in the survey

As the figure shows, the samples synthesized
using FastSpeech2 had higher scores than those
from MaryTTS in three of the questions (over-
all quality, naturalness and intelligibility). Let’s
look first at overall quality. A Kruskal-Wallis test
reveals that there are significant differences be-
tween the conditions (χ2(2)=293, p<0.00001). A
Bonferroni-corrected post-hoc Dunn test confirmed
that the ground truth has significantly higher qual-
ity than the synthesized samples (MOSGT=4.6,
MOSFS2=3.2, MOSMT=2.0, pGT/FS2<0.00001,
pGT/MT<0.00001), and that the FastSpeech2 sam-
ples have significantly higher quality than the
MaryTTS samples (pFS2/MT<0.00001).

FastSpeech2 also performed better in natu-
ralness of speech. A Kruskall-Wallis test was
used to measure the difference between the con-
ditions. There were significant difference be-
tween them (χ2(2)=241, p<0.00001). A Bonferroni-
corrected post-hoc Dunn test found that, while the
ground truth has significantly higher naturalness
values (MOSGT=4.6, MOSFS2=3.5, MOSMT=2.4,
pGT/FS2<0.00001, pGT/MT<0.00001), the Fast-
Speech2 samples have significantly higher natu-
ralness scores than those produced by MaryTTS
(pFS2/MT<0.00001).

The CIM utterances synthesized by FastSpeech2
also scored higher in the intelligibility scores. A
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High (worst) WER
English He is coming to Motutapu and Tinirau.
Target tē 'aere mai ra a kae ki motutapu ki a tinirau WER CER
Ground truth tē 'aere mai ra akae ki mutu tapu ki a tinirau 36 7
FastSpeech2 tē 'aere mairaka ē ki motu tapu ki atini rau 73 17
MaryTTS ē 'are maika a kae ki motū taku ki ei atini rava 82 28

Average WER
English The change to English in Aitutaki is happening.
Target tē 'akamata nei te neke'anga ki kō i te reo papa'ā ki aitutaki WER CER
Ground truth tē 'akamatanei te neke'anga ki kō i te reo papa ā ki a 'itutaki 46 7
FastSpeech2 tē 'akamata nei te neke'anga ki kō i te reo papa akia i tūtaki 31 11
MaryTTS tēi 'akamata nei tenekē'anga kia ō i te reo papa aki a tūptaki'i 69 21

Low (best) WER
English Mana is on the island.
Target tei runga a mana i tēta'i motu WER CER
Ground truth tei runga a mana i tēta'i motu 0 0
FastSpeech2 tei runga mana i tēta'i motu 14 7
MaryTTS tei runga a mana i tēta'i motu 0 0

Table 3: ASR examples for utterances from two TTS models and their corresponding human-uttered
ground truth

GT FS2 MT
Overall quality 4.6 ±0.6 3.2 ±0.9 2.0 ±0.7
Naturalness 4.6 ±0.6 3.5 ±1.0 2.4 ±1.0
Speaking rate 2.9 ±0.4 3.5 ±0.6 3.3 ±0.8
Intelligibility 4.7 ±0.5 3.6 ±0.9 2.6 ±0.9

Table 4: Average and standard deviation of opinion
scores for the three experimental conditions (GT:
ground truth, FS2: FastSpeech2, MT: MaryTTS)
and the four questions in the survey.

Kruskall-Wallis test determined that there were
differences between the conditions (χ2(2)=241,
p<0.00001). Again, the ground truth was
rated as having significantly higher intelligibil-
ity according to the Bonferroni-corrected Dunn
test (MOSGT=4.7, MOSFS2=3.6, MOSMT=2.6,
pGT/FS2<0.00001, pGT/MT<0.00001), and Fast-
Speech2 was rated as more intelligible than
MaryTTS (pFS2/MT<0.00001).

The one question where this behavior was
different was in speech rate. The Kruskall-
Wallis test detected significant differences be-
tween the conditions (χ2(2)=59, p<0.00001), but
the Bonferroni-corrected Dunn test only detected
significant differences between the ground truth
and the two synthetic conditions (MOSGT=2.9,
MOSFS2=3.5, MOSMT=3.3, pGT/FS2<0.00001,
pGT/MT<0.00001). The samples from Fast-
Speech2 and MaryTTS had very similar scores
(3.5 versus 3.3), and these were not significantly
different (p=0.07).

Finally, we were interested in measuring the reli-

ability of the survey’s answers. In order to measure
this we used the Kendall’s Coefficient of Concor-
dance W for ordinal categorical data. The results
show that the raters show substantial and signifi-
cant agreement in their answers (15 raters, W=0.66,
χ2(119)=1184, p<0.00001).

4. Discussion

4.1. ASR Training Results
The results above confirm that a deep-learning TTS
model can be trained for CIM, and that its perfor-
mance is better than the equivalent HMM-based
model. Despite the small amount of data available,
the FastSpeech2 CIM model performs similarly to
other low-resource neural TTS models (Lam et al.,
2022; Xu et al., 2020; Guo et al., 2022; Nguyen
et al., 2022; Tu et al., 2019), with MOS rates of
around 3.5.

Why did the audio synthesized with FastSpeech2
have better CER than the MaryTTS utterances?
Figure 3 shows spectrograms for the ground truth
and the synthesized recordings of the phrase “mei
Aotearoa ē ’Autirēria" from New Zealand and Aus-
tralia. The FastSpeech2 synthesised speech has a
higher degree of resemblance to the human voice
when it comes to phonetic features. For example,
in the FastSpeech2, the transition between the vow-
els of “mei" and the start of “ao" is fluid and without
breaks. In the MaryTTS recording, this transition
has a abrupt break between the two words. Like-
wise, in the ground truth, the transition between
the end of “Aotearoa" and the word “ē" and is rela-
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Figure 3: Spectrograms and pitch contours for the phrase “mei Aotearoa ē ’Autirēria" from New Zealand
and Australia.

Figure 4: Frequency of phonemes in the corpus
and the dictionary.

tively fluid, carried on by creaky voice between the
two words. This transition is clearly present in the
FastSpeech2 (albeit without the creaky voice), but,
in the MaryTTS version, there is a clear and long
cut from one word to the next. Another phonetic
example is the air release of the aspirated /t/, which
is clearer and stronger in the FastSpeech2. The

/t/ in the word Australia, in both the ground truth
and FastSpeech2, has a distinct explosion which is
only faintly visible in the MaryTTS version. This is
also the case with the flap /R/. In the word Australia,
the first flap is clearly voiced and has a relatively
long occlusion (45 ms for FastSpeech2 and 44 ms
for the ground truth), whereas the occlusion is rela-
tively short for the MaryTTS voice (10 ms).

Given that FastSpeech2 performed better with
CER, why did it have no gains in the WER
performance? When transcribed using ASR,
FastSpeech2 had WER=43 and MaryTTS had
WER=48, a difference that was not statistically sig-
nificant. It is possible that the more severe breaks
between words that are visible in the MaryTTS did
not degrade the ASR’s capacity to identify individ-
ual words, despite the phonetic issues in the HMM-
based utterances.

There is an important pattern than should be kept
in mind when generating CIM phrases using these
models: Sounds with few tokens in the training set
might have worse performance. Figure 4 shows
the frequency of the CIM phonemes in the corpus
used to train the TTS, as well as in a dictionary
composed of all the unique words in the larger, Te
Vairanga Tuatua corpus (Nicholas, 2018). It shows
that there are almost no long /i:/ phonemes in the
dataset. It appears only 40 times in the corpus, less
than 0.01% of the total, and it appears only 159
times in the dictionary, about 0.05% of the sounds in
the dictionary. This leaves the system vulnerable to
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misproducing this sound, particularly in the HMM-
based systems, which would not be able to use
the attention mechanism (Vaswani et al., 2017) to
understand these sounds in context. This problem
might not severely affect the other long sounds
when synthesized using the deep learning system.
The examples in figure 3 have a long /e:/ for the
word and. This word has a duration of 128 ms in
the ground truth and 131 ms in the FastSpeech,
both of them very similar, but its duration is only
80ms in the MaryTTS.

The FastSpeech2 model was also perceived as
being significantly better than MaryTTS. As ex-
plained above, there are a number of phonetic fea-
tures that are more natural in the FastSpeech2
recording. In addition to this, figure 3 also shows
the pitch contours for the words. Even though the
FastSpeech2 has a flatter intonation, it also has
fewer breaks and less variation between the highest
and lowest pitches, making it sound more human-
like. For example, in the word Australia, the ground
truth starts at 158 Hz, goes up to 192 Hz, and ends
at 131 Hz, with a difference of 34 Hz between the
start and the peak. The FastSpeech2 version of this
trajectory is 162-181-159 Hz, with a difference of
19 Hz between start and peak. But for the MaryTTS
version, this trajectory is 150-298-162 Hz, with a
much larger difference of 148 Hz between the start
and the peak of the word.

The FastSpeech2 voice was indeed perceived
as being better in three dimensions (quality, natu-
ralness and intelligibility), but not on speaking rate.
This might be an artifact of how the recordings were
made. The human speaker that made the ground
truth recordings regularly works in linguistic docu-
mentation, and therefore the person’s rhythm might
be slower than usual. This is one possible rea-
son for why ground truth receives worse MOS in
this rubric. Both of the synthetic voices get similar
MOS for speaking rate (3.5 for FastSpeech2, 3.3
for MaryTTS), and these are not statistically differ-
ent. This might be because the speaking rate is
set to default in both of this, and they might both
be generating a voice with a neutral speed.

4.2. Community-Oriented Work
The main components of this community-oriented
work have been: (i) NLP work and tools that are re-
quested by the community itself, not by outsider re-
searchers, (ii) work that is meant to benefit the com-
munity, (iii) long-standing relations and reciprocity
between the out- and in-community researchers,
and (iv) the obligation that stewardship of data and
the resulting models be kept within the community.
We will discuss each of these in this section.

One important part of this work is that it was
born from the needs of the community, and it has
been done in close collaboration with the commu-

nity. The project started as a part of the Te Vairanga
Tuatua (Nicholas, 2012), a project to compile an an-
notated corpus of CIM. This project started in 2012,
and it is led by the third author (Nicholas), a mem-
ber of the Cook Islands community, Whāngaingia
e Taranaki in Aotearoa and Ngā Pū Toru (Ma’uke)
in the Cook Islands. The objective of the project
has been to collect narration and speech from el-
ders and study the language’s grammatical struc-
ture from those recordings. During the time of the
project, Nicholas has worked with the ninth author
(Mason) to document the language. Mason is an L1
speaker of CIM, with roots in Ngā Pū Toru (Ma’uke),
and is the director of the Cook Islands Library &
Museum Society. Mason is an expert in the history
and genealogy of the Cook Islands archipelago,
and her contribution to the project has been instru-
mental.

One byproduct of the project has been the train-
ing of an ASR system (Coto-Solano et al., 2022a)
to assist in the transcription of the narrations. This
was trained by the second author (Coto-Solano), a
research of Costa Rican origin who has been work-
ing with Nicholas and Mason since 2017. Coto-
Solano has collaborated with Nicholas in the cre-
ation of different NLP tools (see Section 1.2 above),
and has collaborated with the community in gen-
eral several ways, including teaching linguistics and
NLP workshops at the University of the South Pa-
cific in Rarotonga. These workshops are meant
to transfer the knowledge of NLP to Cook Islands’
programmers, and to train community members so
that they conduct the NLP work in the future.

As the work progressed, there were enough
recordings of Mason to train a TTS system using
her voice samples. Author 1 (James) is an ex-
pert in TTS, of Indian origin, and has collaborated
with Nicholas since 2019. James has also collab-
orated with Nicholas on NLP research on te reo
Māori, the Indigenous language of Aotearea New
Zealand, and James coordinated with Nicholas and
Coto-Solano, and led a team of non-community re-
searchers (authors four through eight) to train and
evaluate TTS models. The human evaluation of the
results (see Section 3.2) was done in collaboration
with the University of South Pacific in Rarotonga, a
local, Cook Islands academic institution. The final
results of the project (i.e. the synthetic voice) have
been reviewed by Mason, the community-member
that the voice was modelled on.

During the process of training and testing our
model, we have been acutely aware of concerns
regarding data sovereignty. This is particularly sen-
sitive for Indigenous communities (Kukutai and Tay-
lor, 2016), who regularly see their data used in NLP
and get no control over the tools made with their
data, and no benefit from the use of said tools. The
data and models resulting from this project are un-
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der the stewardship of Nicholas, a Cook Islander
and a community leader. One part of Nicholas’ com-
mitment to this stewardship comes from the ethics
permissions approved by the University of Auck-
land (permit UAHPEC26272) and by the Cook Is-
lands Research Ethics Committee (permit #25/22a).
However, the most important part of the steward-
ship commitment comes from community custom,
in particular ’Ākono’anga (guardianship, equivalent
to te reo Māori kaitiakitanga). This principle binds
Nicholas into a network of long-term responsibilities
towards her community. This system of community
relations and reciprocity, which are often poorly un-
derstood by Institutional Review Boards, are the
main set of regulations that the work is bound too.

As for public release of the data and models, we
will release the TTS model publicly in the future,
bound by the Kaitiakitanga license (Te Hiku Media,
2023). This license allows for non-commercial use
in consultation with the Cook Islands community,
in particular for applications that benefit the com-
munity. As for the training data, it will be deposited
in the repository Paradisec (Nicholas, 2012), along
with the rest of the Te Vairanga Tuatua materials,
where it can be used by community members, or
by other who request permission to use it from the
community members. This system has been pio-
neered by entities in New Zealand (Te Reo Irirangi
o Te Hiku o Te Ika, 2017), and we hope that it is a
step forward in aligning NLP work with the concerns
and needs of Indigenous communities.

Our main goal with this tool is to use the TTS
voice to create language learning tools oriented
towards the community of the Cook Islands. For
example, the voice could be used for learning apps,
where the example sentences could be read by
a synthetic voice. It could also be installed into a
chat agent, which could help learners and members
of the diaspora learn Cook Islands Māori. Finally,
the voice could be used to enrich the existing NLP
tools for the language. It could be used for syn-
thetic augmentation of ASR training corpora, and
for creating devices that can both listen to CIM and
then respond to the user in the language.

Another one of our long-term goals for future
work is to collaborate with other Polynesian com-
munities in creating TTS for their languages. Now
that the CIM voice is trained, this could be used
with transfer learning to train voices for languages
with even fewer resources. Other major languages
in Polynesia, like Tahitian, Tongan and Sāmoan are
also chronically under-resourced and under-served
by NLP, and we think that the existing work for CIM
could be useful to help kickstart NLP throughout
the region.

4.3. Limitations of the work
There are some important limitations in this work:
The voice that is being synthesized (Mason’s) cor-
responds to only one dialect of CIM. The language
has a different dialect on each island, and there are
known phonetic and lexical differences between
them (Nicholas, 2018), for example in the realiza-
tion of the glottal stops (Nicholas and Coto-Solano,
2019). The fact that the only TTS voice available
comes from the dialect of Ma’uke might inadver-
tently help reify Ma’ukean as a de facto standard for
NLP, changing the ecological balance of the differ-
ent varieties of CIM. This is particularly sensitive for
vulnerable languages, where the creation of NLP
resources might have an oversized effect in the
equilibrium between the variants of the language.
In this research we are limited by the amount of
data available; there is no speaker from the other
islands for which have data to train an additional
voice at this point. However, this has to be kept in
mind for future work.

5. Conclusions and future work

In this paper we described the process of creating
a TTS system for Cook Islands Māori. It showed
that the training of a synthetic voice using deep
learning algorithms in a low-resource environment
is not only possible, but that it yields better results
that using the older, statistical and HMM-based
algorithms. This was verified by speakers of CIM,
who listened to both synthetic voices and preferred
the one generated with FastSpeech2, the deep
learning algorithm used here.

As mentioned in the discussion, our priorities for
future work include collaborating with other Polyne-
sian communities to create synthetic voices of their
languages, using the CIM voice to create learning
materials that the community needs to support its
language revitalization process, and integrating it
into existing NLP systems for the language. We
hope that this paper also serves as proof that, even
with relatively little resources, complex NLP applica-
tions like text-to-speech are possible for Indigenous
languages.

6. Ethical Statement

The main concerns in the project is to ensure that
the system was (i) created by request of the Cook
Islands community, and in consultation with this
community, that (ii) it was a tool that worked for the
community’s needs, and that (iii) there is proper
stewardship of the models and the data. The first
concern has been addressed with the community
during the ethics consultation and data collection
period. The second concern was addressed using
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the MOS survey, and the third concern is being
addressed by using the Kaitiakitanga license. We
have also discussed our concerns about reinforcing
the position of one dialect over others by training
this tool. Finally, we have provided information
about the energy usage during the training of the
models (11 hours with a dual GPU configuration).

We encourage researchers in NLP to work in col-
laboration with communities when creating tools, as
this helps researchers create tools that will have an
actual use in the community and that could poten-
tially have an impact on the vitality of the language.
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Appendix 1: Hyperparameters for
MaryTTS

Module SnackVoiceQualityProcessor:

fftSize 512
frameLength 0.005
lpcOrder 12
maxPitch 400
minPitch 60
numFormants 4
samplingRate 16000
windowLength 0.025

Module LabelPauseDeleter:

pauseDurationThreshold 100

Module HMMVoiceConfigure:

fftLen 512
frameLen 400
frameShift 80
freqWarp 0
gamma 0
lf0BandWidth 1
lnGain 1
lowerF0 110
mgcBandWidth 35
mgcOrder 34
normalize 1
numIterations 5
numState 5
numTestFiles 5
questionsNum 001
sampfreq 16000
strBandWidth 5
strOrder 5
upperF0 280
version 1
windowType 1

Appendix 2: Hyperparameters for
FastSpeech2

Training hyperparameters:

optimizer:
batch_size: 16
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betas: [0.9, 0.98]
eps: 0.000000001
weight_decay: 0.0
grad_clip_thresh: 1.0
grad_acc_step: 1
warm_up_step: 4000
anneal_steps: [300000, 400000,
500000]
anneal_rate: 0.3

step:
total_step: 300000
log_step: 100
synth_step: 1000
val_step: 1000
save_step: 100000

Preprocessing hyperparameters:

preprocessing:
val_size: 58

text:
text_cleaners: ["basic_cleaners"]
language: "cim"
use_spe_features: false
spe_feature_dim: 36

audio:
sampling_rate: 22050
max_wav_value: 32767.0

stft:
filter_length: 1024
hop_length: 256
win_length: 1024

mel:
n_mel_channels: 80
mel_fmin: 0
mel_fmax: 8000

pitch:
feature: "phoneme_level"
normalization: True

energy:
feature: "phoneme_level"
normalization: True

speaker:
embedding: "none"
pretrained_path: ""

Model hyperparameters

transformer:
encoder_layer: 4
encoder_head: 2

encoder_hidden: 256
decoder_layer: 4
decoder_head: 2
decoder_hidden: 256
conv_filter_size: 1024
conv_kernel_size: [9, 1]
encoder_dropout: 0.2
decoder_dropout: 0.2
spe_features: false
spe_feature_dim: 36
depthwise_convolutions: true

variance_predictor:
filter_size: 256
kernel_size: 3
dropout: 0.5
use_energy_predictor: true

variance_embedding:
pitch_quantization: "linear"
energy_quantization: "linear"
n_bins: 256

use_postnet: True

use_spe_loss: False

multi_speaker:
use_multi_speaker: False
embedding_type: "one-hot"

locations:
variance_adaptor: False
encoder: False

multilingual: False

max_seq_len: 1000

vocoder:
model: "HiFi-GAN"

speaker: "universal"
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