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Abstract
Fine-tuning is a widely used technique for leveraging pre-trained language models (PLMs) in downstream tasks,
but it can be computationally expensive and storage-intensive. To address this challenge, researchers have
developed parameter-efficient methods that balance performance and resource cost. However, these methods often
come with trade-offs like increased inference latency, token length usage, or limited adaptability for multitasking
scenarios. This paper introduces a novel parameter-efficient method called DimA (Dimensionality Augmentation),
which enhances the Transformer architecture by increasing the dimensionality. DimA achieves state-of-the-art
results in GLUE and XSUM tasks while utilizing less than 1% of the original model’s parameters. Moreover,
DimA introduces a novel approach to knowledge transfer that enables the simultaneous utilization of knowledge
learned from multiple tasks to handle new tasks. This method significantly enhances the performance of the
model on new tasks. Its versatility in model structure also enables its application to various Transformer-based models.
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1. Introduction

Pre-trained language models (PLMs) based on the
transformer architecture (Vaswani et al., 2017; De-
vlin et al., 2019; Liu et al., 2019b; Radford et al.)
have demonstrated impressive performance across
various downstream tasks. Fine-tuning, which in-
volves adjusting all learned parameters, is a widely
used approach to adapt PLMs (Howard and Ruder,
2018). However, the large number of parameters in
PLMs makes it expensive to save and share copies
of the models for different tasks (Cai et al., 2020;
Ding et al., 2022). To address the cost issue, two
major research directions have been proposed.

One direction aims to leverage the capabilities
of large PLMs through the use of Hard prompts
(Petroni et al., 2019; Brown et al., 2020; Schick
and Schütze, 2021; Song et al., 2023), which mod-
ifies the form of different tasks with natural lan-
guage templates to fit the frozen language mod-
els. Although hard prompts are user-friendly and
yield strong performance, the efficacy relies on the
model’s size and the careful selection of appropri-
ate prompts. (Shin et al., 2020; Jiang et al., 2020;
Wei et al., 2022). Recent studies have also com-
bined hard prompts with fine-tuning methods to
enhance the effect of hard prompts, known as in-
struction tuning (Ouyang et al.; Peng et al., 2023).

The other direction is parameter-efficient fine-
tuning (PEFT) methods, which adapt the model
for downstream tasks using a small number of pa-
rameters. As representative approaches, Adapter
(Houlsby et al., 2019; Pfeiffer et al., 2021) inserts
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Figure 1: The encoder structure using DimA. The
blue part represents the original weights of the
model, while the red part represents the added
weights that will extract more feature dimensions.

a two-layer nonlinear network in the model, but in-
creases the inference delay. Whereas Soft prompt
(Lester et al., 2021; Li and Liang, 2021; Liu et al.,
2022) replace the manually designed prompts in
Hard prompts with learnable embedding, but also
increases the size of the attention matrix in the com-
putation. And methods like LoRA (Hu et al., 2022;
Guo et al., 2021) try to impose low-rank and sparse
variations on the model weights based on the as-
sumptions of the intrinsic dimensionality (Li et al.,
2018), while they still lack application in multitask-
ing scenarios compared to AdapterFusion (Pfeiffer
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et al., 2021).
This paper proposes DimA (Dimensionality

Augmentation), a method by expanding the inter-
mediate dimension in attention computation and
forward network of the transformer, as shown in
Fig 1. DimA achieved state-of-art results in the
GLUE (Wang et al., 2018) and XSUM (Narayan
et al., 2018) datasets, utilizing less than 1% of the
original model’s parameters. DimA enables Knowl-
edge transfer similar to AdapterFusion but with an
exceedingly small number of parameters. DimA is
highly versatile and suitable for a wide range of ap-
plication scenarios and models compared to other
PEFT methods.

2. Relate Work

This section describes the methods to fine-tune
the model and Knowledge transfer applied in multi-
tasking scenarios.

2.1. Parameter-efficient fine-tuning
PEFT can perform comparably to fine-tuning by
learning only a few parameters, significantly reduc-
ing the resources required to store copies of tasks.

Adapter, proposed by (Houlsby et al., 2019), em-
beds a two-layer nonlinear forward network after
each layer of the model. However, compared to
other parameter-efficient methods, Adapters still
requires a large number of parameters. Addi-
tionally, the inference latency is a concern with
this approach. Several variations of the Adapter
method have been proposed to address these
issues. AdapterDrop (Rücklé et al., 2021) en-
hances efficiency by removing certain modules. An-
other approach, Compacter, utilizes the Kronecker
product approach, further reducing the number of
Adapter parameters (Karimi Mahabadi et al., 2021).
LST (Sung et al., 2022) separates the tuning mod-
ule of the embedded model into independent path-
ways, significantly reducing training time. However,
despite these advancements, the problem of infer-
ence latency persists.

Soft prompt (Li and Liang, 2021; Liu et al., 2022)
influences the model’s output by introducing learn-
able embedding in the attention computation pro-
cess. Subsequent research (Tang et al., 2022;
Jin et al., 2022) follow its focus on the attention
part, which shifted towards utilizing context-related
prompts instead of fixed continuous prompts, result-
ing in an increased number of parameters. How-
ever, all such methods increase the size of the
attention matrix.

LoRA (Hu et al., 2022) assumes that the vari-
ance matrix of a model applied to a downstream
task has a low intrinsic rank and uses the product
of the low-rank matrix to approximate the change

in weights in fine-tuning. Similar methods include
BitFit (Ben Zaken et al., 2022), which focuses on
adjusting only the biased part of the model. PASTA
(Yang et al., 2023) targets adjustment of specifically
marked embeddings within the model. Diff-pruning
(Guo et al., 2021) learns a sparse parameter updat-
ing vector and a method to adjust the model weights
by imposing a mask on them (Zhao et al., 2020).
PST (Li et al., 2022) applies a filter on the LoRA-like
approximation weights and selects a fixed number
of significant weights for updating. These meth-
ods aim to learn sparse parameters to approximate
fine-tuned changes. They avoid inference delays
by overriding the original weights but are also chal-
lenging to use in multi-tasking scenarios compared
to Adapter and Soft prompt.

Composite method (Mao et al., 2022; He et al.,
2022) propose structures that integrate different
methods into one. These composite methods have
better results than individual methods, at the cost
of increased parameter count and complexity.

2.2. Knowledge transfer in multi-tasking
Knowledge transfer is the process of leveraging
knowledge from one task to improve performance
in other tasks. As discussed in (Pfeiffer et al., 2021),
Continuous learning (Phang et al., 2019) requires a
certain sequence to learn different tasks, but there
are difficulties with catastrophic forgetting (French,
1999) and sequence selection. While Multi-task
learning (Caruana, 1997; Liu et al., 2019a; Zhang
and Yang, 2022) requires simultaneous exposure
to all tasks and balancing of samples each time,
which reduces the effectiveness of rich sample
tasks. (Lee et al., 2017). AdapterFusion utilizes
Adapter modules acquired through independent
learning and conducts inter-module attention com-
putation at each layer to identify patterns relevant
to the current task. This approach facilitates knowl-
edge transfer across different tasks.

The pluggable embedding of independent mod-
ules in AdapterFusion offers greater convenience
than fine-tuning methods that necessitate mixed
learning of different tasks.

3. Method

This section introduces the structure of DimA and
its principles in single-task fine-tuning and knowl-
edge transfer.

3.1. DimA
According to Transformer’s definitions (Vaswani
et al., 2017), DimA just augments the intermedi-
ate dimensions {dk, dv, dm}, as illustrated in Fig.1,
which remains consistent with the Transformer ar-
chitecture.
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For the PLM Mθ, its corresponding pre-trained
weights Wθ and bias bθ with additional weights Wµ

and bias bµ provided by DimA are concatenated to
achieve dimensional changes:

Wθ ⊕Wµ → W ′
θ (1)

bθ ⊕ bµ → b′θ (2)
Where Wθ ∈ Rd×dk/v/m ,Wµ ∈ Rd×da ,W ′

θ ∈
Rd×(dk/v/m+da), bθ ∈ Rdk/v/m , bµ ∈ Rda , b′ ∈
Rdk/v/m+da and Wθ can be specific weights like
WQ,WK , among others. Here the d symbol is the
hidden dimension of Mθ , while dk/v/m is the in-
termediate dimension of the attention part and the
forward network part of each layer, and da denotes
the augmented dimension provided by DimA. It is
worth noting that here the ⊕ symbol denotes the
concatenation operation of the tensors.

For the attention part, The ith attention head’s
output, Headi(X), is concatenated and then trans-
formed by WO.

Headi(X) = softmax(
XW i

QW
i
K

T
XT

√
dk

)XW i
V (3)

MulHead(X) = (

n⊕
i=1

Headi(X))WO

=

n∑
i=1

Headi(X)W i
O

=

n∑
i=1

softmax(
f i
θ(X)√
dk

)giθ(X)

(4)

Where X ∈ Rn×d,WQ,W
i
K ∈ Rd×dk ,W i

V ,∈
Rd×dv ,W i

O ∈ Rdv×d,WO ∈ Rhdv×d. n is the length
of input. h is the number of attention heads, and
W i

O is obtained by partitioning WO according to
h. The functions f i

θ(X) = XW i
Q(W

i
K)TXT and

giθ(X) = XW i
V W

i
O replace the weights and vari-

ables of the Eq.(4).
When DimA is used for weights, the product of

pairs of weights in f i
θ(X) and giθ(X) can be divided:

f i
θ

′
(X) = XW i

Q

′
(W i

K

′
)TXT = XW i

Q(W
i
K)TXT

+XW i
Q

µ
(W i

K

µ
)TXT = f i

θ(X) + f i
µ(X)

(5)

giθ
′
(X) = XW i

V

′
W i

O

′
= XW i

V (W
i
O)

+XW i
V

µ
W i

O

µ
= giθ(X) + giµ(X)

(6)

Where W i
Q
µ
,W i

K
µ
,W i

V
µ
,W i

O
µ are the weights

of DimA, according to Eq.(1) and f i
µ(X) and giµ(X)

are functions of DimA.
For the forward network, the two-layer nonlinear

network FFN(Y) accepts the normalized output Y
from the attention layer:

FNN(Y ) = ϕ(YW1 + b1)W2 + b2 (7)

Where Y ∈ Rn×d and ϕ is the activation function.
When using DimA, the same divide on the equation
can be made:

FNN ′(Y ) = ϕ(XW ′
1 + b′1)W

′
2 + b2

= ϕ(XW1 + b1)W2 + b2

+ ϕ(XWµ
1 + bµ1 )W

µ
2

= FNN(X) + FNNµ(X)

(8)

Where Wµ
1 , b

µ
1 are the weights of DimA and

FNNµ(X) is function of DimA.
As shown in Eqs.(5,6,8), similar to LoRA’s low-

rank approximation for weight changes, DimA ap-
proximates changes at the level of weight pairs.
The paired weights can also be understood as
knowledge neurons (Dai et al., 2022),i.e., additional
neurons are introduced to change the overall su-
perposition effect. The weights learned by these
additional neurons represent the knowledge spe-
cific to the respective task.

3.2. Single-task fine-tuning

Suppose there is a Taski (Input, Label). For
model M′

θ adopted the DimA method, it only needs
to fine-tune the Wµ part while keeping the pre-
trained parameters Wθ unchanged.:

Prediction = M′
θ(Input|W ′

θ) (9)

argmin
Wµ

L(Label, Prediction) (10)

Where L represents the loss function. There-
fore, the learned weight Wµ contains the knowl-
edge to apply M′

θ to Taski, and can be named
as W i

µ. Compared to the overall fine-tuning, W i
µ

utilizes less than 1% of the total parameter count.
During training, the augmented dimensional

weight W i
µ is trained independently and then in-

tegrated into the model’s original weights during
application, as shown in Fig.2.

trainablefrozen frozen

Train infer

Figure 2: The difference between training and infer-
ence. The training process concatenates the Wθ

with the W i
µ, while the inference process uses the

integrated weights.
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Figure 3: Demonstration of Knowledge Transfer. The green weights in the W1 and W2 modules come
from the tasks providing the knowledge, and the red weights belonging to the current new task. The
participation of these weights in the current task is controlled by a shared Dimensional weight across all
layers.

3.3. Knowledge transfer

The above steps describe how W i
µ is acquired and

why it is considered as knowledge learnt from the
task Taski. This section will explore how W i

µ, as
task knowledge, can facilitate transfer between
tasks.

Assuming the multiple tasks, denoted as T =
{Task1, Task2, ..., Taskn−1}, then the knowledge
obtained on it by DimA method can be represented
as K = {W 1

µ ,W
2
µ , ...,W

n−1
µ }.

For a new Taskn, DimA offers a straightforward
and easily portable approach to knowledge transfer.
The Wn

µ that Taskn itself needs to learn is also
merged into K, i.e., K′ = K

⋃
Wn

µ , using K′ to
stand in for all DimA weights.

As shown in the Fig. 3, the knowledge transfer is
implemented by concatenating the weights in the
knowledge K′ onto the pre-trained weights Wθ of
the model. By setting vector C ∈ Rn, it is possible
to control the level of involvement of different task
knowledge W i

µ to maximise the contribution to the
task effect. The constraints for C are as following:

1.
∑n

i=1 ci = 1: The weights ci should add up to
1, ensuring that the contributions from different W i

µ

are balanced with the Wθ.
2. ci ≥ 0: The weights ci should be non-negative,

allowing for positive contributions from each W i
µ.

After completing the aforementioned design, the
Eq.(11-14) representing the knowledge transfer
learning process can be derived:

W ′′
θ = Wθ

n⊕
i=1

ci ·W i
µ (11)

b′′θ = bθ

n⊕
i=1

ci · biµ (12)

Prediction = M′′
θ (Input|W ′′

θ ) (13)

arg min
Wn

µ ,C
L(Label, Prediction) (14)

The W ′′
θ represents the weights after concate-

nating. In this process, only C and Wn
µ need to be

learned. K and Wθ remain frozen throughout the
process. In terms of the number of parameters that
need to be learned, compared to Eq.(10), only the
addition of ci introduces a relatively small number
of parameters, which could be negligible.

3.4. Details of Control Vector
For the first constraint

∑n
i=1 ci = 1 on the control

vectors, it can be viewed in conjunction with the
Eqs. (5, 11):

f ′′
θ (X) = fθ(X) +

n∑
i=1

ci · f i
µ(X)

=

n∑
i=1

ci · (fθ(X) + f i
µ(X))

=

n∑
i=1

ci · f ′
θ(X)

(15)

Where the serial number of the attention header
is omitted, and Eqs.(6,8) for g(X), h(X) also have
the same properties as f(X) as well. Each knowl-
edge weight W i

µ works with Wθ as W ′
θ, and the

Eq.(15) illustrates the fact that C is essentially the
assignment of weights to the knowledge learned
on different tasks.

For the second constraint, the weights were
set non-negative out of common sense belief that
knowledge from a would either has a positive im-
pact or no impact at all.

In practice, the direct learning parameter is not
C but the vector embedding weights denoted by
Z ∈ Rn. The Softmax function will be applied to Z
to realize these two constraints:
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Task Type Task Name
inference MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016), RTE
similarity and paraphrase MRPC (Aghajanyan et al., 2021), QQP
single-sentence CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013)

Table 1: The task categorization within GLUE is applied in both the single-task fine-tuning and the
knowledge transfer of the multi-task scenarios. Specifically, the MNLI, QNLI, and QQP tasks are utilized
to provide the knowledge in multi-task learning. The RTE and MRPC tasks are compared to assess the
presence of any biases towards similar tasks. Furthermore, the CoLA and SST-2 tasks, which lack similar
tasks in MNLI, QNLI, and QQP, are used as datasets to explore the possibility of incorporating dissimilar
tasks in the knowledge transfer process.

C = Softmax(Z) (16)

4. Experiment

This section compares various approaches to fine-
tuning based on different tasks and models. The
objective is to assess the effectiveness of the
DimA method in both individual task fine-tuning
and knowledge transfer scenarios.

4.1. Experiment settings
Baseline For Single-task fine-tuning, the base-
lines chosen for comparison in this section in-
clude Adapter, Soft prompt (Liu et al., 2022), BitFit
(Ben Zaken et al., 2022), LoRA (Hu et al., 2022) and
FT (Fine-tuning)(Howard and Ruder, 2018). These
methods are all representative and have shown
remarkable performance. In the context of knowl-
edge transfer, three methods were employed. Seq-
FT (Sequence Fine-tuning) involves sequentially
fine-tuning the model on the knowledge-providing
datasets. The resulting model is then applied to the
downstream tasks; Mul-FT (Multi-task Fine-tuning)
mixes the knowledge-providing datasets, and the
model learns multiple tasks simultaneously (Liu
et al., 2019a). This multi-task trained model is
later applied to the downstream tasks; AdapterFu-
sion (Pfeiffer et al., 2021) shares adapter-specific
knowledge obtained by individually fine-tuning the
model on the knowledge-providing datasets using
an attention-like computation.

Models and Optimizer This paper evaluates dif-
ferent scales of RoBERTa models (Liu et al., 2019b)
and the GPT-2 model (Radford et al.) pre-trained
by HuggingFace (Wolf et al., 2020). The experi-
ments employ the Adam optimizer (Kingma and
Ba, 2017) for all tasks.

Datasets This paper assesses the performance
of models on two categories of tasks: Natural Lan-
guage Understanding (NLU) tasks and Generation
(NLG) tasks. The datasets were chosen from those
utilized by other PEFT methods. For the NLU task,
this paper selects datasets from GLUE (Wang et al.,

2018) and classifies these tasks into three cate-
gories, as shown in Table.1. On the other hand, for
the NLG task, the paper selects the XSUM dataset
(Narayan et al., 2018), which involves generative
summary summarization. This task presents chal-
lenges because of its intricate content and the con-
straints imposed by the language model’s input
length. The training text is truncated to the first 128
words at input to reduce the input length. By evalu-
ating models on both GLUE and XSUM datasets,
respectively, this paper provides a comprehensive
analysis of their performance in different types of
tasks.

Metrics The performance of models on the
GLUE dataset is evaluated using the GLUE bench-
mark1. For the XSUM dataset, the quality and ef-
fectiveness of the generated summaries are mea-
sured using several evaluation metrics, including
BLEU (Papineni et al., 2001), ROUGE-L (Lin, 2004),
TER (Koehn, 2004), and Meteor (Lavie and Agar-
wal, 2007). These metrics quantitatively assess
the generated summaries’ similarity to reference
summaries and their overall quality.

Hyperparameter The experimental setup gave
All methods the same training epochs and optimizer.
Additionally, efforts were made to maintain simi-
lar parameters across different methods, ensuring
fairness in the comparison. The hyperparameter
setting is shown in code2.

4.2. Single-task fine-tuning
By evaluating various types of tasks, DimA demon-
strates a slight performance advantage over exist-
ing PEFT methods in fine-tuning individual tasks.
It achieves comparable results to FT on the GLUE
dataset but falls slightly behind on the XSUM
dataset.

4.2.1. GLUE

As shown in Table.2, DimA achieves results com-
parable to fine-tuning while surpassing other PEFT

1https://gluebenchmark.com/
2The source code of DimA method is available at

https://github.com/mazehart/DimA.

https://github.com/mazehart/DimA
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param(%) RTE MRPC CoLA SST-2 QNLI MNLI-m MNLI-mm QQP average
Acc. F1 / Acc. Matt. Acc. Acc. Acc. Acc. F1 / Acc. Acc.

RoBERTa-base
FT 100 71.60(0.42) 90.30/86.57(0.42/0.14) 58.30(0.42) 95.10(0.14) 93.07(0.04) 87.30(0.00) 87.10(0.14) 72.40/89.00(0.47/0.47) 87.11

BitFit 0.08 70(0.49) 88.77/85.27(0.50/0.69) 58.87(1.31) 94.67(0.09) 89.17(0.05) 83.13(0.19) 83.73(0.05) 66.67/85.9(0.21/0.32) 81.34
P-tuning 0.59/7.93 67.07(3.43) 88.70/84.63(0.29/0.19) 55.50(1.35) 95.00(0.21) 89.93(0.18) 83.73(0.12) 84.07(0.25) 66.73/85.67(0.04/0.17) 84.30
Adapter 0.96 72.20(1.04) 90.23/86.97(0.31/0.26) 60.40(0.71) 94.80(0.22) 92.60(0.00) 86.16(0.44) 86.23(0.05) 71.06/88.07(0.19/0.19) 86.72
LoRA 0.71 71.83(0.66) 89.37/85.73(0.46/0.54) 57.60(0.71) 95.23(0.24) 92.63(0.29) 85.90(0.08) 85.70(0.28) 70.20/87.83(0.37/0.33) 86.41
DimA 0.53 71.63(0.73) 90.60/87.36(0.28/0.17) 58.43(1.07) 95.06(0.53) 92.97(0.04) 86.30(0.22) 86.40(0.22) 71.07/88.16(0.05/0.12) 86.84

RoBERTa-large
FT 100 81.20(1.93) 91.00/87.97(0.50/0.56) 64.43(0.78) 96.37(0.46) 93.97(0.74) 90.23(0.12) 89.87(0.25) 73.6/89.63(0.22/0.12) 89.89

BitFit 0.07 77.43(1.02) 88.4/84.7(0.28/0.34) 62.33(0.41) 96.20(0.16) 91.97(0.05) 87.80(0.08) 87.80(0.08) 67.97/86.27(0.25/0.31) 87.45
P-tuning 0.55/7.25 82.20(0.96) 90.93/87.90(0.45/0.50) 63.23(0.96) 96.57(0.33) 93.17(0.41) 88.90(0.08) 88.63(0.21) 67.90/86.67(1.80/0.66) 89.15
Adapter 0.89 81.06(0.68) 90.43/87.40(0.25/0.37) 63.30(0.37) 96.30(0.29) 94.47(0.09) 89.93(0.09) 89.80(0.29) 71.70/88.43(0.08/0.04) 89.63
LoRA 0.66 79.20(1.16) 90.47/87.33(0.90/0.87) 64.30(1.80) 96.30(0.45) 94.57(0.12) 89.83(0.12) 89.50(0.00) 71.40/88.33(0.33/0.25) 89.29
DimA 0.66 82.63(1.01) 90.50/87.30(0.22/0.51) 65.20(1.35) 96.40(0.24) 94.80(0.08) 90.27(0.16) 90.07(0.21) 72.30/88.67(0.08/0.09) 90.02

Table 2: Results for the GLUE test set, with tasks listed in order of increasing data volume. The experiments
were conducted in three iterations, and the average performance of each method is reported, along with
the standard deviations indicated in parentheses, to account for fluctuations in task performance. The
evaluation metrics used are F1 score(F1), Accuracy (Acc.), and Matthew’s Correlation Coefficient (Matt.)
following the GLUE benchmark.

GPT-2 GPT-2-medium GPT-2-large
methods parameter(%) rouge-L bleu meteor ter ↓ parameter(%) rouge-L bleu meteor ter↓ parameter(%) rouge-L bleu meteor ter↓

FT 100 25.52 7.09 22.97 88.31 100 28.13 8.71 28.89 85.63 100 35.39 9.12 29.53 84.57
P-tuning* 0.59 14.17 2.81 15.23 116.52 0.55 18.84 3.40 15.90 100.75 0.47 19.69 4.74 20.13 93.43

BitFit 0.08 19.82 3.82 19.59 92.03 0.07 21.98 5.26 22.15 90.05 0.06 22.01 5.39 22.23 89.91
Adapter 0.96 22.4 5.72 22.97 108.98 0.89 26.83 7.76 27.44 86.37 0.76 34.67 8.70 28.71 85.06
LoRA 0.94 23.16 5.39 23.02 89.7 0.87 26.15 7.12 26.37 86.49 0.76 34.40 8.39 28.53 85.18
DimA 0.53 23.45 5.55 23.45 89.43 0.66 26.37 7.38 26.7 86.97 0.71 35.04 8.86 29.09 84.49

Table 3: Result on XSUM, different fine-tuning methods were compared at three model scales. For
P-tuning, a prefix length of 40 was deliberately chosen to maintain similar parameter amount across the
different methods, even though this prefix length may not be considered ideal.

methods, on average, with the same number of
parameters. Overall, the differences between the
various fine-tuning methods are not significant.

4.2.2. XSUM

As shown in Table.3, for this task, FT exhibits a
more pronounced advantage over PEFT methods,
although this gap diminishes as the model size in-
creases. It is worth highlighting that DimA demon-
strates performance closer to FT than other meth-
ods.

4.2.3. Number of Augmented Dimensions

The number of dimensions added serves as the
only hyperparameter setting for DimA, with a de-
fault configuration of one dimension per attention
head. Nevertheless, this subsection explores the
consequences of increasing the number of dimen-
sions per attention head.

Experimental Design: By added 1, 3, and 9
dimensions to each attention header while keeping
other settings consistent with single-task experi-
ments, changes in task effects is observed.

Results Analysis: The results shown in Table.4
and 5 demonstrate that increasing the dimension-
ality has a limited impact on performance improve-
ment. From a task perspective, it is observed
considerable variation in the optimal number of di-
mensions required for different tasks. Tasks with
higher accuracy tend to benefit more from fewer

augmented dimensions, suggesting that they may
already capture most task-specific patterns within
the original model weights. From a model per-
spective, smaller models exhibit more significant
improvements as the number of augmented dimen-
sions increases, compared to larger models. This
suggests that smaller models can leverage the addi-
tional capacity provided by augmented dimensions
more effectively.

These findings underscore the significance of
considering task characteristics and model size
when determining the optimal number of aug-
mented dimensions for improved performance.

4.3. Knowledge transfer
In this section, the GLUE dataset is divided into two
portions as explained in the Table.1. The first por-
tion consists of MNLI, QNLI, and QPP tasks, which
serve as knowledge providers for the Few-shot sce-
narios. The second portion comprises RTE, CoLA,
MRPC, and SST-2 tasks with Few-shot settings
to validate the enhancement effect of Knowledge
transfer.

4.3.1. Few-shot on GLUE

As shown in the Table.6, DimA+kt, which uses addi-
tional knowledge, has a significant advantage over
the other methods, while its number of trained pa-
rameters is much smaller than other Knowledge
transfer methods.
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RTE MRPC CoLA SST-2 QNLI MNLI-m MNLI-mm QQP average
add dim for each
attention head Acc. F1 / Acc. Matt. Acc. Acc. Acc. Acc. F1 / Acc. Acc.

RoBERTa-base
DimA (1dim) 71.63(0.73) 90.60/87.36(0.28/0.17) 58.43(1.07) 95.06(0.53) 92.97(0.04) 86.30(0.22) 86.40(0.22) 71.07/88.16(0.05/0.12) 86.84
DimA (3dim) 72.27(0.79) 90.40/87.10(0.37/0.45) 59.63(1.04) 94.90(0.00) 92.97(0.05) 86.83(0.12) 86.47(0.17) 71.87/88.73(0.05/0.04) 87.04
DimA (9dim) 72.47(1.39) 90.67/87.37(0.17/0.25) 60.00(0.94) 94.80(0.08) 92.97(0.12) 87.00(0.08) 86.83(0.05) 71.80/88.63(0.08/0.04) 87.15

RoBERTa-large
DimA (1dim) 82.63(1.01) 90.50/87.30(0.22/0.51) 65.20(1.35) 96.40(0.24) 94.80(0.08) 90.27(0.16) 90.07(0.21) 72.30/88.67(0.08/0.09) 90.02
DimA (3dim) 82.33(2.23) 91.40/88.43(0.45/0.46) 63.10(1.53) 95.80(0.36) 94.93(0.17) 90.23(0.09) 89.80(0.17) 72.87/89.10(0.12/0.08) 90.09
DimA (9dim) 79.73(1.22) 90.97/87.97(0.34/0.47) 65.27(1.96) 96.30(0.00) 94.83(0.25) 90.47(0.05) 89.70(0.08) 72.40/88.73(0.08/0.12) 89.68

Table 4: The effect of the different DimAed dimensions on the GLUE test set, adding 1, 3, and 9 dimensions
to each attention head, respectively.

GPT-2 GPT-2-medium GPT-2-large
methods rouge-L bleu meteor ter ↓ rouge-L bleu meteor ter↓ rouge-L bleu meteor ter↓

DimA (1dim) 23.45 5.55 23.45 89.43 26.37 7.38 26.70 86.97 35.04 8.86 29.09 84.49
DimA (3dim) 23.94 6.03 24.18 89.68 27.06 7.78 27.50 85.92 35.43 9.02 29.45 84.14
DimA (9dim) 24.12 6.05 24.39 89.26 27.05 7.78 27.48 85.99 35.30 8.94 29.34 84.31

Table 5: The effect of different DimAed dimensions on the XSUM test set by adding 1, 3, and 9 dimensions
to each attention head, respectively. To investigat the impact of increasing the number of dimensions on
task effectiveness by imposing various numbers of dimensions.

4.3.2. Improvement of Knowledge transfer

For further investigation into the variations in knowl-
edge transfer effects on enhancing different tasks,
a comparison was made between DimA utilizing
Knowledge transfer and DimA that does not utilize
it, as presented in Table.7.

From the perspective of task type, it is observed
that tasks like RTE and MRPC, which have similar
counterparts in MNLI, QNLI, and QQP, experience
more notable improvements through Knowledge
transfer with DimA. Conversely, CoLA and SST-2
tasks lack similar counterparts and do not demon-
strate substantial improvement. This suggests that
similar tasks are crucial in Knowledge transfer for
DimA.

Regarding data size, it is noticed that the impact
of Knowledge transfer with DimA gradually reduces
as the volume of task data increases. This implies
that Knowledge transfer is particularly effective for
tasks with relatively limited data volume, and its
benefits reduce as more data becomes available.

4.3.3. The Role of control vector

Building upon the analysis of the enhancement
effects of knowledge transfer, this section delves
deeper into evaluating whether the control vector,
which plays a central role in the knowledge trans-
fer process, effectively reflects the importance of
knowledge from different tasks.

Experimental Design Section 3.1 discusses
that dimensions learned for a particular task can
be viewed as a particular kind of knowledge. Draw-
ing from the experimental design employed in the
search for knowledge neurons by (Dai et al., 2022),
the importance of each task-specific dimension in-
volved in knowledge transfer can be judged by ob-
serving the effect of the gradual disappearance of

that dimension on the model’s confidence in pre-
dicting the correct option.

Experimental interpretation As shown in Fig.4,
The 16 subgraphs represent sub-experiments con-
ducted under different settings. In each subfigure,
non-gray colors represent knowledge from existing
tasks (including MNLI-m, MNLI-mm, QNLI, QQP),
while gray color represents knowledge correspond-
ing to the current task.

The upper half of each subgraph displays the
variation curve of the model’s confidence in pre-
dicting the correct answer. This curve shows the
impact of decay weights assigned to the knowledge,
ranging from 2.0 to 0.0. The fluctuation of the curve
reflects the importance of the knowledge for the
current task.

The lower half of each subgraph illustrates the
weight assigned to the corresponding knowledge
by the control vectors. Each subplot contains two
parts: The upper section displays the variation
curve of the model’s confidence in predicting the
correct answer with the decay weight of the knowl-
edge range from 2.0 to 0.0. The lower section
indicates the weight the control vector assigns to
the corresponding knowledge.

If the confidence of the model in predicting the
correct option sharply decreases as a knowledge
gradually disappears due to decay weights, it indi-
cates that this knowledge is important for the cur-
rent task. Conversely, if the confidence does not
significantly decrease, it suggests that the knowl-
edge is not crucial for the task. By comparing the ex-
tent of the curve’s decline with the weights assigned
by the control vectors, we can assess whether the
control vectors accurately reflect the importance of
the knowledge.

Results Analysis Fig.4 demonstrates a correla-
tion between the degree of fluctuation in the con-
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No Knowledge transfer methods Knowledge transfer methods
Few-shot setting FT BitFit P-tuning Adapter LoRA DimA Seq-FT Multi-FT AdapterFusion DimA+kt

RoBERTa-base
learnable param(%) 100 0.08 0.59 0.96 0.71 0.53 100 100 12.61 0.53

K=50 68.57 67.82 60.63 68.39 68.80 66.78 71.05 69.37 73.41 75.30
(2.67) (1.70) (1.69) (1.25) (2.60) (2.78) (0.83) (3.02) (1.29) (1.00)

K=100 68.01 66.24 63.18 69.58 67.86 68.93 71.98 72.01 76.46 76.06
(2.24) (1.56) (3.01) (1.56) (2.17) (1.52) (0.6) (1.73) (0.82) (1.39)

K=200 75.54 72.33 69.97 74.73 74.87 74.91 71.83 73.86 80.30 80.45
(1.97) (1.22) (2.78) (0.60) (0.60) (1.20) (3.34) (1.92) (0.84) (1.31)

K=400 78.90 76.40 75.04 78.57 77.65 78.52 79.92 77.97 83.05 83.92
(1.94) (0.68) (2.38) (1.06) (0.90) (1.23) (0.12) (1.81) (0.20) (0.82)

RoBERTa-large
learnable param(%) 100 0.07 0.55 0.89 0.66 0.66 100 100 10.50 0.66

K=50 72.23 65.35 59.72 66.12 62.34 64.55 77.89 73.29 77.91 80.39
(2.52) (2.10) (2.67) (2.87) (1.90) (3.66) (1.78) (2.89) (1.65) (0.62)

K=100 72.02 67.25 67.42 68.06 68.75 68.99 79.47 73.51 79.74 81.65
(3.87) (2.50) (3.65) (1.68) (2.47) (1.70) (0.97) (1.38) (2.15) (0.56)

K=200 77.85 69.67 74.12 72.28 74.50 75.25 82.89 79.90 84.55 84.65
(0.74) (1.01) (1.96) (3.94) (1.77) (0.88) (0.44) (2.34) (0.68) (0.73)

K=400 82.39 74.67 81.73 79.52 80.88 80.79 86.46 83.44 86.33 86.64
(1.53) (2.61) (3.39) (1.63) (1.89) (2.22) (0.06) (1.85) (0.62) (0.72)

Table 6: Few-shot results on the four datasets RTE,MRPC, CoLA, and SST-2, recording the average
of the accuracy and standard deviation under the three random seeds, where standard deviations are
marked in parentheses. K is the number of samples in each category in the training set, validation set.
The bolded portion is the optimal value, while underlining represents suboptimal. Where learnable param
style is the number of parameters learned in this process as a percentage of the overall parameters,
and DimA+kt is DimA with additional task knowledge used. All Knowledge transfer methods obtained
knowledge from the MNLI, QNLI and QQP datasets as knowledge providers. In contrast, methods without
knowledge transfer learn and test directly on the dataset.

RTE MRPC CoLA SST-2 average
Same type of task MNLI,QNLI QQP - -

k=50 k=100 k=200 k=400 k=50 k=100 k=200 k=400 k=50 k=100 k=200 k=400 k=50 k=100 k=200 k=400
RoBERTa-base

DimA 50.06
(3.98)

50.66
(1.27)

58.72
(1.99)

63.42
(1.16)

72.71
(3.79)

72.14
(2.19)

79.98
(0.51)

82.76
(0.99)

57.91
(2.16)

64.33
(2.09)

70.76
(1.16)

77.12
(1.03)

86.43
(1.19)

88.57
(0.52)

90.18
(1.13)

90.79
(1.75) 72.28

DimA+kt 76.90
(0.63)

76.77
(0.75)

79.78
(1.08)

81.83
(0.21)

80.88
(0.65)

83.01
(0.93)

84.64
(1.11)

85.87
(1.63)

56.89
(1.03)

56.25
(3.76)

66.89
(2.63)

77.28
(1.13)

86.54
(1.67)

88.19
(0.10)

90.48
(0.41)

90.71
(0.61) 78.93

+26.84 +26.11 +21.06 +18.41 +8.17 +10.87 +4.66 +3.11 -1.02 -8.08 -2.87 +0.16 +0.11 -0.38 +0.30 -0.08 +6.65
RoBERTa-large

DimA 48.74
(1.81)

50.42
(2.05)

59.69
(1.50)

69.31
(5.60)

66.58
(2.62)

70.91
(2.84)

74.67
(0.57)

80.31
(1.44)

54.30
(8.83)

62.86
(1.59)

74.15
(1.22)

80.22
(1.14)

88.57
(1.37)

91.78
(0.33)

92.47
(0.24)

93.31
(0.70) 72.39

DimA+kt 87.00
(0.63)

86.64
(0.36)

87.24
(0.55)

87.00
(0.36)

80.23
(0.86)

81.21
(0.51)

84.07
(1.49)

86.27
(0.00)

62.83
(0.60)

67.05
(1.30)

74.18
(0.99)

79.26
(1.25)

91.48
(0.40)

91.70
(0.06)

93.12
(0.20)

94.04
(0.30) 83.33

+38.26 +36.22 +27.55 +17.69 +13.65 +10.30 +9.40 +5.96 +8.53 +4.19 +0.03 -0.96 +2.91 -0.08 +0.75 +0.73 +9.94

Table 7: Comparison of the effects of DimA with and without Knowledge transfer. The experiments are
conducted with accuracy as the measurement metric. DimA+kt refers to the utilization of Knowledge
transfer. The portions in bold highlight the boosting effects observed.

fidence curve and the control vector. This implies
that the control vector reflects the importance of dif-
ferent dimensions in Knowledge transfer. It should
be noted that the gray portion represents the dimen-
sions specific to the current task. Consequently, as
the amount of task data increases, the weights as-
sociated with these dimensions gradually increase.
This observation aligns with the conclusion dis-
cussed in the section 4.3.2 regarding the decay
of the Knowledge transfer effect.

Task filtering The consistent trend of the flat
curves with lower weights observed in the figure
indicates that knowledge with lower weights has a
minimal impact on the confidence level. This sug-
gests that less weighted knowledge can be effec-
tively filtered out using the weights assigned by the
control vectors. Consequently, the need for manual

screening is reduced, as the weighted knowledge
provides a mechanism to automatically identify and
exclude less impactful tasks.

5. Conclusion

DimA is a parameter-efficient method that achieves
comparable results to Fine-tuning in single-task
scenarios and allows for Knowledge transfer in
multi-task scenarios. It demonstrates that knowl-
edge of tasks exists in dimensions and can be inter-
acted with through knowledge transfer to enhance
the effectiveness of different tasks. Compared to
the existing methods, it is superior in the way and
effect of knowledge transfer.
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Figure 4: The weights assigned by the control vectors versus the importance of the task providing
knowledge for prediction. For the sixteen subplots, the four horizontal columns are RTE, MRPC, CoLA,
and SST-2 as the current prediction task, respectively; while the four vertical rows are the sample sizes
for each category of K corresponding to the training and validation sets under different Few-shot settings.
Each subfigure represents the average results of three independent experiments while maintaining a
correlation between the task category and sample size in the horizontal and vertical directions, respectively.

Limitations

The DimA approach accomplishes task fine-tuning
and Knowledge transfer by augmenting the model’s
dimensions. As a result, it introduces additional
inference time compared to Fine-tuning, as demon-
strated in the Table. 8.

inference time(s)
RoBERTa-base RoBERTa-large %

fine-tuning 1161.31 3523.52 baseline
BitFIt 1161.40 3524.31 +0.02%

P-tuning 1199.85 3612.18 +2.71%
Adapter 1232.25 3693.90 +5.15%
LoRA 1160.65 3521.32 -0.07%
DimA 1220.92 3626.39 +3.46%

Table 8: Sum of the three inference times for the
GLUE test set, labeled as a percentage increase
in time relative to the baseline. However, the exact
times depend on the device tested and the param-
eters set, and are for reference only.

Ethics Consideration

This paper uses publicly available pre-trained mod-
els and datasets with no copyright conflicts or ethi-
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