
LREC-COLING 2024, pages 4968–4977
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

4968

Discriminative Language Model as Semantic Consistency Scorer
for Prompt-based Few-Shot Text Classification

Zhipeng Xie, Yahe Li
School of Computer Science, Fudan University, Shanghai, China

xiezp@fudan.edu.cn, yaheli21@m.fudan.edu.cn

Abstract
A successful prompt-based finetuning method should have three prerequisites: task compatibility, input compatibility,
and evidence abundance. Bearing this belief in mind, this paper designs a novel prompt-based method (called
DLM-SCS) for few-shot text classification, which utilizes the discriminative language model ELECTRA that is
pretrained to distinguish whether a token is original or replaced. The method is built upon the intuitive idea
that the prompt instantiated with the true label should have higher semantic consistency score than other
prompts with false labels. Since a prompt usually consists of several components (or parts), its semantic
consistency can be decomposed accordingly, which means each part can provide information for semantic
consistency discrimination. The semantic consistency of each component is then computed by making use of the
pretrained ELECTRA model, where no extra parameters get introduced. Extensive experiments have shown that our
model outperforms several state-of-the-art prompt-based few-shot methods on 10 widely-used text classification tasks.

Keywords: discriminative language model, prompt

1. Introduction

Nowadays, with the upsurge of interest in a
wide range of pretrained language models, the
pretraining-finetuning paradigm (Radford et al.,
2018; Dong et al., 2019) has become a de facto
standard for various downstream NLU and NLG
tasks. Different language models usually have
different scopes of application. Auto-regressive
language models (ARLM) such as GPT-3 (Brown
et al., 2020) and Ernie-3 (Sun et al., 2021) pre-
dict the next token based on all the previous ones,
usually in the left-to-right order. Since it is trained
to encode a uni-directional context, it is not effec-
tive at downstream NLU tasks that often require
bidirectional context information. In addition, these
models are large and costly to finetune, or even not
available publicly, which makes them impossible to
use in the pretraining-finetuning paradigm. Masked
language models (MLM) such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) mask
some tokens in inputs and are trained to recon-
struct the original tokens based on their bidirec-
tional surrounding context, which is often prefer-
able in NLU tasks such as text classification but
not applicable in NLG.

Conventional finetuning method for downstream
text classification task usually builds up a classifi-
cation head together with additional parameters on
top of the special [CLS] token from scratch and
fine-tunes the whole model. Such models work
well with abundant training examples in rich data
regimes, but will be cornered in the few-shot sce-
nario, not to mention the zero-shot, because of the
gap between pretraining and downstream tasks.

Initiated by the in-context learning of the GPT

series (Radford et al., 2018, 2019; Brown et al.,
2020), prompt-based method was first developed
for zero-shot learning, and then studied by PET
and iPET (Schick and Schütze, 2021a) for fine-
tuning. After that, prompt-based learning meth-
ods have become increasingly popular, and have
been proven to work effectively under few-shot
or even zero-shot setting. To bridge the gap be-
tween the downstream task and the pretrained task,
these methods transform downstream tasks into
the same (or similar) form as the pretraining tasks
solved during the original LM training with the help
of textual prompts. Most existing prompt-based
methods are using generative prompts that con-
tain answer slots for various pretrained language
models to fill in (Liu et al., 2021). As to the down-
stream text classification tasks, most works have
been directed against pretrained masked language
models (MLMs) by formulating downstream tasks
as a masked language modeling task (Schick and
Schütze, 2021a,b; Gao et al., 2021). A template
converts the original input example xin into a tex-
tual string (called prompt) x̃ that contains an un-
filled [MASK] slot. A verbalizer is used to repre-
sent each class with a label word from the vocab-
ulary. The model makes the prediction according
to the probabilities of filling the [MASK] token with
the label words. Such a prompt is called a genera-
tive prompt, which usually contains an an unfilled
[MASK] as the answer slot, and the pretrained
masked language model is finetuned to generate
a correct label name to fill this answer slot. A sim-
ple prompt-based framework that treats MLM as
masked token predictor for text classification is il-
lustrated in Figure 1(b).
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Until the very recent, two prompt-based finetun-
ing methods (Yao et al., 2022; Xia et al., 2022; Ni
and Kao, 2022) have been proposed to exploit the
pretrained ELECTRA (Clark et al., 2020) which is a
discriminative language model (DLM). In contrast
to the generative prompts, they use the prompts
that contains no answer slot, which we call “dis-
criminative prompts” and can be seen as the un-
masked prompts which use label word(s) to fill in
the [MASK] of generative prompts. The pretrained
ELECTRA model is then applied on these discrimi-
native prompts and tells us which label word is the
original token (i.e., not a replaced token). How-
ever, these methods confine themselves only on
the label word(s) in the discriminative prompts and
expect the discriminative model to identify the se-
mantic inconsistency incurred by the incorrect la-
bel words. This limited evidence is far from what
can be obtained from the discriminative language
model, and some available evidence is missing
(Please refer to Section 3.2 for a simple motivating
example).

The work done in this paper follows the thread
of prompting the discriminative language model for
few-shot text classification. The basic idea is that
the DLM head can detect the discrepancy between
inputs and label words. On the one hand, given an
input example (a sentence or a sentence pair) and
its true label, the DLM head is expected to assign
low scores (or logits) to the salient tokens in the
input example and the true label word. If a false
label is given, it is desirable that the DLM head will
assign high scores to both the false label word and
the salient tokens in the input example.

To squeeze the most out of a pretrained lan-
guage model such that it works best on a down-
stream few-shot learning task, three prerequi-
sites are considered in designing a prompt-based
method of finetuning a pretrained discriminative
language model:

• Prerequisite 1 (Task Compatibility): As
stated by most prompt tuning methods, the
downstream task should be transformed into
the same (or highly similar) form as the pre-
training task, such that no (or few) additional
parameters need introduced.

• Prerequisite 2 (Input Compatibility): The
prompt template should be in the same form
as the training data of the pretrained language
model, such that the discriminative prompts
are as much natural as possible. As a conse-
quence, the pretrained language model can
process them well and easily, without having
to be tuned too far away.

• Prerequisite 3 (Evidence/Information Abun-
dance): Last but not the least, the method
should try its best to obtain and aggregate as

much evidence and/or information as possi-
ble for decision making. Due to the nature
of few-shot learning, it is unstable and has
a big variance, and thus the aggregation of
more evidence would be helpful in reducing
the variance.

The contribution of this paper is threefold: (1)
We propose a novel framework DLM-SCS1 for
few-shot text classification, which uses the pre-
trained discriminative language model ELECTRA
as the semantic consistency scorer. (2) We design
a method to measure the semantic consistency
of a subsequence in the input prompt on the ba-
sis of the discriminative head of ELECTRA which
can only measure the semantic inconsistency of
each single token, and then use it to instantiate the
framework into a concrete prompt-based finetuning
model (also called DLM-SCS). (3) The proposed
method has achieved the state-of-the-art perfor-
mance on a variety of downstream sentence clas-
sification and sentence-pair classification tasks.

2. Related Work

2.1. Prompting MLM for Text
Classification

Existing prompt-based learning methods for text
classification usually reformulate the downstream
text classification task into a cloze question task,
and then finetune a pretrained masked language
model to generate the most likely label word in
the unfilled [MASK] position of the generative
prompt (Schick and Schütze, 2021a). A lot of re-
search effort has been devoted to the automatic
construction of prompt templates and label words.
(Schick et al., 2020) and (Schick and Schütze,
2021a) studied the automatic identification of label
words. (Gao et al., 2021) made use of the pre-
trained seq2seq model T5 (Raffel et al., 2020) to
generate template tokens in the template search
process. Motivated by idea of in-context learn-
ing from GPT series (Brown et al., 2020), (Gao
et al., 2021) used a single unmasked example
prompt (called a demonstration) as additional con-
text, which can boost the performance of prompt-
based few-shot text classification task. (Park et al.,
2022) made two extensions by multiple demonstra-
tions and soft demonstration memory. In addition,
(Zhang et al., 2021) proposed the DART method
that optimizes the differentiable prompt template
and label words by error backpropagation.

1Code available at https://github.com/
liyahe/DLM-SCS.

https://github.com/liyahe/DLM-SCS
https://github.com/liyahe/DLM-SCS
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Figure 1: A schematic illustration of (a) our proposed DLM-SCS (Discriminative Language Model as Semantic
Consistency Scorer), comparing to that of (b) traditional prompt-based model that uses masked language model as
masked token predictor.

2.2. Prompting DLM for Text
Classification

Two prompt-based text classification methods for
finetuning discriminative language model (DLM)
have been recently proposed (Yao et al., 2022; Xia
et al., 2022; Ni and Kao, 2022). These methods
reformulate text classification task into a discrimi-
native language modeling problem, and predict the
class label of an input example by using the DLM
head to identify which label name is the original
token instead of a replaced one. The DPT method
proposed in (Yao et al., 2022) fills the input text x
into the following template of discriminative prompt:

[CLS] x Class: v(l1), v(l2), . . . , v(ln). [SEP]

where the verbalizer v(·) maps each class label li
(1 ≤ i ≤ n) to a distinct label word. Then the DLM
head is used to judge which label word is proper
in the context. It should be noted that DPT is not
designed and also not suited for few-shot learning,
because it does not satisfy the Prerequisite 2 of
input compatibility. As shown in Section 5, DPT
cannot work well in few-shot scenario.

The other method, PromptELECTRA (Xia et al.,
2022), was designed for few-shot text classifica-
tion. Given an input example x, it will generate one
discriminative prompt for each possible class label.
Thus, there are n discriminative prompts for x. The
DLM head is used to output the label word that
has the highest probability of being original token
in its corresponding prompt. This method satisfies
Prerequisite 1 and 2, but it is not enough with
respect to Prerequisite 3 because it makes deci-
sion based on the only evidence from the candi-
date label words. Analogously, (Ni and Kao, 2022)
presents that ELECTRA can also perform well on
downstream tasks without fine-tuning.

Recently, prompting discriminative language
models have been also applied to various tasks
including medical text classification (Wang et al.,
2023) and biomedical domain adaptation (Lu et al.,
2023).

Figure 2: A simple example that motivates the DLM-SCS
model.

3. Background and Motivation

3.1. The Pretrained ELECTRA Language
Model

As a pretrained discriminative language model,
ELECTRA (Clark et al., 2020) consists of an
encoder and a discriminative head. The en-
coder first maps a sequence of input tokens x =
[x1, x2, . . . , xn] into a sequence of contextualized
vector representations [h1,h2, . . . ,hn], and the dis-
criminative head then predicts whether each token
xt (1 ≤ t ≤ n) is a “real” or “replaced” token. In
particular, the discriminative head simply applies a
linear layer with the sigmoid activation function on
the contextualized representation ht of xt:

PDLM(xt,x) = sigmoid
(
w⊤ht

)
(1)

where w denotes the parameter vector. In this
paper, we interpret the value of w⊤ht as the un-
normalized semantic inconsistency score of token
xt in the context x. The larger the value of w⊤ht

is, the more semantically inconsistent the token xt

is, and the more likely the token xt is a replaced
token in x.

3.2. Motivation

Figure 2 shows a simple input sentence from the
sentiment classification task SST-2:

x = “The restaurant has excellent food.”
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The verbalizer v maps the class label pos (posi-
tive) to the label word “great”, and the class label
neg (negative) to “terrible”. Therefore, two discrim-
inative prompts (x̃neg and x̃pos) are generated by
using the template “x It is v(l)”, one for each class
label l ∈ L = {pos, neg}.

Applying the discriminative head of the pre-
trained ELECTRA-large model to the label words:
“terrible” in x̃neg and “great” in x̃pos, we ob-
serve that PDLM(terrible, x̃neg) = 0.13 and
PDLM(great, x̃pos) = 0.04. This evidence thus sup-
ports the conclusion that the input sentence is
more likely to be positive, because the discrim-
inative prompt x̃pos of pos is semantically more
consistent with respect to its label word (or in other
words, v(pos) = “great” is less likely to be a re-
placed token).

Besides the label tokens, the discriminative
prompts contain tokens from the original input
sentence, which may also provide us some ev-
idence about the classification decision. As il-
lustrated in Figure 2, by applying the DLM head
on the token “excellent” in the discriminative
prompts, we get PDLM(excellent, x̃neg) = 0.60 and
PDLM(excellent, x̃pos) = 0.02, which also support
the same conclusion that the input sentence is pos-
itive. This evidence from the token “excellent” is
even stronger than the evidence provided by the
label words.

4. Method

This section is devoted to a prompt-based frame-
work for finetuning discriminative language models.
The main thrust is to treat prompt-based text classi-
fication as a task of semantic consistency scoring,
and calculate the semantic consistency of a prompt
as a weighted average of the semantic consistency
scores of multiple components (or parts) in the
prompt.

Let L be the set of class labels for the target
text classification task at hand. A verbalizer v is an
injective function that maps each class label to a
single token from M ’s vocabulary, v : L → V . We
simply adopt the manual prompt templates used
in the previous work (Gao et al., 2021). For sen-
tence classification task, given an input example
of single sentence xin = x(1), we can generate a
discriminative prompt x̃l for each label l ∈ L:

x̃l = [CLS] x(1) It is v(l) . [SEP] (2)

For sentence-pair classification task, given an input
example of sentence pair xin =

(
x(1),x(2)

)
and a

label l ∈ L, we can generate the discriminative
prompt x̃l as:

x̃l = [CLS] x(1) ? v(l) , x(2) [SEP] (3)

Therefore, there are |L| discriminative prompts
{x̃l|l ∈ L} (one for each class label) generated
for each input example.

The decision criterion of DLM-SCS model is
based on the assumption that the discriminative
prompt of true class label (true prompt in short)
is semantically more consistent than the other dis-
criminative prompts of false labels (false prompts).
The class label l whose prompt x̃l has the highest
semantic consistency is chosen as the predicted
label

l̂ = argmax
l∈L

SC(x̃l) (4)

where SC(x̃l) denotes the semantic consistency
of the discriminative prompt x̃l. Figure 1(a) demon-
strates this idea of using DLM as a semantic con-
sistency scorer for text classification task.

Next, we move to the problem of how to calculate
the semantic consistency SC(x̃l) of a discrimina-
tive prompt x̃l. Since each prompt consists of
several components (or parts), its semantic consis-
tency can be decomposed accordingly. In particu-
lar, the semantic consistency of x̃l is calculated as
a weighted average of the semantic consistencies
of some parts in x̃l:

SC(x̃l) = λ0 · sc
(
v(l), x̃l

)
+

∑
x(i)∈xin

λi · sc
(
x(i), x̃l

)
(5)

where:

• The term of form sc(s, x̃l) denotes the seman-
tic consistency of a token subsequence s in
the context of discriminative prompt x̃l. Here,
v(l) is seen as a subsequence of single token.

• The λi’s are hyperparameters indicating the
relative importance of the prompt parts (i ∈
{0, 1} for sentence classification task, while
i ∈ {0, 1, 2} for sentence-pair classification).

Given a token subsequence s in the discrimi-
native prompt x̃l, its semantic consistency can be
simply measured by the softmax activation function
over the mean negative logits of its tokens in the
|L| discriminative prompts:

sc(s, x̃l) =
exp

(
− 1

|s|
∑

x∈s w
⊤hl

x

)
∑

l′∈L exp
(
− 1

|s|
∑

x∈s w
⊤hl′

x

) (6)

where hl
x denotes the contextualized represen-

tation of token x in the discriminative prompt x̃l.
Here, because the value of w⊤hl

x denotes the se-
mantic inconsistency score of x (i.e., the logit that
x is a replaced token), the minus sign is introduced
into the exponent part in order to transform it into
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the score of semantic consistency. As to the se-
mantic consistency of the label word v(l) in x̃l, it is
calculated with the following equation:

sc(v(l), x̃l) =
exp

(
−w⊤hl

v(l)

)
∑

l′∈L exp
(
−w⊤hl′

v(l′)

) (7)

In Equation 6, all tokens in s are treated equally
and their negative logits are simply averaged. How-
ever, different tokens should be of different impor-
tance with respect to the semantic consistency.
Therefore, we make slight modification to Equa-
tion 6 by weighting each token with its inverse doc-
ument frequency (IDF), as below:

sc(s, x̃l) =
exp

(
−

∑
x∈s idf(x)w⊤hl

x∑
x∈s idf(x)

)
∑

l′∈L exp
(
−

∑
x∈s idf(x)w⊤hl′

x∑
x∈s idf(x)

) (8)

where idf(x) of token x is set to be the inverse
document frequency of the word that x belongs
to. The inverse document frequency of words can
be easily calculated from a large-scale unlabeled
text corpus. In this paper, we simply calculate the
token-level IDF values from unsupervised English
Wikipedia corpus2, and normalize the IDF values
into the range of [0, 1].

4.1. The Loss Function

Given a training example xin, each discriminative
prompt x̃l (l ∈ L) contains m components/parts,
where m = 2 for single-sentence classification,
while m = 3 for sentence-pair classification. Each
component/part corresponds to a subsequence of
token in the prompt. The semantic consistency
scorer of each prompt part actually outputs a prob-
ability distribution over the label set L. Therefore,
we use the cross-entropy function as the loss of
each prompt part.

For the prompt part of label words, its loss is:

loss0 = − log sc(v(l∗), x̃l∗) (9)

where l∗ is the true class label of the input example
xin.

For the part of a sentence x(i) in the input exam-
ple (i = 1 for single-sentence classification, while
i ∈ {1, 2} for sentence-pair classification), the loss
is measured as:

lossi = − log sc(x(i), x̃l∗) (10)

Therefore, the total loss of the training example
xin is defined as the weighted average of the losses
of its parts:

Loss =
∑

0≤i<m

λi · lossi (11)

2https://dumps.wikimedia.org/enwiki

Task Template Label words
SNLI <S1>? v(l), <S2> Yes/No/Maybe
MNLI <S1>? v(l), <S2> Yes/No/Maybe
QNLI <S1>? v(l), <S2> Yes/No
RTE <S1>? v(l), <S2> Yes/No
MRPC <S1>? v(l), <S2> Yes/No
QQP <S1>. v(l), <S2> Yes/No
SST-2 <S1>It is v(l). terrible/great

SST-5 <S1>It is v(l). terrible/bad/
okay/good/great

MR <S1>It is v(l). terrible/great
CR <S1>It is v(l). terrible/great

Table 1: The Manual templates and label words used in
the experiments.

where the hyperparameters λi’s are the same as
the ones used in Equation 5.

4.2. Model Optimization

For model training, we adopt AdamW algorithm
and set a linear learning rate variation with warmup
ratio of 0.05. For all the datasets, we take learn-
ing rate as 1e-5, and batch size as 4 for few-shot
samples. For each trial, we train the model for 15
epochs, validate the performance every 50 steps,
and take the best checkpoint. Early stopping is
used to avoid overfitting.

As to the hyperparameters λi’s, we set λ1 =
1 − λ0 for single-sentence classification, while
λ1 = λ2 = 1−λ0

2 for sentence-pair classification.
The best value of λ0 is chosen based on its per-
formance on the development set by a grid search
from 0.0 to 1.0 with step size 1

30 .

5. Experimental Results

To evaluate the performance of our approach, we
follow the experimental setting from (Gao et al.,
2021). For each task, we take only K training ex-
amples per class for the training set Dtrain, and thus
the total number of training examples is K × |L|. A
development set Ddev of the same size as the few-
shot training set is employed for model selection
and hyper-parameter tuning. Unless specified oth-
erwise, the value of K is set to 16 by default, and
the reported performance metrics are averaged
over the same set of 5 random seeds.

We conduct extensive experiments on 4 sen-
tence classification tasks (SST-2, SST-5, MR, and
CR) and 6 sentence-pair classification tasks (SNLI,
MNLI, QNLI, RTE, MRPC and QQP). The tem-
plates and label words used are provided in Ta-
ble 1, which are the same as the ones used in
(Gao et al., 2021). On these text classification
tasks, our DLM-SCS method is compared with the

https://dumps.wikimedia.org/enwiki
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Model SNLI MNLI QNLI RTE MRPC QQP SST-2 SST-5 MR CR
(acc) (acc) (acc) (acc) (F1) (F1) (acc) (acc) (acc) (acc)

Fine-tuning 48.4 45.8 60.2 54.4 76.6 60.7 81.4 43.9 76.9 75.8
(4.8) (6.4) (6.5) (3.9) (2.5) (4.3) (3.8) (2.0) (5.9) (3.2)

LM-BFF (man) 77.2 68.3 64.5 69.1 74.5 65.5 92.7 47.4 87.0 90.3
(3.7) (2.3) (4.2) (3.6) (5.3) (5.3) (0.9) (2.5) (1.2) (1.0)

+demonstrations 79.7 70.7 69.2 68.7 77.8 69.8 92.6 50.6 86.6 90.2
(1.5) (1.3) (1.9) (2.3) (2.0) (1.8) (0.5) (1.4) (2.2) (1.2)

LM-BFF (auto) 77.1 68.3 68.3 73.9 76.2 67.0 92.3 49.2 85.5 89.0
(2.1) (2.5) (7.4) (2.2) (2.3) (3.0) (1.0) (1.6) (2.8) (1.4)

+demonstrations 77.5 70.0 68.5 71.1 78.1 67.7 93.0 49.5 87.7 91.0
(3.5) (3.6) (5.4) (5.3) (3.4) (5.8) (0.6) (1.7) (1.4) (0.9)

DART 75.8 67.5 66.7 68.7 78.3 67.8 93.5 49.6 88.2 91.8
(1.6) (2.6) (3.7) (1.3) (4.5) (3.2) (0.5) (0.9) (1.0) (0.5)

DPT 47.4 39.0 54.6 50.2 76.4 56.1 92.6 44.0 89.5 91.2
(7.7) (1.8) (5.4) (2.8) (6.1) (1.1) (1.3) (3.8) (2.1) (1.6)

PromptELECTRA 79.1 65.8 70.9 68.2 73.5 63.1 93.1 51.4 89.4 90.2
(3.4) (2.5) (2.1) (2.8) (4.6) (3.3) (1.0) (2.2) (1.6) (1.4)

DLM-SCS (ours) 82.2 71.0 77.0 75.0 78.3 72.2 93.6 51.5 90.2 91.0
(1.5) (2.0) (2.4) (2.9) (3.1) (1.4) (0.6) (2.0) (0.7) (1.4)

Table 2: Performance evaluation on 6 sentence-pair classification tasks and 4 sentence classification tasks. The
reported performance metrics are averaged over the same set of 5 random seeds, each random seed is used to
sample 16 training example per class for training set, and the development set is of the same size as the training set.
Both average results and standard deviations are reported above.

conventional fine-tuning method and several state-
of-the-art prompt-based finetuning methods:

• Fine-tuning: The conventional fine-tuning of
Roberta-Large in the few-shot experimental
setting.

• LM-BFF(man): The better few-shot fine-
tuning of language models with manual
prompts (Gao et al., 2021).

• LM-BFF(auto): The better few-shot fine-
tuning of language models with automat-
ically searched templates (Gao et al.,
2021). For both LM-BFF (man) and LM-
BFF (auto), “+demonstrations” means incor-
porating demonstrations as additional context,
which leads to performance gains in majority
of tasks as indicated in (Gao et al., 2021).

• DART: The differentiable prompt framework
proposed in (Zhang et al., 2022), where the
prompt template and the target labels are dif-
ferentially optimized with backpropagation.

• DPT: The prompt tuning framework for discrim-
inative PLMs proposed in (Yao et al., 2022). Al-
though DPT does not aim at few-shot learning,
we also include it in our experimental compari-
son. Its original implementation3 can only deal
with sentence classification tasks, we make
a straightforward extension by using the man-
ual template: “[CLS] x(1) x(2) Class: v(l1),

3https://github.com/thunlp/DPT

v(l2), ..., v(ln) [SEP]” for a sentence-pair clas-
sification task with n classes.

• PromptELECTRA4: The few-shot learning
framework with discriminative pretrained mod-
els in (Xia et al., 2022).

5.1. Main Results

Table 2 reports the few-shot finetuning results of
these methods on large-sized PLMs, where DLM-
SCS, PromptELECTRA and DPT are based on the
ELECTRA-large model, while all the other meth-
ods are based on the Roberta-large model. It
can be easily observed that our DLM-SCS model
is the best performer and has achieved the best
performance on 9 of the 10 tasks among all the
competitors. The Fine-tuning and DPT are not
designed for the few-shot setting and have the
worst performance. The conventional Fine-tuning
method does not satisfy the Prerequisite 1 of Task
Compatibility because the finetuning task does
not match the pretraining task and additional pa-
rameters get introduced, while DPT does not sat-
isfy the Prerequisite 2 of Input Compatibility be-
cause the prompts used are not natural. DLM-
SCS outperforms PromptELECTRA on all the ten
tasks, because DLM-SCS makes use of more evi-
dence in the prompt than PromptELECTRA, which

4code available at https://
github.com/facebookresearch/
ELECTRA-Fewshot-Learning

 https://github.com/thunlp/DPT
https://github.com/facebookresearch/ELECTRA-Fewshot-Learning
https://github.com/facebookresearch/ELECTRA-Fewshot-Learning
https://github.com/facebookresearch/ELECTRA-Fewshot-Learning


4974

Model SNLI MNLI QNLI RTE MRPC QQP SST-2 SST-5 MR CR

(full) DLM-SCS 82.2 71.0 77.0 75.0 78.3 72.2 93.6 51.5 90.2 91.0
-w.o. token weight 78.2 70.0 73.4 73.6 76.9 69.6 93.0 48.8 90.3 90.3
-only label word 76.5 64.6 69.0 71.8 74.8 64.2 93.7 51.1 88.8 90.4

Table 3: Ablation study. The row “w.o. token weight” removes the IDF weights from Equation 8 (i.e., use Equation 6
instead of Equation 8). The row “only label word” removes the semantic consistency of the input example, and use
simply the label words to measure the semantic consistency of a discriminative prompt.

Model MM-SP MM-S

Fine-tuning 57.7 69.5
LM-BFF (man) 69.9 79.4
+demonstrations 72.7 80.0
LM-BFF (auto) 71.8 79.0
+demonstrations 72.2 80.3
DART 70.8 80.8
DPT 54.0 79.3
PromptELECTRA 70.1 81.0

DLM-SCS (ours) 76.0 81.6

Table 4: The mean performance metrics of compared
methods. MM-SP denotes the mean performance met-
ric on the 6 sentence-pair tasks, and MM-S denotes
the mean performance metric on the 4 single-sentence
tasks.

has manifested the value of Prerequisite 3 (Evi-
dence/Information Abundance).

To provide an intuitive understanding of the
overall performance lifting extent achieved by our
DLM-SCS method, Table 4 reports the mean per-
formance metrics averaged on the sentence-pair
tasks and the single-sentence tasks. It can be
observed that:

• On the sentence-pair tasks, a substantial per-
formance lifting is observed. Our DLM-SCS
model achieves the highest mean metric score
76.0, superseding the score 72.7 of the runner-
up LM-BFF(man)+demonstrations by a large
margin.

• On the single-sentence tasks, the DLM-SCS
model also achieves the highest mean metric
81.6, compared with 81.0 of the runner-up
PromptELECTRA.

The extent of performance lifting on sentence-
pair tasks is much larger than that on single-
sentence tasks. One potential reason is that it ag-
gregates three kinds of evidence (from the first sen-
tence, the second sentence, and the label word) for
sentence-pair tasks. In addition, “+demonstrations”
can improve the performance of LM-BFF(man) and
LM-BFF(auto), because the demonstrations pro-
vide more information in the context. As a con-

clusion, Prerequisite 3 of Evidence Abundance is
highly valuable in few-shot setting.

5.2. Ablation Study

Two main techniques play important roles in the
DLM-SCS model: the first is to integrate the ev-
idences from multiple components (or parts) of
the prompt, and the second is to weight tokens in
each prompt part with IDF values. Table 3 shows
the effects on the model performance by remov-
ing each technique. It can be seen that either of
the techniques is indispensable: the removal of
any technique will lead to substantial reduction of
model performance. The evidence from the input
example part of the prompt plays a crucial role in
the success of our model, and its integration with
the evidence of label word leads to substantial per-
formance boosting in classification accuracy, which
is consistent with the Prerequisite 3 we proposed.

5.3. Varying the number of training
examples

Figure 3 compares the performance DLM-SCS with
two competitors LM-BFF (man) and PromptELEC-
TRA as the number of training examples (K) in-
creases from 16 to 256. It can be observed that:

• On 9 datasets (except MRPC), DLM-SCS con-
sistently outperforms LM-BFF (man) when K
varies from 16 to 256.

• On 7 datasets (except MRPC, SST-2 and
SST-5), DLM-SCS consistently outperforms
PromptELECTRA for all K values. On SST-2
and SST-5, DLM-SCS wins PromptELECTRA
for most K values (4 out of 5).

5.4. Reject Option: Unanimous vs.
Disagreed Examples

The DLM-SCS model for text classification can be
thought of as a weighted average of m semantic
consistency scorers (refer to Equation 5). For sen-
tence classification task, there are two component
scorers (m = 2), one for the label words and the
other for the input sentence. For sentence-pair
classification task, there are three component scor-
ers (m = 3), one for the label words, one for the
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Figure 3: Performance comparison of DLM-SCS, LM-BFF (man) and PromptELECTRA with different numbers of
training examples. The shadow area denotes the standard deviation of the performance metric.

Dataset O.M U.M D.M U.R

SNLI (Acc) 82.9 85.3 41.7 92.0%
MNLI (Acc) 71.1 75.4 41.6 82.0%
QNLI (Acc) 78.5 81.4 37.2 86.9%
RTE (Acc) 73.3 82.9 56.7 67.5%
MRPC (F1) 79.4 81.6 33.9 83.3%
QQP (F1) 71.4 75.1 28.0 87.5%
SST-2 (Acc) 93.3 94.8 30.0 99.0%
SST-5 (Acc) 53.9 56.4 44.1 74.3%
MR (Acc) 90.8 91.7 34.9 96.9%
CR (Acc) 91.3 93.5 59.3 93.3%

Table 5: Performance analysis of unanimous versus dis-
agreed test examples. The column O.M denotes the
overall performance metric on the whole test dataset,
U.M denotes the performance on the unanimous test ex-
amples, D.M denotes the performance on the disagreed
test examples, while the final U.R denotes the ratio of
unanimous examples in the test dataset.

first sentence, and the other for the second sen-
tence. Therefore, the test examples can be splitted
into two parts: an example is called unanimous if
all component scorers make the same decision for
it; otherwise, it is a disagreed example,

Reject option means that a classifier can refuse
to make a decision of a test example if the deci-
sion is thought of not sufficiently reliable, which is
an important technique to improve the reliability of
decision making. Traditional technique for reject
option relies on whether the predictive probability
(or predictive confidence) is higher than a pre-set
threshold, which can be called quantitative reject
option. However, in few-shot learning scenario, it
is almost impossible to obtain reliable predictive
probabilities. Instead, DLM-SCS can adopt the fol-
lowing qualitative reject option technique: it refuses

to make prediction for a disagreed example.
From Table 5, it can be seen that the propor-

tion of unanimous examples is high on the whole
(larger than 80% on 8 datasets), which yields to
the relatively low reject ratio. In addition, the per-
formance metrics of disagreed examples are much
lower than those of unanimous examples, which
justifies the refusal of making decision for these
disagreed examples.

6. Conclusion and Future Work

In this paper, we present DLM-SCS, a simple
framework for finetuning discriminative language
model using only a few examples, where the dis-
criminative language model is used as a seman-
tic consistency scorer of discriminative prompts.
Given an input text example, it first constructs its
discriminative prompts for all class labels, then cal-
culates the consistency scores of these prompts,
and finally outputs the class label whose prompt
has the highest consistency. To calculate the con-
sistency score of a prompt, it is decomposed into
consistency scores of different prompt parts. The
extensive empirical evaluation has shown that it
achieves state-of-the-art performance on sentence
(or sentence-pair) classification tasks.

At its current state, the DLM-SCS method simply
works with manual and discrete prompt templates
which may be suboptimal. It would be interesting to
investigate how to adapt the techniques of automat-
ically prompt generation (Gao et al., 2021) and/or
differentiable prompting (Zhang et al., 2022) to our
discriminative framework. In addition, it is also valu-
able to explore how to combine the discriminative
PLMs and the generative PLMs, in order to achieve
better performance.
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