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Abstract
In real-life conversations, the content is diverse, and there exists the one-to-many problem that requires diverse
generation. Previous studies attempted to introduce discrete or Gaussian-based continuous latent variables to
address the one-to-many problem, but the diversity is limited. Recently, diffusion models have made breakthroughs
in computer vision, and some attempts have been made in natural language processing. In this paper, we propose
DiffusionDialog, a novel approach to enhance the diversity of dialogue generation with the help of diffusion model.
In our approach, we introduce continuous latent variables into the diffusion model. The problem of using latent
variables in the dialog task is how to build both an effective prior of the latent space and an inferring process to obtain
the proper latent given the context. By combining the encoder and latent-based diffusion model, we encode the
response’s latent representation in a continuous space as the prior, instead of fixed Gaussian distribution or simply
discrete ones. We then infer the latent by denoising step by step with the diffusion model. The experimental results
show that our model greatly enhances the diversity of dialog responses while maintaining coherence. Furthermore,
in further analysis, we find that our diffusion model achieves high inference efficiency, which is the main challenge of
applying diffusion models in natural language processing.
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1. Introduction

Open-domain dialogue generation is a crucial com-
ponent in dialogue systems. With the development
of pre-trained language models, current models
are capable of generating fluent and relevant di-
alogues(Radford et al., 2019; Raffel et al., 2020).
However, there is still a lack of exploration in gen-
erating diverse responses, because there may be
multiple appropriate responses when presented
with a single context, and that’s known as the one-
to-many mapping problem, shown as figure 1. To
model the one-to-many relationship between dialog
history and response, Bao et al. (2019) introduce
discrete latent variables, but the diversity of re-
sponse is constrained by the categories of discrete
latent variables, making it challenging to achieve
fine-grained diversity generation. Sun et al. (2021)
and Chen et al. (2022b) introduce continuous la-
tent variable which can relief the problem of the
discrete latent variables, but the prior of the model
is limited by the inflexible prior distribution, which
cannot model the distribution of the response well.

As an alternative solution of one-to-many prob-
lem, we propose the integration of a diffusion
model (Ho et al., 2020), which have shown its’
superiority of generating high-quality and diverse
results in the fields of image and audio genera-
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He is a good guy.

I don't really konw about him.

Awful!

I like his hair.

Who？
Maybe a smart boy

He has a great shape of body

What do you think of Tom?

Sorry, but i don't konw

We always have a good time together

Figure 1: one to many problem in dialog genera-
tion.

tion (Dhariwal and Nichol, 2021; Ramesh et al.,
2022; Rombach et al., 2022; Kong et al., 2020). As
for text-generation, DiffuSeq (Gong et al., 2022)
uses the Diffusion-LM (Li et al., 2022) struc-
ture for sequence-to-sequence tasks in a non-
autoregressive manner, and both models perform
diffusion operations in the embedding space. How-
ever, there are several important drawbacks. Firstly,
the inference speed of the model will be greatly lim-
ited by the context length, especially in multi-turn
dialogue scenarios where time consumption can
be disastrous. Secondly, these models need to be
trained from scratch and cannot take advantage
of pre-trained language models. Some work has
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also attempted to combine diffusion models with la-
tent variable. For example, LATENTOPS (Liu et al.,
2022) applies diffusion models in latent space for
controllable text generation tasks, this approach
involves training multiple classifiers for different
control requirements, and using the correspond-
ing classifier to guide the inference of diffusion
model in order to achieve controlled generation of
text. However, as a complex conditional generation
task, it is difficult to train classifiers to guide the
latent inference process for dialogue generation.

In this work, we propose a structure that com-
bines a latent-based diffusion model with a pre-
trained language model to address the one-to-
many modeling problem in multi-turn dialogues,
called DiffusionDialog. DiffusionDialog inte-
grates a encoder-decoder structured pre-trained
language model Bart (Lewis et al., 2019) and
a latent-based (Vaswani et al., 2017) diffusion
model with transformer decoder structure. It per-
forms inference of the diffusion model in the fixed-
dimensional latent space, and combines the diffu-
sion model with the language model for specific
response generation. Instead of learning to approx-
imate the fixed prior (e.g. Gaussian distribution)
of the latent variable, our diffusion model learns
a more flexible prior distribution from the encoder,
enabling the generation of responses with finer-
grained diversity. And due to the low-dimensional
nature of the latent space, our diffusion model over-
comes the slow inference speed issue which is the
major problem of diffusion models.

The contributions of this paper can be summa-
rized as follows:

1. We propose a novel approach to address the
one-to-many problem in dialogue using a com-
bination of a latent-based diffusion model and
a pre-trained language model.

2. To the best of our knowledge, our work is the
first to apply a latent diffusion model to dialog
generation. By reasoning in the latent space,
the inference efficiency of our diffusion model
is significantly improved.

3. Through comparative experiments, we demon-
strate the effectiveness of our model, which
can generate responses that are rich in diver-
sity while ensuring fluency and coherence.

2. Background

2.1. Dialog Generation with Latent
Variable

The objective of dialog system is to estimate
the conditional distribution p(x|c). Let d =
[u1, ..., uk] denote a dialogue comprising of k ut-
terances. Each utterance is represented by ui =

[w1, ..., w|ui|], where wn refers to the n-th word in
ui. Additionally, we define c = [u1, ..., uk−1] as the
dialogue context, which constitutes the k− 1 histor-
ical utterances, and x = uk as the response, which
denotes the next utterance in the dialogue.

Finding a direct connection between the discrete
token sequences x and c can be challenging. To
address this issue, we propose the use of a contin-
uous latent variable z, which serves as a high-level
representation of the response. In this two-step re-
sponse generation process, we first sample a latent
variable z from a distribution pθ(z|c) that resides
in a latent space Z. Subsequently, we decode
the response x from z and c as pθ(x|z, c).And this
process can be estimated as

pθ(x|c) =
∫
z

pθ(z|c)pθ(x|z, c)dz. (1)

Since the optimal z is intractable, we optimize
the posterior distribution of z as qϕ(z|x) considering
the x. And we approximate the posterior with the
prior distribution pθ(z|c),

log pθ(x|c) = log
∫
z
qϕ(z|x)pθ(x|z, c)

≥ Ez∼qϕ(z|x)[log pθ(x|z, c)]
−KL(qϕ(z|x), pθ(z|c)).

(2)

2.2. Diffusion Model in Latent Space

Diffusion model is designed to operate in fixed and
continuous domain, consisting forward and reverse
processes. In this work, we perform forward and
reverse process in learned latent space represent-
ing the high-level semantic of response. Suppose
posterior as z0 ∼ qϕ(z|x), in the forward process,
z0 is corrupted with standard Gaussian noise in
large amount of step, forming a Markov chain of
z0, z1, ..., zT , with zT ∼ N (0, I):

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (3)

where βt ∈ (0, 1) controls the scale of the noise in
a single step.

In the reverse progress, diffusion model learn
to reconstruct z0 from zT by learning pθ(zt−1|zt) =
N (zt−1;µθ(zt, t),Σθ(zt, t)), Since the q(zt−1|zt, z0)
has a closed form,the canonical objective is the
variational lower bound of log pθ(z0),

Lvlb = Eq [DKL (q (zT | z0) ∥pθ (zT ))]
+Eq

[∑T
t=2 DKL (q (zt−1 | zt, z0) ∥pθ (zt−1 | zt, t))

]
− log pθ (z0 | z1) .

(4)
To promote stability in training, we take advan-

tage of the simplified objective proposed by Ho
et al. as Lsimple,

Lsimple(z0) =

T∑
t=1

E
q(zt|z0)

∥µθ(zt, t)− µ̂ (zt, z0) ∥2,

(5)
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where µ̂(zt, z0) refers to q(zt−1|zt, z0), and
µθ(zt, z0) is learned by diffusion model.

3. DiffusionDialog

3.1. Model Architecture

Our model introduces a hierarchical generation pro-
cess with latent variable. Firstly it obtains latent
variable reflecting the semantic of response from
the context and then generate the response consid-
ering the latent variable and the context (Equation
1), thus the response generation involves three key
components: the dialogue context c, the response
r, and the latent variable z.

We combines encoder-decoder structured pre-
trained language model Bart with a latent-based
diffusion model to handle the two-stage generation,
the figure 2 illustrates our model, and we explain
our model by illustrating the function of each part
of the model.

3.1.1. Bart Encoder

The bart encoder plays a dual role in our model,
encoding both the contex and the latent variables.

For context, following the PLATO, in addition to
token and position embeddings, it also incorpo-
rates turn embeddings to align with the context
turn number, and role embeddings to align with the
speaker’s role. As a result, the final embedding
input of the context is the sum of corresponding
token, turn, role, and position embeddings.

For latent variables, since the priors are untrace-
able, bart encoder learns the priors of the latent
variable qϕ(z|x) which represents the high-level
semantic information about the response.

To connect the latent space, we concatenate a
special token in front of the response to encode
the semantic information of the response. We
refer to this special token as latent toke. There-
fore, the input format for latent variable encoding is
[l, wx

1 , w
x
2 ..., w

x
n], n refers to the length of response

x.
We append a multilayer perceptron to obtain a

representation of the posterior distribution z0 ∼
qϕ(z|x) :

z0 = MLP (h[L]), (6)

where h[L] ∈ Rd refers to the final hidden state of
the latent token.

3.1.2. Latent Diffusion Denoiser

After obtaining z0 from the bart encoder, we sample
a time step t ∈ [1, T ] uniformly and add noise to the
latent variable according to Equation 3, resulting in
a noised latent zt. The latent diffusion denoiser is
trained to denoise the latent. It adopts the structure

of a transformer decoder, taking the noised latent
variable as inputs and incorporates the context
hidden state with cross-attention mechanism, and
a timestep embedding is also added before the
first Transformer block to inform the model of the
current timestep,

z̃0 = Denoiser(zt, et, hc), (7)

where et refers to the embedding of the timestep t.
Since the context hidden state is fixed during infer-
ence, the inference time required for the diffusion
model is short.

3.1.3. Bart Decoder

To guide the response generation of the decoder
using latent variables, we adopt the memory
scheme from OPTIMUS (Li et al., 2020). Specifi-
cally, we project the latent variable z as a key-value
pair and concatenate them to the left of the token
hidden state to introduce the latent variable into
the decoder.

H(l+1) = MultiHead(H(l), h
(l)
Mem ⊕H(l), h

(l)
Mem ⊕H(l)),

where H(l) refers to the token hidden state of the
l-th layer, and h

(l)
Mem is calculated as:

h
(l)
Mem =

[
zkey
zvalue

]
= W l

M z, (8)

where W l
M ∈ Rd×2d is a weight matrix.

3.2. Training

During our training process for dialogue generation,
we utilize three different loss functions: negative
log-likelihood (NLL) loss, bag-of-words (BOW) loss,
and latent denoising (LD) loss. Detailed descrip-
tions will be provided in this section.

3.2.1. Response semantic capture

To enable the latent variable to capture the overall
semantic information of the response, we adopt the
bag-of-words (BOW)(Zhao et al., 2017) loss, which
is used to enable the latent variable to predict the
tokens in the response in a non-autoregressive
manner.

LBOW = −Ez0∼qϕ(z|r)

N∑
n=1

log p(rt|z0)

= −Ez0∼qϕ(z|r)

N∑
n=1

log
efrn∑
v∈V efv

.

(9)

The symbol V refers to the entire vocabulary.
The function f attempts to non-autoregressively
predict the words that make up the target response.

f = softmax (W2hz + b2) ∈ R|V |. (10)
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Latent Denoiser

Bart Encoder

Bart Decoder

Figure 2: frame work of DiffusionDialog.

In the given equation, hz represents the hidden
state of the latent variable, while |V | denotes the
size of the vocabulary. The estimated probability
of word rn is denoted by frn . BOW loss disregards
the word order and compels the latent variable
to capture the overall information of the target re-
sponse.

3.2.2. Latent Denoising

For each training step, we sample a time step t and
obtain zt referring to Equation 3. To better capture
the semantic information of the latent variables, our
diffusion model predicts z0 directly instead of zt−1

given zt, denoted as Lz0-simple , a variant of Lsimple
in Equation 5:

Lz0-simple (z0) =

T∑
t=1

Ezt ∥p (zt, c, t)− z0∥2 . (11)

where our latent diffusion denoiser p (zt, hc, t) pre-
dicts z0 directly.

Thus at each time step, the loss of latent denois-
ing is:

LLD = ∥p (zt, t, c)− z0∥2. (12)

3.2.3. Response Generation

In our model, the response is generated by condi-
tioning on both the latent variable and the context.
To train the response generation we adopt the com-
monly used NLL loss,

LNLL = −Ez̃0∼p(z|c,zt,t) log p(r | c, z̃0)

= −Ez̃0∼p(z|c,zt,t)

N∑
n=1

log p (rt | c, z̃0, r<t) .

(13)
Note that z̃0 is the posterior distribution predicted

by the latent diffusion denoiser, we adopt this ap-
proach to reduce the gap between training and

inference. In order to optimize the NLL loss, the
denoiser’s prediction needs to not only be close
to the prior distribution z0 in the spatial domain,
but also approximate the response in the semantic
domain.

In summary, our model aims to minimize the
overall objective function, which is defined as the
integrated loss:

L = LNLL + LBOW + LLD. (14)

3.3. Inference

The inference in our model consists of two stages.
Firstly, starting from a Gaussian noise, the latent
diffusion denoiser performs multiple rounds of infer-
ence to denoise the latent variable and obtain the
final semantic representation z0, conditioned on
the hidden state of the context which is encoded by
the encoder. Then the response generator gener-
ates the final response in an auto-regressive man-
ner, conditioned on both z0 and the context hidden
state.

For ease of displaying the training and inference
process of our model, we outline our approach in
Figure 3.

4. Experiments

4.1. Experimental Setup

4.1.1. Datasets and Evaluation

Following PLATO(Bao et al., 2019),we evaluate the
performance of our model on two commonly used
public dialog datasets.

DailyDialog(Li et al., 2017) is a high-quality con-
versational dataset that primarily focuses on daily
dialogues.

Persona-Chat(Zhang et al., 2018) is sourced
from authentic conversations between human an-
notators who are randomly matched and assigned
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Algorithm 1 Training

Input: a dialog corpus D={(ci, ri)}|D|
i=1

1: repeat
2: sample context and response (c, r) from D
3: hc = Encoder(c)
4: z0 ∼ qϕ(z|r) = Encoder([l;x])[0]

5: LBOW = −
∑N

n=1 log p(rt|z0)
6: t ∼ Uniform({1, . . . , T})
7: ϵ ∼ N (0, I)
8: zt =

√
ᾱtz0 +

√
1− ᾱtϵ

9: z̃0 = Denoiser(zt, hc, t)
10: LLD = −∥z̃0 − z0∥2
11: LNLL = −

∑N
n=1 log p (rt | c, z̃0, r<t)

12: Take gradient descent step on
∇θ[L = LLD + LNLL + LBOW ]

13: until converged

Algorithm 2 Inference

1: hc = Encoder(c)
2: z̃T ∼ N (0, I)
3: for t = T, . . . , 1 do
4: z̃0 = Denoiser(z̃t, hc, t)
5: ϵ ∼ N (0, I)
6: ˜zt−1 =

√
ᾱt−1z̃0 +

√
1− ᾱt−1ϵ

7: end for
8: response r̃ = Decoder(z̃0, hc)

Figure 3: The training and inference algorithm of
DiffusionDialog.

DailyDialog PersonaChat

train 76052 samples
\

122499 samples
\

dev 7069 samples
12.1% overlap

14602 samples
\

test 6740 samples
13.0% overlap

14056 samples
\

Table 1: Summary of datasets used in the experi-
ments, overlap means percentage of data leaks.

a given persona information. Paired annotators en-
gage in natural conversation and attempt to know
each other better throughout the dialogue.

Table 1 summarizes the descriptions and statis-
tics of these datasets. In DailyDialog, 12.1% of
the development set and 13.0% of the test set ap-
peared in the training set, indicating the presence
of data leakage, while no such issue is observed
in PersonaChat.

For evaluation, we mainly evaluate our model on
fluency and diversity. We adopt the same metrics
used in PLATO, which is widely used:

BLEU-1/2(Papineni et al., 2002) which mea-
sures the coherence of generated response to the

given context by calculating the 1/2-grams overlap-
ping between the generated response and refer-
ences.

Distinct-1/2(Li et al., 2015) which measures the
diversity of generated response by calculating the
number of unique 1/2-grams divided by the total
number of generated words.

4.1.2. Compared Baselines

In our experiments, the following models were se-
lected as our baselines.

Seq2Seq(Vinyals and Le, 2015) is a sequence-
to-sequence model with attention. IVAEMI(Fang
et al., 2019) is also a sequence-to-sequence
model with implicit deep latent variable that em-
ploys a Variational Autoencoder to improve the
quality of latent representations and generate di-
verse responses. LIC(Golovanov et al., 2019) is
a transformer-based generative model fine-tuned
on GPT, which has demonstrated remarkable per-
formance in the ConvAI2 challenge. PLATO(Bao
et al., 2019) employs a discrete latent variable to
address the one-to-many problem, showing high
performance in both response fluency and diversity.
DialogVED(Chen et al., 2022b) introduces contin-
uous latent variables with VAE model into the en-
hanced encoder-decoder pre-training framework to
increase the relevance and diversity of responses.
Both of PLATO and DialogVED address the one-to-
many problem in dialogue tasks and are the main
objects of comparison in our study.

To accurately evaluate the impact of our latent
variable with diffusion model, we compare our
model to the version without the latent.

4.1.3. Model Configuration

Our model consists of two parts: one is a encoder-
decoder structure Transformer model Bart-base,
which is composed of 6 layers of encoder and 6
layers of decoder. The other part of our model is
a latent denoiser, which is a structure of 6 layers
of transformer decoder with latent token embed-
ding and 128-dimensional time step embedding.
Our diffusion steps T = 2, 000 and noise schedule
is square-root schedule. Our maximum context
squence length is 256 and our maximum response
sequence length 128, The model uses the BPE tok-
enization(Sennrich et al., 2015) which is commonly
used.

During training, We use Adamw opti-
mizer(Loshchilov and Hutter, 2017) with a
learning rate of 1× 10−4, the batch size is 128, We
also adopt a warmup strategy where we linearly
increase the learning rate from initial learning rate
1× 10−7, the totall training steps for DailyDialog is
10000, and for PersonaChat is 20000. We select
the checkpoint with the lowest validation loss for
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Model DailyDialog
BLEU-1 BLEU-2 Distinct-1 Distinct-2

Seq2Seq (Vinyals and Le, 2015) 0.336 0.238 0.030 0.128
iVAE_MI (Fang et al., 2019) 0.309 0.249 0.029 0.250
PLATO w/o latent† (Bao et al., 2019) 0.405 0.322 0.046 0.246
PLATO† (Bao et al., 2019) 0.397 0.311 0.054 0.291
DialogVED‡ (Chen et al., 2022b) 0.481 0.421 0.042 0.232
Our w/o Latent 0.406 0.371 0.046 0.217
Our Method 0.348 0.318 0.072 0.372
Our Method Upper Bound 0.471 0.424 0.063 0.348

Model PersonaChat
BLEU-1 BLEU-2 Distinct-1 Distinct-2

Seq2Seq (Vinyals and Le, 2015) 0.448 0.353 0.004 0.016
LIC (Golovanov et al., 2019) 0.405 0.320 0.019 0.113
PLATO w/o latent† (Bao et al., 2019) 0.458 0.357 0.012 0.064
PLATO† (Bao et al., 2019) 0.406 0.315 0.021 0.121
DialogVED‡ (Chen et al., 2022b) 0.482 0.399 0.015 0.094
Our w/o Latent 0.410 0.359 0.013 0.056
Our Method 0.383 0.329 0.031 0.177
Our Method Upper Bound 0.472 0.411 0.026 0.166

Table 2: Experimental results on DailyDialog and PersonaChat with automatic evaluations. PLATO and
DialogVED is pretrained with large dialog corpus, and DialogVED is based on Bart Large. The best
values are underlined, and the best results with base-PLMs is written in bold.

context
[P1]It’s a lovely day out today, isn’t it?
[P2]It’s beautiful. Enjoy it while it lasts. It’s supposed to get cold tomorrow.
[P1]What’s the weather forecast for tomorrow?

our w/o Latent It’s supposed to snow

our Method

Cloudy in the morning and overcast in the afternoon
The weatherman says it’s going to snow tomorrow
It’s supposed to snow in the morning and in the afternoon. Is that possible?
The weatherman says it’s supposed to snow all day.
The weatherman says a storm is coming.
Yep. It’s supposed to snow in the morning.
Cloudy with a chance of showers.
Dreadful. It’s supposed to snow tomorrow.

context
[P1] Good morning, sir. Is there a bank near here?
[P2] There is one. 5 blocks away from here?
[P3] Well, that’s too far. Can you change some money for me?

our w/o Latent Yes, Please.

our Method

Yes, Please wait for a moment.
Yes, madam. I am sure you can. The interest rate is very high.
What’s your account number and your PIN number?
Yes, Madam. Can I help you?
How can I help you?
Yes, certainly.My name is John Sandals.

Table 3: Examples of response generation with our model.

inference. The experiment is carried out on one
single 1080Ti GPU.

4.2. Main Results

Table 2 summarizes the experimental results on
Persona-Chat and Daily Dialog.

Note that both the PLATO and DialogVED mod-
els have been pre-trained on a large corpus of
dialogue data. Additionally, the DialogVED model
is based on Bart-large(0.47B), which gives it a
significant advantage in terms of the number of
parameters compared to our model(0.21B).

The PLATO model uses discrete latent variables,



4918

while DialogVED uses a VAE-based continues la-
tent variable, We compared our model with these
two models to demonstrate the advantages of han-
dling latent variables using the diffusion model.

To more effectively evaluate the impact of our
latent discrete variable, we also conducted a com-
parison with the version that does not include a
latent variable (referred to as ’Our w/o Latent’). It
accepts the same context embedding input as our
model, and also using Bart-base as it’s backbone,
sharing the same training settings as our method
with latent variables.

The last line represents the upper bound of our
model, we generate 10 different latent variable for
the same context and use them to generate cor-
responding responses as candidates. We select
the candidate with the highest overlap with the ref-
erence, i.e., the highest Bleu-1 score, as our final
result.

DiffusionDialog represents the result of our
model with one candidate, and all models use
Beam Search for decoding, with a beam size of 5.
Our diffusion model utilizes the DDIM(Song et al.,
2020a) acceleration technique during inference,
with a sampling time step of 50 for the purpose of
performance and time efficiency, the results under
different inference time steps will be discussed in
detail in the later section.

As shown in Table 2, our model achieves very
high results on the Dist metric. However, compared
to the version without latent variable, there is a cer-
tain decrease in the Bleu metric, but our model still
achieves competitive results in models that have
not been pre-trained on dialogue data. The perfor-
mance of our method without latent variable on the
Bleu metric is similar to that of PLATO, which we
attribute to the performance of the Bart pre-training
model, benefiting from the encoder-decoder archi-
tecture and generative pre-training. Compared to
DialogVED, which has the same architecture as
ours but has more parameters and is pre-trained
on dialogue data, our model’s Bleu score is much
lower.

We notice that the drop in Bleu score due to
the introduction of latent variables is smaller on
PersonaChat than on DailyDialog. Combining with
the statistics in Table 1, we can infer that the data
leakage in the test set and development set of
DailyDialog penalizes the diversity of generated
results.

The improvement in our model’s Dist value com-
pared to PLATO and DialogVED indicates that in-
troducing latent variables based on the diffusion
model can more effectively improve the diversity of
generated responses compared to discrete latent
variables and continuous latent variables based
on a fixed Gaussian prior. Meanwhile, our exper-
iments on the upper bound of our model’s per-

Model speed
Our w/o Latent 0.068 s/sample

PLATO 25.813 s/sample
DialogVED 0.076 s/sample

Our Method-10⋄ 0.072 s/sample
Our Method-100⋄ 0.189 s/sample
Our Method-1000⋄ 1.500 s/sample

DiffuSeq-10⋄ 0.384 s/sample
DiffuSeq-100⋄ 3.810 s/sample
DiffuSeq-1000⋄ 38.246 s/sample

Table 4: Comparison of inference speed among
models, models with symbol⋄ utilize diffusion
model.

formance also demonstrate the potential of our
model.

4.3. Discussions

4.3.1. Case Analysis

In order to further demonstrate the generative ca-
pabilities of our model, we provide some gener-
ated responses in Table 3. The table illustrates five
of these responses, which showcase the model’s
ability to generate diverse, relevant, and fluent re-
sponse.

4.3.2. Inference Speed

We compare the inference speed of our model with
DialogVED, PLATO, DiffuSeq, and the results are
shown in Table 4.

Note that the framwork used for inference among
the models are different. PLATO was run on pad-
dlepaddle, DialogVED was run on fairseq, DiffuSeq
and our model was just run on pytorch. The num-
ber following DiffusionDialog and DiffuSeq repre-
sents the number of time steps used for inference.

As the table shows, due to the absence of in-
ference on latent variables, the inference time for
our method without latent is very short, and Dif-
fusionDialog is comparable When the number of
inference time steps is 10, which demonstrates the
high efficiency of our model’s inference.

DiffuSeq, like DiffusionDialog, utilizes a diffusion
model for text generation. We compare Diffusion-
Dialog with the DiffuSeq model to demonstrate
the advantage in inference speed of our diffusion
model.

To ensure fairness in comparison, we set the
maximum input length of these models to 256. At
inference time steps of 10, 100, and 1000, our
model required less time for inference than the
DiffuSeq model. Moreover, as the number of infer-
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Steps DailyDialog PersonaChat
Bleu-1 Bleu-2 Dist-1 Dist-2 Bleu-1 Bleu-2 Dist-1 Dist-2

10 0.350 0.318 0.071 0.369 0.385 0.331 0.031 0.172
100 0.348 0.319 0.073 0.372 0.380 0.328 0.031 0.169

1000 0.352 0.327 0.074 0.373 0.389 0.331 0.032 0.181

Table 5: Impact of number of sampling steps on performance.

ence steps increased, our model’s speed advan-
tage grew.

PLATO introduces discrete latent variables,
which require generating all candidate responses
based on these latent variables, thereby requiring
a considerable amount of time. In this comparative
experiment, we used 20 discrete latent variables
(K = 20), the same as the official version provided.
For DialogVED, we used their large version with
P = 64.

4.3.3. Sampling Steps

During inference, the diffusion model requires a
large number of sampling steps, which is a sig-
nificant bottleneck for the inference speed. And
prior work, e.g., DiffuSeq(Gong et al., 2022) suf-
fers from a significant drop in generation quality
when reducing the sampling steps. In order to in-
vestigate the performance of our model on the test
dataset under different numbers of sampling steps,
we present the results in Table 5.

As shown in the table, our method achieves com-
petitive results with as few as 10 on both dataset.
It should be noted that as the number of sampling
steps increases, the performance of our model on
PersonaChat, as measured by the BLEU metric,
first decreases and then improves. At 1000 time
steps, all metrics reach their peak, but the differ-
ence between 1000 and 10 steps is not significant.

5. Related Work

5.1. One-to-many Modeling

The existence of multiple suitable responses for
a given context is referred to as the one-to-many
problem. Some works introduce latent variable to
model the relationship, CVAE(Zhao et al., 2017)
utilizes Gaussian distribution to capture variations
in responses at the discourse level, since a sim-
ple distribution over the latent variables has a
lack of granularity in modeling the semantic infor-
mation of the responses, DialogWAE(Gu et al.,
2018) develop a Gaussian mixture prior network
to enrich the latent space, instead of the single
Gaussian prior of VAE. iVAEMI(Fang et al., 2019)
address the challenge with implicit learning. Di-
alogVED(Chen et al., 2022b) incorporates contin-
uous latent variables into an enhanced encoder-

decoder pre-training framework to increase the
relevance and diversity of responses. PLATO(Bao
et al., 2019) introduces discrete latent variables
to tackle the inherent one-to-many mapping prob-
lem in response generation. Both of PLATO and
DialogVED are pretrained with large dialog cor-
pus, providing a strong baseline for one-to-many
modeling.

5.2. Diffusion Models for Sequence
Learning

Since Diffusion model(Dhariwal and Nichol, 2021;
Song et al., 2020b) has achieved breakthroughs
in the field of image processing. There have been
many works attempting to apply diffusion models
to the field of natural language processing. Con-
sidering the discrete nature of texts, D3PM(Austin
et al., 2021) introduce Markov transition matrices to
diffuse the source data instead of Gaussian noise,
Analog Bits(Chen et al., 2022a) represents discrete
data as binary bits, and then training a continu-
ous diffusion model to model these bits as real
numbers. Diffusion-LM(Li et al., 2022) develop a
non-autoregressive language model based on con-
tinuous diffusions with an embedding function and
rounding process, iteratively denoises a sequence
of Gaussian vectors into words. DiffuSeq(Gong
et al., 2022) propose a diffusion model designed
for sequence-to-sequence text generation tasks
utilizing encoder-only Transformers. And SeqDif-
fuSeq(Yuan et al., 2022) approach sequence-to-
sequence text generation with Encoder-Decoder
Transformers. LD4LG(Lovelace et al., 2022) learn
the continuous diffusion models in the latent space
of a pre-trained encoder-decoder model.

6. Conclusion

This paper presents DiffusionDialog, which com-
bines an encoder-decoder structured pre-trained
language model with diffusion model. By utiliz-
ing the diffusion model to learn the latent space
and infer the latent by denoising step by step, we
greatly enhance the diversity of dialog response
while keeping the coherence and achieving high in-
ference efficiency. As experimental results shows,
our model has achieved a over 50% increase in
the dist metric and accelerate inference speed over
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50 times compared to the DiffuSeq model. Over-
all, this work provides a novel idea for applying
diffusion model into natural language processing.

7. Limitations

As shown in the experiments, the accuracy of our
model is not yet high enough. We identified two
main reasons for this: 1) we have not conducted
extensive pre-training, and 2) the structure and
training methods of the model are not yet optimal.
We will attempt to address these issues in future
work.
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