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Abstract
Multilingual neural machine translation aims to encapsulate multiple languages into a single model. However, it
requires an enormous dataset, leaving the low-resource language (LRL) underdeveloped. As LRLs may benefit from
shared knowledge of multilingual representation, we aspire to find effective ways to integrate unseen languages
in a pre-trained model. Nevertheless, the intricacy of shared representation among languages hinders its full
utilisation. To resolve this problem, we employed target language prediction and a central language-aware layer
to improve representation in integrating LRLs. Focusing on improving LRLs in the linguistically diverse country
of Indonesia, we evaluated five languages using a parallel corpus of 1,000 instances each, with experimental
results measured by BLEU showing zero-shot improvement of 7.4 from the baseline score of 7.1 to a score of
15.5 at best. Further analysis showed that the gains in performance are attributed more to the disentanglement
of multilingual representation in the encoder with the shift of the target language-specific representation in the decoder.

Keywords: Multilinguality, Machine Translation, Less-Resourced/Endangered Languages, Neural language
representation models

1. Introduction

Multilingual Neural Machine Translation (MNMT)
system offers efficiency from its capability to han-
dle multiple language pairs with a single neural
model (Johnson et al., 2017). MNMT also showed
a promising emergent ability to translate in zero-
shot directions between language pairs for which
no parallel data was provided during training (Had-
dow et al., 2022). However, prior works mainly
focused on training with enormous parallel data
to prevent the degeneration in learning linguistic
diversity from numerous languages (Dabre et al.,
2020), while it remains unclear how it works for low-
resource languages (LRLs). For example, more
than 700 languages are spoken in Indonesia, where
most are LRL or extreme-LRL, causing failure in
generalisation (Aji et al., 2022; Bang et al., 2023).

Currently, utilising the prior knowledge of a pre-
trained model is reported to benefit the LRLs (Had-
dow et al., 2022; Wang et al., 2021). Assuming
the availability of pre-trained multilingual language
models, we aspire to find effective methods to inte-
grate new unseen languages. However, leveraging
a pre-trained model is difficult due to the intricacy
of extracting linguistic knowledge from higher re-
sources. Even with observed languages, the zero-
shot translation direction has suffered from failures
in generating text with correct languages (Gu et al.,
2019). We hypothesised that one culprit is the en-
tanglement in linguistic representation that creates
a bias towards higher-resource languages.

To resolve this problem, we employed two meth-

ods that regularise multilingual representation. The
first method adds an auxiliary objective to predict
the target language (Yang et al., 2021), regular-
ising the representation in the decoder such that
the tokens are geared towards the target language.
The second method separates some layers in the
decoder into shared and language-specific (LS)
(Qu and Watanabe, 2022), effectively loosening un-
intended connections among language pairs and
preserving more consistent and universal linguistic
information, such as semantics.

We explored the effectiveness of the employed
MNMT methods for Indonesia’s LRLs, focusing on
five languages: Indonesian, Javanese, Sundanese,
Balinese, and Madurese, extracted from a subset of
NusaX dataset (Winata et al., 2023). The dataset is
an instance of the LRL dataset comprising a parallel
corpus of ten of Indonesia’s indigenous languages
consisting of 1,000 samples for each language, and
we used only half for the train set. Empirical results
showed BLEU improvement as effectively as 7.4 at
best, from the baseline score of 7.1 to 15.5 using
the LS-layer separation.

Detail analysis indicates that the representation
of the encoder gets disentangled by splitting the
LS representation in the decoder. The disentangle-
ment effectively mitigated the bias towards higher-
resource languages, as reflected by a finer Off Tar-
get rate for the Indonesian. We also observed the
superior transfer ability for languages unseen dur-
ing pre-training, justified by the improvements in
BLEU w.r.t. seen languages, and this revelation
offers a promising insight for translating LRLs, i.e.
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Indonesian languages.

2. Methodologies

2.1. Multilingual NMT
Given a pre-trained multilingual model on m lan-
guages, we trained a Multilingual Neural Machine
Translation (MNMT) model that supports n > m
languages L = {l1, l2, . . . , ln} by fine-tuning the
pre-trained model in which lm+1, . . . , ln are unseen
during the pre-training. The pre-training maximised
the probability of predicting the original input se-
quence with a noising function.

We employed a multilingual language model In-
doBART (Cahyawijaya et al., 2021) as our pre-
trained model, which was trained in the same man-
ner as done by mBART (Liu et al., 2020) on In-
donesian (ind) and two indigenous languages: Ja-
vanese (jav) and Sundanese (sun). When fine-
tuning IndoBART, we re-used the tokeniser, the
token embeddings, and the language tags (LT). For
new unseen languages, i.e. Balinese (ban) and
Madurese (mad), LTs were initialised from ind.

When tuning for the MNMT task, we followed
Johnson et al. (2017) to ignore source LT and
placed target LT (l) on the encoder side. Wu et al.
(2021) found that the aforementioned approach
captures more consistent semantic representations
and makes the decoder attend more to the target
language, which aligned with our preliminary exper-
iment1. Given an input token sequence x ∈ R|x|,
the model maximises the probability of outputting
token sequence y ∈ R|y| from target language
l ∈ L by minimising the cross-entropy loss over the
training data T .

LMNMT = −
∑

(x,y,l)∈T

log p(y|x, l) (1)

2.2. TLP: Target Language Prediction
During fine-tuning, we followed Yang et al. (2021)
to employ an extra objective of language identifi-
cation prediction. Specifically, given the decoder’s
last hidden state as an input, two Transformer en-
coder layers map the input into a representation
H =

[
h1,…, h|y|

]
, where H ∈ R|y|×d, which is then

used to derive an average-pooled representation
h̄ =

∑|y|
i=1 hi

|y| . A classifier uses the pooled repre-
sentation to predict the target language and obtains
a cross-entropy loss, LTLP.

LTLP = −
∑
T

log p(l|h̄) (2)

1Details can be found in Appendix F

Training is performed by minimising the weighted2

linear combination of LMNMT and LTLP.

L = (1− α) · LMNMT + α · LTLP (3)

2.3. CLL: Central-Language-aware Layer
As an alternative method for TLP, we followed Qu
and Watanabe (2022) that separates non-central
language-specific (LS) information on the decoder
side, by adding non-shared LS-layers (LSL) for
languages other than ind that share the struc-
ture of the Transformer Vaswani et al. (2017) de-
coder’s Feed-Forward Network (FFN). More con-
cretely, let us denote the last layer output of en-
coder as E ∈ R|x|×d, the kth layer input of decoder
as Hk ∈ R|y|×d, and the target language as l, with
MHA stands for MultiHeadAttention for a query and
key/value pair (Vaswani et al., 2017) and LN for
Layer Normalisation (Ba et al., 2016) then the Trans-
former decoder for CLL is defined as follows.

H′
k = LN(MHA(Hk,Hk) + Hk) (4)

H′′
k = LN(MHA(H′

k,E) + H′
k) (5)

Hk+1 = LN(CLL(H′′
k , l) + H′′

k) (6)

With wl as the weight coefficient for l, the definition
of CLL layer is as follows.

CLL(H′′, l) =

{
FFN(H′′) if l = ind,

FFN(H′′) + wlLSLl(H′′).

(7)

3. Experiments

3.1. Setup
We employed Hugging Face Transformers (Wolf
et al., 2020) as a framework for our experiments.
We evaluated our experiments on the NusaX
dataset (Winata et al., 2023). Following the default
split of 5:1:4 for the train:valid:test, respectively,
there are effectively only 500 samples per direc-
tion for training3. We chose only a subset of five
languages: three languages used in pre-training
of IndoBART, i.e. ind, jav, and sun, and two
other languages not included in IndoBART, i.e. ban
and mad, to represent the case of extending the
model to new languages. We obtained the dataset
through NusaCrowd (Cahyawijaya et al., 2023).

Zero-shot We introduce two settings for the zero-
shot scenario. The first one is centred setup (Fig-
ure 1a), a commonly used setting in MNMT task, in
which ind is chosen as central language and treat

2We set α = 0.1 by following Yang et al. (2021).
3The details regarding hyper-parameters and actual

dataset splits are in Appendix B & C, respectively.
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Figure 1: Zero-Shot setups.

Metric Model Centred Perimeter
sup. z.s. sup. z.s.

BLEU (↑)

Base 33.77 6.20 25.75 14.23
TLP 34.58 6.21 26.07 15.02
CLL 35.06 6.68 27.42 22.24
CLL+TLP 34.78 6.72 27.23 22.18

% Off
Target (↓)

Base 7.44 98.40 14.88 53.12
TLP 3.94 97.79 13.93 50.83
CLL 1.06 94.08 2.05 4.75
CLL+TLP 1.47 94.38 1.97 4.40

Table 1: Average result by dataset setups with the
number in bold denotes best performance. We
refer to supervised as sup. and zero-shot as z.s.

all pairs with this language as supervised direc-
tions and the remaining as zero-shot. The second
one is perimeter setup (Figure 1b), a non-centric
setup to analyse the effect of disentanglement, in
which each language is directly supervised in two
directions, leaving the other two as zero-shot.

Evaluation Metrics We employed two metrics to
measure performance. Firstly, BLEU score com-
puted using SacreBLEU (Post, 2018). Secondly,
Off Target computes the false negative ratio of the
expected target languages. To our knowledge, no
open off-the-shelf language detector supports all
five languages, particularly ban and mad. As such,
we trained a language detector module using Fast-
Text (Joulin et al., 2016) and described it further in
Appendix A.

3.2. Results
Generally, CLL and CLL+TLP models are better in
all directions measured by average BLEU in Table 1.
Both have the average BLEU scores improved, with
zero-shot directions having a better impact on the
Off Target ratio. To be precise, in zero-shot, CLL
improvement w.r.t. baseline is ∼.5 higher BLEU
score with ∼4% finer Off Target in centred, and
∼8.0 higher BLEU score with ∼48% finer Off Target
in perimeter counterpart. As for the TLP model,
it has a slight improvement overall. For centred,
we observed a better impact in the supervised direc-
tion with ∼.8 BLEU, and for perimeter, the better
impact is in zero-shot direction with ∼.8 BLEU.

The translation direction jav→∗ in perimeter
(Table 2) showed a complete combination of lan-
guage pairs, that is, one zero-shot and supervised

Metric Model Supervised Zero-shot
→ind →mad →sun →ban

BLEU (↑)

Base 45.97 17.13 25.03 7.10
TLP 45.35 17.32 25.97 7.17
CLL 47.42 19.73 25.76 15.53
CLL+TLP 47.42 19.69 26.65 14.78

% Off
Target (↓)

Base 11.75 19.50 4.25 96.75
TLP 13.00 19.00 2.00 96.25
CLL 2.50 0.75 2.50 11.25
CLL+TLP 2.25 1.50 1.75 11.50

Table 2: Result of jav→∗ in perimeter with the
number in bold denotes best performance. Unseen
languages during pre-training are in bold italics.

Model ind Predicted Language % Off BLEU→ ∗ ind jav sun ban mad Target

Base

jav 0 397 1 2 0 0.75 40.07
sun 2 0 398 0 0 0.50 37.45
ban 9 7 2 228 154 43.00 17.12
mad 11 2 7 34 346 13.50 23.77

CLL

jav 0 397 1 2 0 0.75 39.36
sun 2 1 397 0 0 0.75 37.83
ban 5 6 2 387 0 3.25 24.92
mad 3 3 2 0 392 2.00 26.20

Table 3: Target-language confusion matrix of su-
pervised directions ind→ ∗. Each has 400 cases.
Unseen languages in pre-training are in bold italics.

direction each from the seen and unseen target lan-
guages. The performance improvement w.r.t. base-
line reflects the CLL model capability of adapting to
unseen languages, i.e. in the supervised direction
of jav→mad, we observed a higher ∼2.6 BLEU
score with a finer Off Target ratio from 19.5% down
to 0.75%. Similarly, a considerable improvement in
the zero-shot direction of jav→ban is observed,
with a ∼7.4 higher BLEU score and finer Off Target
ratio from 96.75% down to 11.25%. In the TLP
model, both supervised directions have better Off
Target ratios but do not yield better BLEU scores,
suggesting no direct correlation between predicting
target language and better text generation.

The improvement of the CLL model is attributed
mainly to the translation directions involving unseen
languages as the target4, as partially reflected from
the Table 2. The result also shows the struggle
for the baseline and TLP model in the directions
involving unseen languages, as reflected by the
bigger gap w.r.t. seen languages. And thus, we
analysed and discussed the case further.

Sample cases are under Appendix E.

4. Analysis and Discussion

The improvement of the CLL model in terms of
overall BLEU score is closely related to the finer
Off Target ratio, which is the ability to generate
text in the correct language. In the supervised

4Complete result is appended in Appendix D
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Model jav→∗ Predicted Language % Off BLEU(sup.?) jav ind sun ban mad Target

Base

ind (3) 6 353 0 9 32 11.75 46.0
sun (7) 4 13 383 0 0 4.25 25.0
ban (7) 3 232 0 13 152 96.75 7.1
mad (3) 0 78 0 0 322 19.50 17.1

CLL

ind (3) 6 390 1 2 1 2.50 47.4
sun (7) 4 6 390 0 0 2.50 25.8
ban (7) 25 16 2 355 2 11.25 15.5
mad (3) 0 3 0 0 397 0.75 19.7

Table 4: Target-language confusion matrix of case
jav→ ∗ in perimeter. Unseen languages during
pre-training are in bold italics.

(a) Base

(b) CLL

Figure 2: Encoder representation for ind→∗.

case of ind→ ∗ (Table 3), for models trained in
centred setup, the baseline has high counts in
confusion (highlighted in red) between languages
unseen during pre-training, i.e. ban and mad. On
the other hand, the CLL model has zero Off Target
count between the two languages and led to a bet-
ter performance justified by the evaluation metrics
(highlighted in blue).

The phenomenon is much more evident in the
perimeter setup. In the case of jav→∗ as
shown in Table 4, which has the same direction
as Table 2, the baseline has the highest confusion
to ind (highlighted in red), which has the highest
magnitude of data during pre-training. As reflected
in the zero-shot to unseen language (ban), for 96%
of the time, it is off towards supervised direction 232
times and 152 times to ind and mad, respectively.
The CLL model improves the situation remarkably
(highlighted in blue) by refining the Off Target ratio
for more than 85%. However, the CLL’s Off Target
comes from untranslated text or translated back to
jav, a different tendency than the baseline.

Furthermore, we visualised the encoder repre-

Setup Model Perplexity (↓)
jav→ mad→

centred
Base 1.232 1.269
CLL 1.249 1.287

perimeter
Base 1.281 1.365
CLL 1.207 1.340

Table 5: Averaged perplexity for ∗→ind on spelling
style variations. Unseen languages in bold italics.

sentation on 2D space using t-SNE and bivariate
KDE (Figure 2) with the case from the same direc-
tion as Table 3: centred-setup, ind→ ∗. The
baseline model (Figure 2a) shows heavy entan-
glement from the three centroids: one each for
jav and sun, and a shared centroid for ban and
mad that is intertwining more towards jav. On the
contrary, the CLL model (Figure 2b) has only one
centroid invariant to the target language. This ob-
servation suggests the baseline has started trans-
lation to a specific target during encoding, while
the CLL has the encoder representation separated
from a target language-specific information, such
as syntax and morpheme. The perimeter setup
also indicates similar trends and defers the details
to Appendix G.

Analysis for each layer were also conducted by
incorporating SVCCA (Raghu et al., 2017), which
involves a Singular Vector Decomposition and is
followed by a Canonical Correlation Analysis. The
result supported our observation in the previous
paragraph, and defers the details to Appendix H.

Additionally, we investigated the impact of nat-
urally observed spelling style variations in digital
texts as most of Indonesia’s LRLs are colloquial,
used alongside ind, and no institution standard-
ises the spellings5. Table 5 shows the case of
∗→ind for two languages, jav and mad, repre-
senting seen and unseen language, respectively.
In the case of the seen language of jav, where sev-
eral spelling variations occurred in the pre-training
data, the CLL model trained in perimeter setup
has the lowest perplexity, suggesting a more con-
sistent representation. In the case of the unseen
language of mad, lower perplexity is observed for
models trained under centred setup, indicating
a bias towards ind that might be coming from the
spurious correlation.

5. Related Works

In the LRL context, Lee et al. (2022) pointed out
the inability of multilingual models to adapt to lan-
guages unseen during pre-training, i.e. mBART
and mT5. However, they did not consider separat-
ing the LS layers during tuning steps nor incorporat-

5see samples in Appendix I
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ing representation disentanglement methods. On
the other hand, works that put some consideration
on this did not consider the usage in LRL via trans-
fer learning, such as shown by Philip et al. (2020).
Complementing the prior works, we showed how
BART architecture with LS layers worked on LRL
even when applied only during the fine-tuning step,
effectively leveraging prior knowledge to adapt to
unseen languages.

6. Conclusion

Representation entanglement is constraining the
capabilities of the MNMT system. With the empiri-
cal results on Indonesia’s Austronesian LRLs, we
revealed how the disentanglement of multilingual
representation helped de-biasing from higher re-
sources and boosted the performance of the LRL
system even in zero-shot conditions and on new
languages unseen during pre-training. This reve-
lation suggests a promising direction for adopting
LRLs into the existing system.

7. Limitations

In this work, we did not consider the integration of
new characters and assumed the sufficiency of a
pre-trained model. We made the assumption be-
cause most of Indonesia’s LRLs are used alongside
the official Indonesian language and are transliter-
ated using 26 Latin characters from the Indonesian
alphabet. It is also worth noting that our empiri-
cal results are from the languages within the same
Malayo-Polynesian subgroup of the Austronesian
language family, and the extent to which this affects
is unclear yet.
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Appendices

A. Language Detector for Off Target
Evaluation

FastText library (Joulin et al., 2016) was employed
to train language detector module on the data-set
defined in section 3.1. This module has an objec-
tive to classify text into the five languages experi-
mented in this work. Accuracy performance of this
language detector module is as listed on table 6.

Data Split Sample Count Accuracy
train 2,500 100%
valid 500 98.8%
test 2,000 98.9%

Table 6: Language Detector Performance

The hyper-parameter settings are left to de-
fault unless specified: 'dim=12', 'lr=0.088',
'epoch=75', 'wordNgrams=1'.

B. Model Hyper-parameters

Hyper-parameters during training is as defined in
Table 7. The weight coefficient for TLP Loss, alpha,

Key centred perimeter
early-stop patience 12 evals 15 evals
evaluation per epoch 4 5
steps per epoch 200 250
max. epoch 20 epochs
batch-size 20 sentence-pairs
optimiser Adam
learning-rate 1× 10−5

weight decay 0.01

Table 7: Training-time hyper-parameters

is set at 0.1 following the original work by Yang et al.
(2021).

Additional hyper-parameters during test-time
are left default unless specified: 'maxlen=128',
'top_k=4', 'top_p=0.95'.

C. Dataset Split Details

NusaX dataset (Winata et al., 2023) is a parallel
corpus that consists of 1,000 sentences for each
language. There are 10 indigenous languages of
Austronesian family plus Indonesian (ind) and En-
glish. Default split ratio for train : valid : test of
5 : 1 : 4 was applied. Actual data-split used in
this experiment is listed in table 8. Corresponding
count during training-time in centred-setup and
perimeter-setup are listed in table 9 and table
10, respectively.

Data Split centred perimeter
sup. z.s. sup. z.s.

train 4,000 - 5,000 -
valid 800 - 1,000 -
test 3,200 4,800 4,000 4,000

Table 8: Dataset split

Direction jav ind sun ban mad
jav→∗ - 500 0 0 0
ind→∗ 500 - 500 500 500
sun→∗ 0 500 - 0 0
ban→∗ 0 500 0 - 0
mad→∗ 0 500 0 0 -

Table 9: Training dataset in centred-setup

Direction jav ind sun ban mad
jav→∗ - 500 0 0 500
ind→∗ 500 - 500 0 0
sun→∗ 0 500 - 500 0
ban→∗ 0 0 500 - 500
mad→∗ 500 0 0 500 -

Table 10: Training dataset in perimeter-setup
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D. Evaluation Result Details

Metric Model ind2sun ind2ban ind2mad ind2jav sun2ind ban2ind mad2ind jav2ind

BLEU (↑)

Base 37.45 17.12 23.77 40.07 41.82 35.39 29.61 44.92
TLP 37.65 21.76 25.48 40.56 41.63 34.83 29.71 45.00
CLL 37.83 24.92 26.20 39.36 41.82 35.24 29.81 45.34
CLL+TLP 37.60 24.03 25.41 39.98 41.74 35.12 29.37 44.97

% Off
Target (↓)

Base 0.50 43.00 13.50 0.75 1.00 0.25 0.25 0.25
TLP 0.75 22.25 6.25 0.75 1.00 0.25 0.00 0.25
CLL 0.75 3.25 2.00 0.75 1.25 0.25 0.00 0.25
CLL+TLP 0.50 4.00 2.50 1.75 1.25 1.25 0.00 0.50

Table 11: centred supervised direction.

Metric Model sun2ban sun2mad sun2jav ban2sun ban2mad ban2jav mad2sun mad2ban mad2jav jav2sun jav2ban jav2mad

BLEU (↑)

Base 7.61 4.18 6.91 7.35 4.38 6.10 6.12 6.23 5.09 8.30 7.69 4.49
TLP 7.54 4.16 6.92 7.28 4.30 6.33 6.12 6.08 5.14 8.46 7.84 4.41
CLL 7.86 5.13 7.63 7.61 4.81 7.38 6.26 6.27 5.68 8.52 8.23 4.75
CLL+TLP 8.02 5.19 7.92 7.56 4.74 7.46 6.23 6.11 5.96 8.48 8.17 4.80

% Off
Target (↓)

Base 100.00 100.00 96.75 97.75 99.75 96.25 95.75 100.00 97.50 97.25 100.00 99.75
TLP 100.00 99.75 95.75 97.25 99.50 95.75 92.50 99.75 96.75 96.75 100.00 99.75
CLL 98.75 92.25 91.25 96.25 92.75 88.75 92.50 98.25 90.00 96.25 98.00 94.00
CLL+TLP 97.50 93.00 90.75 95.75 92.75 92.00 94.25 98.00 88.00 96.25 99.25 95.00

Table 12: centred zero-shot direction.

Metric Model ind2sun ind2jav sun2ind sun2ban ban2sun ban2mad mad2ban mad2jav jav2ind jav2mad

BLEU (↑)

Base 34.64 38.13 36.58 11.24 23.34 16.53 12.40 21.54 45.97 17.13
TLP 34.83 38.71 36.51 11.81 23.64 17.28 12.90 22.32 45.35 17.32
CLL 34.15 36.78 43.93 16.55 23.35 16.66 14.03 21.62 47.42 19.73
CLL+TLP 34.71 36.98 44.09 16.23 23.11 15.81 12.91 21.38 47.42 19.69

% Off
Target (↓)

Base 0.50 2.50 27.25 64.00 1.00 5.25 16.00 1.00 11.75 19.50
TLP 0.50 1.50 26.25 57.75 1.25 5.00 14.00 1.00 13.00 19.00
CLL 0.50 1.75 3.00 7.00 1.25 0.75 1.50 1.50 2.50 0.75
CLL+TLP 0.75 1.75 2.75 6.50 1.00 0.50 1.75 1.00 2.25 1.50

Table 13: perimeter supervised direction.

Metric Model ind2ban ind2mad sun2mad sun2jav ban2ind ban2jav mad2ind mad2sun jav2sun jav2ban

BLEU (↑)

Base 11.33 12.60 4.89 21.56 15.57 15.43 10.48 18.30 25.03 7.10
TLP 11.03 13.09 5.25 24.24 16.24 17.13 11.28 18.78 25.97 7.17
CLL 18.72 19.97 15.77 26.24 33.00 21.07 27.71 18.57 25.76 15.53
CLL+TLP 17.58 19.71 16.10 26.33 32.99 21.23 27.51 18.94 26.65 14.78

% Off
Target (↓)

Base 86.50 55.50 89.00 15.50 69.50 33.25 80.75 0.25 4.25 96.75
TLP 80.75 51.50 88.50 10.00 69.25 31.25 78.75 0.00 2.00 96.25
CLL 8.75 6.50 3.50 2.25 3.50 3.75 5.00 0.50 2.50 11.25
CLL+TLP 7.75 5.75 2.75 2.75 3.25 4.00 4.25 0.25 1.75 11.50

Table 14: perimeter zero-shot direction.

In the centred-setup, TLP and CLL improved the supervised direction when translating to unseen
languages, i.e.: ind→{ban,mad}, resulting in BLEU scores closer to seen languages. In the zero-shot
direction, improvement of TLP and CLL is minuscule.

The effect of TLP and CLL could be observed clearer in the perimeter-setup. On the top of improving
the scores of unseen languages like the centred-setup, the performances followed the amount of data
fed into the model including during pre-training, i.e. central (ind) > seen (jav, sun) > unseen (ban, mad).
The pre-training dataset comprises 98.5% ind and 1.5% combination of jav and sun.
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E. Example Testcases

Reference (ind) mayoritas pengguna hak pilih di pemilihan gubernur telah menentukan pilihan.
Source (jav) mayoritas sing nganggo hak pilih ing pemilihan gubernur uwis nentukake pilian.

Gold (ban) mayoritas sane nganggen hak pilih ring pemilihan gubernur sampun nentuang pilihan.

centred
Base mayoritas tidak memiliki hak pilih di pemilihan gubernur sudah memilih pilian. (ind)
CLL mayoritas yang menggunakan hak pilih di pemilihan gubernur telah memilih pilian. (ind)

perimeter
Base mayoritas yang menggunakan hak pilih di pemilihan gubernur sudah menghasilkan pilian. (ind)
CLL mayoritas sane nganggo hak pilih ring pemilihan gubernur nenten nyajiang pilian. (ban)

Reference (ind) restonya bagus dan besar. waktu ke sini saat makan siang dan hari minggu ramai sekali pengunjung.
makanannya enak enak, gurame goreng dan sambalnya mantap.

Source (jav) restone apik lan gede. wektu marang rene pas mangan siang lan dina minggu rame tenan pengunjung.
panganane enak enak, gurame goreng lan sambele mantep.

Gold (ban) restone luung lan gede. dugase mai pas ngajeng tengai lan hari minggu rame sajan pengunjung.
ajengane jaan-jaan, gurame goreng lan sambalne mantap.

centred
Base restenya bagus dan gede. waktu ke sini pas makan siang dan hari minggu rame sekali pengunjung.

makanannya enak enak, gurame goreng dan sambal mantep. (ind)

CLL restinya mantap dan gede. waktu ke sini pas makan siang dan hari minggu rame sekali pengunjung.
makanannya enak enak, gurame goreng dan sambal mantep. (ind)

perimeter
Base restona bhegus ben bhegal. bekto ka diye pas ngakan siang ben malem are rame sarah pengunjung.

kakananna nyaman nyaman, gurame goreng ben sambele mantep. (mad)

CLL restone becik lan gede. waktu mai pas ngajeng tengai lan dina minggu rame sajan pengunjung.
ajengane jaen jaen, gurame goreng lan sambalne mantap. (ban)

Table 15: De-tokenised text of zero-shot jav→ban case with a lot of non-translate-able Indonesian
terminologies. CLL trained under perimeter showed unerring translation to the target language, while
others biased towards highest-resources ind, except for perimeter-setup base model in bottom-case
which generated text of mad.

F. Language Tag Matters: A Preliminary Experiment

Figure 3: Various Language-Tag (LT) configuration performances. lang_direction represents where
the target-LT is located, while source-LT is denoted by src_*. No source-LT is provided for src_none,
otherwise it is located in the encoder side.

A preliminary experiment to check the effectiveness of Language Tag configuration was conducted. We



4987

followed a portion of the experiments from Wu et al. (2021). Please refer to the original work for a more
thorough and clearer experimental details.

G. Encoder Representation Visualisation

G.1. perimeter-setup, ind→∗
A comparison to Figure 2 with direction ind→∗ but trained under perimeter setup, showing similar
phenomenon as explained in Section 4.

(a) Baseline (b) CLL

Figure 4: t-SNE visualisation of ind→∗ in perimeter.

G.2. perimeter-setup, jav→∗
Visualisation of translation direction from jav→∗, the same direction as Table 2 & 4, where exists one
direction from each combination of supervision type and seen-unseen languages during pre-training.

(a) Baseline (b) CLL

Figure 5: t-SNE visualisation of jav→∗ in perimeter.



4988

H. Per Layer Correlation

(a) Baseline

(b) CLL

Figure 6: Distribution plot of SVCCA for centred-setup.
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I. Text Variations Case

In jav, certain words have the same phoneme but are spelt with either ’b’ or ’p’, whereas in mad,
sometimes it is not compulsory to spell ’h’ and ’y’.

Direction Input Text (raw)
Perplexity

centred centred
Base CLL Base CLL

jav→ind

Restone apik lan gede. Wektu marang rene pas
mangan siang lan dina minggu rame tenan pengunjung.
Panganane enak enak, gurame goreng lan sambele mantep.

1.1807 1.2168 1.1807 1.1579

Restone apik lan gede. Wektu mrene pas
mangan awan lan dina minggu rame tenan pengunjung.
Panganane enak enak, gurame goreng tur sambele mantep.

1.2497 1.2601 1.3858 1.2044

Restone apik lan gede. Wektu marang rene pas
mangan siang lan dina minggu rame banget pengunjunge.
Panganane enak enak, gurame goreng tur sambele manteb.

1.1988 1.2476 1.2656 1.2132

Restone apik lan gede. Wektu mrene pas
mangan awan lan dina minggu rame banget pengunjunge.
Panganane enak enak, gurame goreng tur sambele manteb.

1.2677 1.2781 1.3314 1.2567

mad→ind

Restona bhegus ben raje. Bekto ka diye teppa’na
ngakan aben ben are minggu rammi sarah se deteng.
Kakananna man-nyaman, gurame ghuring ben sambhelle mantap.

1.2608 1.2641 1.3426 1.2953

Restona bhegus ben raje. Bekto ka diye pas
ngakan aben ben are minggu cek rammena se deteng.
Kakananna man-nyaman, gurame ghuring ben sambel la nyaman.

1.2707 1.2636 1.3704 1.3269

Restona begus ben raje. Bekto ka die teppa’na
ngakan aben ben are minggu rammi sarah se deteng.
Kakananna man nyaman, gurame guring ben sambelle mantap.

1.2777 1.3298 1.3737 1.3171

Restona begus ben raje. Bekto ka die pas
ngakan aben ben are minggu cek rammena se deteng.
Kakananna man nyaman, gurame guring ben sambel la nyaman.

1.2792 1.3285 1.4050 1.4006

Table 16: Example Cases of Text Variations.
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