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Abstract

We provide a new linguistic resource: The Minecraft Structured Dialogue Corpus (MSDC), a discourse annotated

version of the Minecraft Dialogue Corpus (MDC; Narayan-Chen et al., 2019), with complete, situated discourse

structures in the style of SDRT (Asher and Lascarides, 2003). Our structures feature both linguistic discourse

moves and nonlinguistic actions. To show computational tractability, we train a discourse parser with a novel

“2 pass architecture” on MSDC that gives excellent results on attachment prediction and relation labeling tasks

especially long distance attachments.
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1. Introduction

A human using situated conversation to guide a

collaborating agent through a task typically ap-

peals to a number of familiar strategies. One is to

break the task down into a series of smaller ones,

moving from one instruction to the next as the sub-

tasks are successfully completed. In order for this

strategy to succeed, the human generally needs

to elaborate on instructions, to monitor and to ac-

knowledge the agent’s performance and to correct

the agent whenever failure occurs. To facilitate

the task, the agent should be able to ask clarify-

ing questions to which the human can respond in

order to avoid mistakes.

We need models for understanding such linguis-

tic interactions if we are to move from manually

programming automated agents like cobots to in-

structing and teaching them through natural con-

versation that exploits nonlinguistic contextual in-

formation. The Minecraft Dialogue Corpus (MDC;

Narayan-Chen et al., 2019) provides the opportu-

nity to study language use in the context of such

conversations. In the task, a Builder receives

instructions from an Architect and then attempts

to execute the instructions in a simple Minecraft

world. Jayannavar et al. (2020) exploited this cor-

pus to train a deep learning model (Neural Builder)

that executes Minecraft building actions given nat-

ural language input. However, the results on this

task show that inferring excecutable actions from

language in the Minecraft setting is difficult; the

best F1 scores from Jayannavar et al. (2020) that

we have independently verified are close to 0.2.

The task is difficult in part because successfully

communicating a single instruction in the corpus—

as in real life—often requires complex conversa-

tional interactions that develop over several turns.

The Architect may elaborate on previous utter-

ances to clarify missing details or correct previous

action or instruction sequences, while the Builder

may ask questions. In addition, conversational in-

teractions in the MDC heavily exploit the nonlin-

guistic environment in which a conversational ex-

change takes place, and discourse moves like an-

swering a question are sometimes realized not in

words but with nonlinguistic actions.

We believe that if the Builder can effectively com-

pute the right conversational structure from such

linguistic exchanges and information about the

nonlinguistic context, he or she will be more likely

to succeed in the building task. This paper takes a

first step towards testing this hypothesis by mak-

ing two contributions:

1. We release, as a resource for the NLP and

robotics communities, the Minecraft Struc-

tured Dialogue Corpus (MSDC): 1 a set of full

discourse structures for all MDC dialogues in

the style of Segmented Discourse Represen-

tation Theory (SDRT; Asher, 1993; Asher and

Lascarides, 2003; Asher et al., 2016).

2. We describe and evaluate a simple but inno-

vative two stage discourse parser that effec-

tively learns MSDC discourse structures in-

cluding long distance relations.

The outline of our paper is as follows. In Section

2, we present background on the MDC and dis-

cuss certain features that make it particularly chal-

lenging. In Section 3 we present the MSDC and

show how it addresses some of those challenges.

In Section 4, we describe some important patterns

that we have found in the annotations. Section 5

details our parsing experiments on the MSDC. We

conclude in Section 6.

1https://github.com/linagora-labs/
MinecraftStucturedDialogueCorpus

https://github.com/linagora-labs/MinecraftStucturedDialogueCorpus
https://github.com/linagora-labs/MinecraftStucturedDialogueCorpus
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2. The Minecraft Dialogue Corpus

The corpus consists of 5472 dialogues in which

two humans, in the roles of Architect and Builder,

collaborate to construct a three-dimensional object

in a simulated Minecraft world. The Builder has

blocks in 6 different colors that can be placed in-

side an 11 x 9 x 11 grid. The Architect cannot build,

but guides the Builder by typing instructions in a

chat window. The Builder can ask questions and

comment on what they have done or on the Archi-

tect’s instructions. The dialogue finishes when the

Architect judges that the Builder has successfully

completed the construction.

The MDC involves incomplete information, as only

the Architect has knowledge of the structure to

be built. This gives rise to linguistic features that

are emblematic of many if not most cooperative

tasks that we imagine for human-cobot interac-

tions. First, arriving at a common understanding of

instructions or of which objects and actions are un-

der discussion at a particular point requires a con-

versational negotiation between Builder and Archi-

tect. Second, to build a complex object, the Ar-

chitect must break the process down into simpler

steps—a feature which helps us understand com-

positionality in a new way. Studying this corpus

and its discourse structure thus carries lessons far

beyond Minecraft data.

The MDC is a situated corpus, containing not only

chat moves but also pick and place moves by the

Builder that are perceived by both players and for

which descriptions can be recovered from game

logs. In the text-based version of the corpus,

moves are described in terms of x, y, z coor-

dinates; e.g., Builder puts down a blue block
at X:3, Y:5, Z:0. The situated nature of the

corpus leads to discourse relations between non-

linguistic and linguistic moves, as when players

comment on, question and correct pick and place

moves. It also leads to rich and varied spatial lan-

guage, which has provided the basis of a separate

but complementary annotation campaign (Bonn

et al., 2020) extending the framework of Abstract

Meaning Representation (Banarescu et al., 2013).

3. The Discourse Annotations

The MSDC provides full discourse structures in

the style of SDRT to dialogues in the MDC. Other

theories of discourse structure have been pro-

posed, such as RST (Mann and Thompson, 1987),

LDM (Polanyi et al., 2004), the Graphbank model

(Wolf and Gibson, 2005), DLTAG (Forbes et al.,

2003), and PDTB (Prasad et al., 2008). We opt

for SDRT because it, unlike other frameworks that

2The original corpus is reported to have 509 dia-

logues, but this does not include the practice interac-

tions also included in the dataset.

impose tree structures as full discourse structures,

only requires that discourse structures be repre-

sented as acyclic, directed graphs with a unique

head. This allows for a single discourse unit to

have more than one incoming link, or multiple

parents, in the graph. Multi-parent units are a

common occurrence in the MSDC. Figure 1 illus-

trates multiple examples, including one in which

the Builder places a blue and then a purple block

and asks the Architect: “like that?”. The Architect

responds, “not quite,” which not only serves to an-

swer the Builder’s question but simultaneously to

correct the Builder’s last moves. The full content

of the Correction is specified through the follow-

ing two elaborating discoursemoves. Using SDRT

also facilitates comparison with the STAC corpus

(Asher et al., 2016), the only large-scale, multi-

party situated dialogue corpus that has been an-

notated for discourse structure.

The dialogues in the MDC range in length from

10 to over 200 turns. To build a discourse graph,

we decompose each turn in a given dialogue

into what are called elementary discourse units

(EDUs). EDUs are the basic building blocks of an

SDRT discourse structure and correspond roughly

to clauses. Because the MDC conversations are

situated, our discourse graphs also contain ele-

mentary event units (EEUs), the basic Builder ac-

tions described in Section 2.

We also include, in a limited way, complex dis-

course units or CDUs. A CDU is a group of dis-

course units that work together to provide a sin-

gle argument to a discourse relation. For exam-

ple, if someone says, “I had a bad day. I lost

my phone and I broke my ankle”, the second sen-

tence can be broken down into two EDUs which

together provide an explanation for the bad day.

To simplify downstream discourse parsing, we de-

cided to avoid CDUs between linguistic units. We

did, however, include them for action moves. Most

actions in the corpus take the form of a series of

consecutive pick and place moves. The relations

between these moves are very regular: as one

move simply happens after another, we would nor-

mally relate each pair of consecutive action moves

via Sequence. However, since the large number

of such links would complicate discourse parsing,

and “drown out” the data on more significant but

more complicated relations in our corpus, we de-

cided to “squish” each sequence of actions con-

tained in a CDU into one long EEU by concatenat-

ing its parts.

Each EDU or EEU bears a discourse relation to

one or more other discourse units. To the usual

SDRT relations (apart from Background and Par-

allel), we added the relation type Confirmation

Question, because Builders frequently ask Archi-

tects to confirm whether an action they have just
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Train+Val Test Total

Original MDC

# Dialogues 410 137 547

MSDC

# Dialogues 407 134 541

# EDUs 17135 5417 22552

# EEUs 25555 7263 32818

# EEUs

squished 4687 1475 6162

# Relation

instances 26299 8275 34574

# MP DUs 4798 1482 6280

# Speaker turns per dialogue:

Min 6 9 6

Max 105 69 105

Mean 31.6 29.5 31.1

# DUs per dialogue:

Min 8 11 8

Max 186 120 186

Mean 53.6 51.4 53.1

Table 1: MDC and MSDC characteristics. We did

not annotate 6 problematic games in the MDC.

performed is correct (e.g., “‘like that?” in Figure 1).

All 16 relation types are listed in Table 2.

Three linguists and two NLP experts annotated all

the dialogues of the MDC using the GLOZZ an-

notation tool (Mathet and Widlöcher, 2009). Two

different linguists have reviewed each annotation

twice. We also employed scripts to check for vari-

ous annotation errors.

Table 1 shows statistics about our corpus, break-

ing down counts according to the original train-test

split used in (Jayannavar et al., 2020), with 137

dialogues for testing and the 410 for training and

development. TheMSDC provides annotations for

the majority of the dialogues in the original MDC,

in which the speaker turns are broken down into

EDUs and squished EEUs.

Even with squished EEUs, the MSDC is larger

than the purely linguistic/non-situated version of

the STAC corpus and it is a little more than half

the size of the situated STAC corpus (Asher et al.,

2020). With unsquished EEUs, the MDC is about

the size of the STAC corpus.

4. Discourse Structural

Characteristics of MDC

The MSDC reveals several typical and important

features of discourse structure for instructional di-

alogues involving a cooperative task where agents

interact with the nonlinguistic environment.

4.1. Negotiation Sub-dialogues and
Narrative Arcs

In Figure 1, the Architect gives an instruction

(“place a blue block one block to the right ...”) that

the Builder does not completely understand. The

Builder could have asked the Architect directly to

clarify or elaborate on the instruction, but instead

opts for a strategy of first building to illustrate their

understanding and then asking for confirmation.

The Architect responds by correcting the Builder’s

actions, and the latter then corrects the original

action sequence. Finally, the Architect acknowl-

edges the acceptability of the current state of con-

struction state and moves to the next instruction.

This kind of conversational negotiation between

Builder and Architect, which allows them to arrive

at a common understanding of what actions are to

be executed, is common in the MDC and gives rise

to a very regular, high level structure consisting

of a sequence of negotiation episodes connected

by Narration instances (Narrations). Each episode

begins with a new instruction, continues through a

stage in which the Architect may give additional

instructions or feedback and the Builder may ask

questions, and concludes when the final construc-

tion is complete or when the Architect moves to

a new instruction, usually after acknowledging the

completion of the last instruction. Figure 1 shows

one such episode.

The narrative arcs linking negotiation episodes

give the structural backbone and macrostructure

of the conversation (Asher et al., 2020). This

macrostructure gives an overview of how the two

interlocutors went about the construction task and

is an important feature for human understanding

of how complex tasks are decomposed into sim-

pler ones. Table 2, which gives the distribution of

distances in terms of DUs between arguments of

all relation types, shows that Narration relation in-

stances often cover longer distances. In fact, Ta-

ble 2 shows that Narration supports more long dis-

tance relations in the MSDC than any other rela-

tion. The MSDC differs markedly from conversa-

tional corpora like STAC, where Narrations were

scarce and relatively short distance (Asher et al.,

2016, 2020).

Linguistic corrections by the Architect, like that

shown in Figure 1, are a particularly important

structure during the negotiation episodes. In such

cases, the Architect generally corrects a Builder

action a with a linguistic move `—by which we

mean that ` contains an instruction that gives in-

formation on how to revise or modify a. This lin-

guistic correction ` then results in a nonlinguistic

action b by Builder that itself serves as a nonlin-

guistic correction of a. By a nonlinguistic correc-
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Figure 1: MSDC example showing CDUs composed of EEUs for action sequences, non-treelike struc-

tures and multi-parent EDUs. The Narrations on the left give the narrative arc/macrostructure of the

dialogue, while the structure between the arguments of the Narrations shows a negotiation episode with

Correction.

tion, we mean that the action b undoes something

in or somehow revises the action a. The pres-

ence of multiple Architect corrections are to be

expected in a situation of asymmetric information

and an imperfect communication channel, two fea-

tures which are typical for instructional dialogues.

4.2. Multi-Parent Structures and
Nonlinguistic Arguments

As noted in Section 3, the Architect’s reply “not

quite” in Figure 1 simultaneously answers the

Builder’s confirmation question and corrects their

previous actions.3 The MSDC features many

cases in which a single EDU has multiple incom-

ing relation instances, and thus multiple parents,

resulting in non-treelike structures.

The second argument of a narrative arc span-

ning a negotiation episode is always a multi-parent

3Ideally, we would group the EDU expressed by “not

quite” in a CDU along with the following two elaborat-

ing moves, as they serve together to correct the action

sequence and answer the Builder’s question. As ex-

plained in Section 3, however, we made the simplifying

choice to not use CDUs for linguistic moves.

EDU, as it is a new instruction that both sequen-

tially follows the preceding instruction and also re-

sults from the success of the previous linguistic-

action sequences. In Figure 1, the instruction

“place a block connecting those two blocks” is an

example. New instructions can result from an ac-

knowledgment of building success (Figure 1), a

comment (e.g., “great!”), a positive answer to a

confirmation question or directly from a successful

action sequence/EEU. Table 3 shows that Narra-

tion andResult instances have some of the highest

occurrences in multi-parent structures.

Table 1 gives the total number of multi-parent units

(“MP DUs”). The participation of the different rela-

tion types in multi-parent units is shown in 3. For

instance, Result and Narration have the highest

numbers of relations connecting MP DUs, while

Narration, and Correction have a high proportion

of their total relations connecting MP DUs.

In the STAC corpus, non-treelike structures are of-

ten attributable to complex interactions between

nonlinguistic actions and linguistic moves. The

MDC has similar interactions but in much greater

numbers. STAC conversations are directed to-
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1 2 3 4 5 6 7 8 9 10 >10 Max len Total

Result 8847 1091 295 115 43 25 8 6 1 1 1 12 10433

Elaboration 3627 348 69 16 9 10 3 2 0 0 2 13 4086

Narration 155 983 878 577 419 334 263 161 142 124 425 63 4461

Acknowl. 3529 820 134 38 14 11 4 2 1 0 1 13 4554

Correction 528 564 460 295 143 78 41 23 7 9 12 20 2160

Q-A Pair 1524 290 84 26 8 3 1 0 0 0 0 7 1936

Comment 1437 181 50 10 2 0 0 0 1 0 0 9 1681

Continuation 1367 318 176 95 38 23 7 2 4 1 0 10 2031

Confirmation-Q 885 85 22 6 1 0 0 0 0 0 0 5 999

Clarification-Q 612 256 49 19 12 3 3 1 1 2 2 14 960

Q-Elab 151 62 14 3 0 0 0 0 0 0 0 4 230

Contrast 368 17 8 5 1 0 0 0 0 0 0 5 399

Sequence 19 14 2 1 1 1 0 0 0 0 0 6 38

Explanation 98 8 1 1 0 0 0 0 0 0 0 4 108

Alternation 162 9 1 0 0 1 0 0 0 0 0 6 173

Conditional 58 5 2 2 0 0 0 0 0 0 0 4 67

Backwards

Comment 238 4 0 0 0 0 0 0 0 0 0 2 242

Conditional 16 0 0 0 0 0 0 0 0 0 0 1 16

Table 2: Relation type counts by distance

wards trade negotiations and actions; the MDC

features collaborative multimodal tasks involving

a wider variety of actions with both linguistic and

nonlinguistic effects. STAC, like MOLWENI (Li

et al., 2020), also includes multiparent structures

that are attributable to the multi-party dialogue set

up, which is absent in the MSDC. The MSDC

shows that instructional situated dialogue typically

gives rise to a rich and novel variety of non-treelike

structures, many of which can be attributed to the

difficulty of providing clear and unambiguous in-

structions in such a task.

The non-treelike structures described above ex-

hibit complex interactions between linguistic and

nonlinguistic contexts. Table 3 shows how many

relations in the MSDC have nonlinguistic and lin-

guistic arguments. Especially noteworthy are the

very frequent Correction relation instances where

one action sequence corrects the effects of an-

other action sequence. This feature seems in-

evitable in a situation where two agents with asym-

metric information are trying together to do some

cooperative task, but it is not present in other mul-

timodal dialogue corpora as far as we know.

5. Discourse Parsing with the MSDC

To establish a baseline for structure prediction for

the MSDC, we used the BERTLine parser (Bennis

et al., 2023). Its simple architecture gives robust

results on multi-party, situated conversation data

from the STAC corpus (Asher et al., 2016), which

makes it a suitable starting point for the MSDC.

We followed the test split from Jayannavar et al.

(2020) of our 541 annotated dialogues, except that

we took 32 as a hold-out set for development of the

parser.

5.1. The Parser

As is standard procedure in discourse parsing, we

first segment the data into DUs. In our case, only

the EDUs were segmented, since the EEUs were

recorded as distinct moves (Section 2). The next

step is to decide, for each pair of DUs, if they are

attached. Finally, a relation type label is predicted

for each positive attachment.

BERTLine takes EDU pairs as inputs. We did not

consider every possible candidate pair for a seg-

mented dialogue, however, as the number of can-

didates per dialogue is significantly greater than

the number of relation instances in each dialogue,

leading to significant class imbalance. We opted

instead to focus on candidates that are of a dis-

tance that that captures the large majority of re-

lation instances in our corpus. Table 2 shows

that many of the relation instances have distance

less than 7—especially those occurring most fre-

quently within negotiation episodes, e.g. Re-

sult, Elaboration, Acknowledgement, Confirmation

Question and Question-answer Pair. However, as

we explain below, we ultimately took our final cut-

off distance to be 10, in order to capture more of

the long distance Narrations crucial for delineat-

ing negotiation episodes. To further mitigate the

imbalance, we undersampled the training set so

that the unattached/attached candidate ratio is no

more than 3:1. Our corpus also has a number of
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Ling-Ling Ling-NL NL-Ling NL-NL Multi-parent

Result 1947 6109 2377 0 5234

Elaboration 4086 0 0 0 128

Narration 4461 0 0 0 4283

Acknowledgement 1816 0 2738 0 474

Correction 230 0 963 967 1477

Question Answer Pair 1936 0 0 0 797

Comment 1759 0 164 0 27

Continuation 2031 0 0 0 115

Confirmation Question 43 0 956 0 15

Clarification Question 960 0 0 0 5

Question Elaboration 230 0 0 0 6

Contrast 399 0 0 0 110

Sequence 0 38 0 0 0

Explanation 108 0 0 0 2

Alternation 173 0 0 0 11

Conditional 83 0 0 0 17

Table 3: Relation type counts by argument types, including backwards relation counts. For backwards

relations types, see Table 2.

Precision Recall F1

Trained on d10

Finetuned 0.8584 0.7375 0.7933

+Linear (L10) 0.8278 0.7507 0.7874

Table 4: Attachment scores for finetuned BERT

and finetuned BERT plus linear layer (BERTLine),

both trained and evaluated on candidate sets of

max distance 10.

relation instances where the order of arguments is

reversed (backwards relations in Table 2), but we

ignored these in the parsing.

We used the selected candidate pairs and relation

instances to finetune a BERT model (Devlin et al.,

2018) on binary attachment. Since this model

relies on BERT embeddings, we needed to fur-

ther preprocess the EEUs into special BERT to-

kens, with a unique token for each possible block

color and placement combination. Single moves

are represented by a single token, while EEU se-

quences (Section 3) are sequences of tokens.

We fine-tuned on attachments for candidates at

distances ≤ 7 and ≤ 10 and tested on attach-

ments of distance ≤ 10. The finetuned distance

≤ 7 model was about par with distance ≤ 10 mod-

els on precision but did less well than the latter on

recall, and performed particularly poorly on longer

distance relations. To improve recall on these cru-

cial relations, we chose a distance of 10. We also

added a simple linear layer to incorporate speaker

change and distance information. The addition of

this layer boosted the parser’s recall on the MSDC

at the cost of some precision. Table 4 shows

the results for our fine-tuned BERT and the final

BERTLine model with linear layer (L10).

We took the attachment predictions of the L10

model as input to the last component of the parser,

which predicts a relation type label for each pre-

dicted (positive) attachment. This uses a multi-

task architecture to capture the informational de-

pendencies between attachment and labeling de-

cisions, and is described in detail in Bennis et al.

(2023). Table 5 shows F1 scores for each re-

lation type and overall average F1 on two differ-

ent sets of attachments: the full predicted attach-

ments, and the subset of those attachments that

were correctly predicted (true positives).

Our labeling score was decent given our attach-

ment score, which is high for a dependency style

discourse parsing task (Morey et al., 2018). The

scores for labeling relative to both the predicted

true attachments and all predicted attachments

can be found in Table 5, which shows that our

parser is competitive with other parser perfor-

mance on similar SDRT-annotated dialogue cor-

pora (Shi and Huang, 2019; Wang et al., 2021;

Bennis et al., 2023).

While recall is improved by including longer dis-

tance relations in training, BERTLine’s perfor-

mance on attachment and relation labeling—like

that of many other discourse parsers—still de-

grades significantly on these relations. This is to

be expected, as the ratio of attachments to candi-

date pairs drops dramatically as relation distance

increases. Narration and Correction are two rela-

tion types in MSDC that most frequently occur at

longer distances (see Table 2); and their F1 suf-

fered as we expected (see Table 5). Nevertheless,

these two relation types are indispensable to un-

derstanding not just the content of instructions, but
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F1: attach F1: pred-TP ∆

Result 0.85 0.98 13

Elaboration 0.75 0.84 9

Narration 0.50 0.93 43

Acknowl. 0.81 0.94 13

Correction 0.31 0.76 45

Q-A Pair 0.76 0.96 20

Comment 0.50 0.66 16

Contin. 0.44 0.56 12

Confirm-Q 0.86 0.98 12

Clarif-Q 0.61 0.88 27

Q-Elab 0.38 0.67 29

Contrast 0.80 0.88 8

Sequence 0.0 0.0 -

Explan. 0.0 0.0 -

Altern. 0.88 0.91 3

Conditional 0.58 0.67 9

Macro F1 0.53 0.73

Weighted F1 0.60 0.89

Table 5: F1 scores for L10 predictions on each

relation type (listed in descending order of relation

frequency in Table 2) on all predicted attachments,

on all correct predicted attachments (TP only), and

the percentage point gain in F1 when only TP at-

tachments are considered.

the high level structure and break down of the task.

In the rest of this section, we discuss one possibil-

ity for improving performance of our current model

architecture at longer distances, and outline a pre-

liminary experiment.

5.2. The Second Pass

The semantic connections that discourse struc-

tures represent leverage dynamic global informa-

tion, including nonlinguistic context and previous

discourse moves. Discourse parsers that consider

a single candidate pair at a time can only make lo-

cal attachment and labeling decisions, despite at-

tempts to remedy the deficiency (Shi and Huang,

2019). While BERTLine might reliably predict

much of the local structure for a situated exchange

like the ones in the MSDC, it will inevitably fail to

predict attachments and relation types whose se-

mantics are not really learnable from the local, lin-

guistic information of the candidate DUs.

BERTLine’s linear layer makes a first attempt to

add global cues to each local decision, but as

observed in the MSDC, correctly characterizing

the discursive import of certain speaker moves re-

quires a more sophisticated understanding both

of the instruction state and the task state. We

see this with Narration and Correction attachment

decisions: while Narration requires understanding

when a subtask has been completed, Correction

requires interlocutors to correctly identify the ac-

tion and the portion of the world state that need

to be changed, and in what way. These are hard

problems that BERTLine cannot fix on its own.

We hypothesize, however, that some relations

with longer distance instances supervene upon

structures learned inductively from more local fea-

tures. That is, some instances of longer distance

relations might be inferrable from local discourse

configurations. This turns out to be the case with

long distance instances of Narration in the MSDC,

and, we further conjecture, in dialogue involving

asymmetric, collaborative tasks like that in the

MDC more generally.

In the case of Narration, we know that longer dis-

tance Narration instances that connect subtasks in

an MSDC dialogue link Architect EDUs. These ar-

chitect EDUS are the second argument of a Result

relation instance whose first argument is usually

the last, previous completed Builder move or the

Architect’s acknowledgement of that move. These

Result relation instances are quite local (distance

of 1 or 2 EDUs between the arguments). Given

perfect information about Result and the type and

speaker of a given discourse unit, we should be

able to algorithmically predict the longer distance

Narration instances, thus establishing the super-

venience of the latter upon the former.

To capture these longer distance Narration in-

stances that form the Narrative arc of the session,

we ran a second model that could exploit the out-

puts of the first. Having looked at the Narrative

arcs on the development set, we saw that instead

of using a second instance of BERTLine, we could

use a deterministic algorithm to exploit information

from BERTLine’s first pass.

Recalling that a full MSDC session G is a list of

EDUs, we can retrieve, after a first pass on G
by BERTLine for each EDU, information about its

speaker and its role in the discourse structure. In

particular, we can determine a first EDU of the first

Narration instance, since that is linked by Con-

tinuation from the first turn of G. And for any

subsequent EDU, we can determine whether it is

the second argument or target of a Result rela-

tion instance whose first argument or source is

the previous Builder move or an architect’s move

that acknowledges the previous Builder move. Be-

low let R stand for Result, C for Continuation Ak
for Acknowledgment, and let AR(e1, e2) stand for

the fact that e2 is the first architect move after

edu e1 and BM(e1, e2) for the fact that e1 is the

last builder move before architect move edu e2.
Let Feat(ei, ej), for EDUs ei, ej stand for features

given by 1stpass, the BERTLine first pass. These

include information about sources and targets of

relations, and also types of moves.

The idea of the algorithm is that we go through

each EDU sequentially, keeping track of whether
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Algorithm 1 Algorithm for long distance Narration

instances in MDC dialogue G

For ei ∈ (e1, ...en) :⇐ EDUs of G

Feat(ej , ei), 1 < i ≤ n :⇐ 1st pass

if C(e0, ei) ∈ Feat(e0, ei) and AR(e0, ei) then
Narr(e0, ei)
else

if ek > ei then
while k < n do

if [[R(ej , ek) ∈ Feat(ej , ek) and last-

BM(ej , ek)] or [last-BM(ej , ek) and Ak(ej , el) ∈
Feat(ej , el) and R(el, ek) ∈ Feat(el, ek)]] then
Narr(ei, ek) and ek ← ek+1 and ek ← ei

else ek ← ek+1

end if

end while

end if

an action has occurred. When we find ourselves

in the state in which an architect’s turn is linked by

Result to a previous action or acknowledgment of

an action, we consider this the end of the current

narrative arc and the beginning of the new one.

As can be seen from Table 6, even with just BERT-

Line’s predictions on Result, Continuation and Ac-

knowledgement, the algorithm provided consis-

tently superior results over BERTLine for Narration

instances of distance > 2. With gold input on Re-

sult and Continuation and Acknowledgment rela-

tions, the F1 score for the algorithm was near per-

fect, with an F1 of 0.96 on all Narration instances.

To optimize the integration of the second pass

with BERTLine’s first pass of discourse annota-

tions, we needed to see where BERTLine could

be useful for Narrations and where the algorithm

took over and gave much better results. We an-

alyzed the predictions of the second algorithm on

our development set, along with BERTLine’s pre-

dictions for Narration. We compared their perfor-

mance with respect to links of different lengths to

decide at what point we should turn over the Nar-

rations to the algorithm and the second pass. Our

results are in Table 6. There were very short and

intra turn Narration links that our algorithm did not

take account of. We chose a cutoff at Narration

relation instances of length < 2 and intra turn Nar-

ration instances to be done by BERTLine with the

rest contributed by the algorithm.

We then integrated the effects of the first and sec-

ond pass together. Because we did not take cer-

tain labeled predictions from BERTLine’s first pass

(Narration instances of length> 2) and added new
labeled predictions with the Second Pass, we had

to revise our scores for attachment as well as rela-

tion labeling. Given that relation labeling assigns

a unique label to each attachment pair, we recom-

puted the new attachment F1 by subtracting the

unused predictions from the first pass and adding

the attachments predicted by the second pass al-

gorithm. To compute an overall relation labeling

score, we took the aggregated Narration score and

combined it with BERTLine’s first pass predictions

for the other relations on the labeling task. The

results are in Table 7. We note that BERTLine’s

performance on the intra turn and short inter-turn

Narration links was poor on the development set,

with a total F1 of 0.16. This lowered the first + sec-

ond pass performance on Narration overall.

Table 7 shows that the first + second pass im-

proves upon BERTLine’s or the first pass’s attach-

ment and relation labeling scores when the evalu-

ation is restricted to candidates of distance d ≤ 10.
More importantly, when we look at its predictions

for an entire MSDC dialogue, the first + second

pass loses nothing in precision and very little in re-

call from its performance on candidates of d ≤ 10.
A similar story holds for relation labeling. Our new

first + second pass architecture thus achieves a

very good performance on long distance attach-

ments and their labels, something that has eluded

discourse parsing in the past.

Our first + second pass architecture extends in

principle to other relations like Correction, which

also has long distance instances in the MSDC.

Many Correction instances occur between EEUs

(see Table 3) with a certain discourse configura-

tion, and an algorithmic approach should be able

to capture these. We did not, however, have time

to implement a similar, algorithmic Second Pass

approach for Correction. Instead, we tried simply

running a second pass with BERTLine for which

we added more local discourse structure features

to the model’s linear layer. We failed to improve

the parser’s performance with this approach as op-

posed to an algorithmic one, and we see two pos-

sible explanations for this failure. First, BERT has

no pretraining data on the encodings of the nonlin-

guistic actions, so it couldn’t easily learn patterns

involving them. To test this, we switched values

in the EEU encodings that would entail a differ-

ent relation than Correction, but BERTLine did not

pick up on these differences. Secondly, our BERT

encoding of EEUs is not optimal, which made the

task even more difficult.

6. Related Work on the Minecraft

Corpus

Bonn et al. (2020) annotated sentences in the

MDC using the AMR formalism (Banarescu et al.,

2013). Bonial et al. (2021) extended those anno-

tations on the MDC with labels for dialogue acts

in the AMR formalism (Bonial et al., 2020). These

partially overlap with discourse annotations but do

not capture the full structure of the interactions.

Combining the annotations of Bonn et al. (2020)
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Dev.Gold BERTLine Algo.

# Narr # Narr predicted (F1)

Dist. intra/inter intra inter inter

1 1/0 7 (0.0) - -

2 3/61 5 (0.50) 56 (0.85) 63 (0.91)

3 1/73 0 51 (0.88) 65 (0.92)

4 0/34 0 31 (0.72) 25 (0.78)

5 0/37 0 26 (0.55) 27 (0.80)

6 0/22 0 17 (0.55) 17 (0.73)

7 0/21 0 12 (0.53) 17 (0.80)

8 0/8 0 4 (0.33) 4 (0.62)

9 0/6 0 3 (0.00) 7 (0.29)

10 0/7 0 2 (0.22) 11 (0.77)

Overall F1: 0.50 0.76

Table 6: Narration First and Second Pass predic-

tions and F1 scores by relation distance (Dist) on

the development set. Intra refers to intra-turn links,

and inter to inter-turn links.

BERTLine 1st+2nd Pass

d = 10 d = 10 d =∞
Attachment

Precision 0.82 0.82 0.82

Recall 0.75 0.79 0.78

F1 0.78 0.80 0.79

Relations

Narration F1 0.50 0.73 0.69

all Macro F1 0.53 0.55 0.54

all Weighted F1 0.60 0.62 0.61

Table 7: BERTLine’s results (left column) on at-

tachment and relation label prediction from tables

3 and 4 compared to the combined results for the

first + second pass with a distance 10 and no dis-

tance cutoff.

and Bonial et al. (2021) with MSDC will provide a

detailed linguistic view of the Minecraft corpus at

several different levels.

With regards to the relevant discourse literature,

there has been work on instructional dialogues

since the earliest days of computational work

on discourse (Deutsch, 1974; Grosz and Sidner,

1986). The first discourse annotated corpus on in-

structional texts, with a single author and no extra-

linguistic information, in a current formalism (RST)

we know of is described in Subba and Di Euge-

nio (2009), for which Subba and Di Eugenio de-

veloped an RST-inspired parser.

STAC (Asher et al., 2016, 2020) is an SDRT-

style discourse annotated corpus of multi-party di-

alogues that consist of chat exchanges between

three or four players while playing an online ver-

sion of the Settlers of Catan board game. STAC

involves annotations of both linguistic and nonlin-

guistic actions or states in the discourse structure

and is thus a situated dialogue corpus that resem-

bles the MDC. However, the STAC dialogues are

not fully collaborative but rather strategic. STAC

also contains linguistic CDUs. We tried these for

the MSDC but we found they cluttered the an-

notation too much. Researchers in parsing have

“flattened” CDUs from SDRT annotations to just

graphs over EDUs and EEUs (Perret et al., 2016;

Shi and Huang, 2019; Wang et al., 2021). Ben-

nis et al. (2023) also proposes squishing for CDUs

with EEUS. Molweni (Li et al., 2020) is another

corpus of multi-party dialogues, involving ques-

tions with answers from several interlocutors, from

an Ubuntu chat corpus annotated with SDRT-style

discourse structures. It does not involve any non-

linguistic information or context.

Shi et al. (2022) try to predict when one should ex-

ecute an action and when they should instead ask

for a clarification question using a version of the

MDC edited with dialogue acts. They annotated

all Builder dialogue moves with a taxonomy of dia-

logue acts and then specified a single specific ac-

tion under the execution label. Thus, their set up is

not directly comparable to that of Jayannavar et al.

(2020). Their dialogue annotation is also quite dif-

ferent from ours as it only labels Builder moves.

7. Conclusion & Future Work

We have introduced the MSDC, a new discourse

annotated corpus for the Minecraft dialogues col-

lected by Jayannavar et al. (2020). We have

shown that the annotations are computationally

tractable with a simple discourse parser that ex-

ploits BERT EDU encodings. We’ve also ex-

plored a new way of thinking about building dis-

course structures in multiple passes that captures

long distance relations of certain types far better

than other discourse parsers. Information from a

first pass by the discourse parser helped improve

scores for certain relations with long distance in-

stances.

In future work, we will exploit discourse structure

to improve the accuracy of an automated Builder’s

actions in response to MSDC instructions.

8. Acknowledgements

For financial support, we thank the National In-

terdisciplinary Artificial Intelligence Institute AN-

ITI (Artificial and Natural Intelligence Toulouse In-

stitute), funded by the French ‘Investing for the

Future–PIA3’ program under the Grant agree-

ment ANR-19-PI3A-000, and we also thank the

ANR project COCOBOTS (ANR-21-FAI2-0005)

and and the ANR/DGA project DISCUTER (ANR-

21-ASIA-0005). We also thank the COCOPIL



4966

“Graine” project funded by the Région Occitanie

of France.

8.1. Ethical considerations and
limitations

Our new resource has no ethical impact of which

we are aware. The limitations of our study is that

it is only a first step in gauging the importance of
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