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Abstract
Code summarization provides a natural language description for a given piece of code. In this work, we focus on
scripting code—programming languages that interact with specific devices through commands. The low-resource
nature of scripting languages makes traditional code summarization methods challenging to apply. To address
this, we introduce a novel framework: distantly supervised contrastive learning for low-resource scripting language
summarization. This framework leverages limited atomic commands and category constraints to enhance code
representations. Extensive experiments demonstrate our method’s superiority over competitive baselines.
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1. Introduction

Source code summarization, which generates a
readable summary describing a program’s func-
tionality, has garnered significant attention in re-
cent years (Zhu and Pan, 2019; Shi et al., 2021).
This can help software developers reduce the time
needed for software development and maintenance
(Xia et al., 2017; Chen et al., 2022). In this study, we
mainly focus on scripting languages, which provide
a high level of abstraction of system functionali-
ties and implement a direct, sequential command
line execution. Common scripting languages in-
clude shell, bash, configuration languages, and so
on. Figure 1 is an example of a network configura-
tion language, primarily used for configuring and
managing network devices such as routers and
switches.

Most previous code summarization efforts have
primarily focused on traditional programming lan-
guages such as Python or Java (McBurney and
McMillan, 2015; Wei et al., 2019). Scripting lan-
guages, similar to them, are used to define the
flow of computer operations and adhere to a set
of standard syntactical norms. However, scripting
languages still have their distinct features. Firstly, it
has command templates. A command template
is essentially a predefined sequence or pattern
of commands that serve a particular purpose or
perform a specific function. Command templates
encapsulate complex tasks into simpler, more man-
ageable, and reusable components. For example,
’ls [-R|-c|-d|-a] [file|dir]’ is a template in shell, which
can parse commands like ’ls -d’, ’ls -c -a’, ’ls dir’,
etc., and they serve the function of listing files in a
directory. These parsed commands can naturally
be categorized into one group, which we refer to
as the command category (category constraints)
in this paper. The second characteristic of script-

Figure 1: instances of config code and its sum-
maries

ing languages is that the command set is finite.
For any given system or device, there is a limited
set of command templates. By fully enumerating
these templates, we can parse and generate every
valid command for that system. In this paper, we
refer to these commands as ’atomic commands’.
(To keep the command count manageable, we re-
place actual parameters with their respective pa-
rameter names.) This is a powerful concept that
allows us to make precise and comprehensive anal-
ysis of the command space. Furthermore, scripting
languages tend to be low-resource, since it acts
directly on the device, and the set of commands
executed by devices varies from one manufacturer
to another, so we can’t collect a large-scale parallel
corpus for each device to train models on.

Most traditional code summarization techniques,
such as Ahmad et al. (2020), Feng et al. (2020), rely
heavily on extensive annotated corpora for training.
However, the lack of training data makes it hard to
apply traditional summarization schemes. To apply
code summarization to scripting languages, it’s cru-
cial to fully leverage the limited atomic commands
and category constraints available. In traditional
programming languages, there are no command
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Figure 2: A t-SNE Visualization of command embeddings from 10 random categories. The same color
means from the same category. Using contrastive learning alone cannot make representations of the
same category spatially adjacent, as shown in Figure(a).

templates. Every symbol, variable, and operator
must be precisely placed in the correct position
(Xie et al., 2021). As a result, we need to model
them at the token level, typically represented by
an AST (Hu et al., 2018). For scripting languages,
the presence of atomic commands allows us to
model them at the sentence level. Furthermore,
the limited number of commands in scripting lan-
guages facilitates the learning of individual com-
mand representations through pre-training. This
alleviates challenges posed by the lack of a paral-
lel corpus, which might otherwise hinder effective
source code representation. Additionally, the cat-
egories of scripting languages offer an alternative
perspective on commands, i.e., abstracting a sin-
gle command into the category it belongs to. This
reduces the variance between data and can be
viewed as a means of data augmentation when the
data set is small.

In order to exploit the aforementioned two proper-
ties, this paper proposes a distantly supervised con-
trastive learning approach. Contrastive learning is
to map the representations to the unit hypersphere
(Wang and Isola, 2020), which can be conveniently
trained in sentence units (Gao et al., 2021) and
does not require the same attention to token level
details as BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019b). Furthermore, the differences
emphasized by contrastive learning are more easily
captured in a limited command space. To harness
the benefits of category constraints, we employ su-
pervised contrastive learning (Khosla et al., 2020).
This approach aims to bring command represen-
tations from the same category closer together on
the unit hypersphere. However, this method can
diminish feature quality. Specifically, supervised
contrastive learning struggles to differentiate be-
tween various positive examples, as evidenced by
the vector overlap in Figure 2(b). To prevent exces-
sive information loss, we adopted a balanced strat-
egy by implementing the Maximizes the Minimum
Angle (MMA) technique (Wang et al., 2020). This
approach ensures that command representations
are situated adjacently in the hypersphere space,

yet distinct enough to be discernible, as illustrated
in Figure 2(c). The term ’distantly’ in our method
signifies that we consider the category as a form
of ’weak label’ for the command. This perspective
enables us to view scripting language either as an
aggregation of specific commands or a collective
of categories.

To assess our method’s effectiveness, we bench-
marked it against four baseline models using three
evaluation metrics. The results showed our model’s
superior performance. The main contributions of
our research are as follows:

• We introduce a distantly supervised con-
trastive learning approach, enabling effective
summarization of scripting language in low-
resource scenarios.

• Our method distinguishes inter-class features
while ensuring clear differentiation within intra-
class features.

• Through comprehensive experiments, we
show that our approach consistently outper-
forms traditional baseline models.

2. Preliminaries

2.1. Scripting Language Summarization
Scripting languages are typically designed to sim-
plify routine programming tasks, especially for au-
tomation or integrating various software compo-
nents. While languages like Python and JavaScript
were initially used to some extent as scripting lan-
guages, they have evolved into more complex,
full-fledged programming languages. Freed from
the constraints of command templates, they are
now more suitable for large-scale application de-
velopment, and thus, fall outside the scope of
this study. In contrast, network configuration lan-
guages (or config code) are a subset of scripting
languages, which are notably characterized by be-
ing constrained by command templates. These
config code are specifically crafted for configuring
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Figure 3: Command template

and managing network devices. With the rapid ex-
pansion of network scales, providing accurate and
efficient summarization for network configuration
languages has become an urgent task, which is the
primary focus of this paper. Figure 3.a illustrates
the parsing structure of a command template in
network configuration language (for specific syn-
tax, please refer to Appendix). A complete code
sequence is composed of sub-commands from var-
ious templates.

2.2. Problem Statement
Traditional methods for code summarization rely
on end-to-end training with vast parallel corpora.
However, the low-resource nature of scripting lan-
guages hampers the efficacy of such end-to-end
approaches in learning adequate source code rep-
resentations. To address this, we exploit the atomic
command and category constraints. Our approach
begins by pre-training to learn individual command
representations. Subsequently, we fine-tune us-
ing a smaller parallel corpus. Experimental results
attest to the superiority of our method.

3. Related Work

3.1. Code Summarization
Many code summarization methods employ the
encoder-decoder architecture, as evidenced by
Liang and Zhu (2018) and Lin et al. (2018). Taking a
novel approach, Hu et al. (2018) was the first to rep-
resent code as an Abstract Syntax Tree (AST) and
utilized random path selections from the tree as net-
work input. Building upon this, Ahmad et al. (2020)
leveraged the Transformer architecture, address-
ing issues related to long-range dependencies and
the omission of code structure information. Wei
et al. (2019) posited code summarization and code
generation as dual tasks, arguing that model param-
eters for generation and summarization ought to be

akin since both encapsulate the mapping relation-
ship between distinct domains. Lastly, CodeBERT
(Feng et al., 2020) harnesses massively parallel
datasets for training and functions as a feature ex-
tractor in downstream tasks.

3.2. Contrastive Learning on the Unit
Hypersphere

The unit hypersphere feature space offers favor-
able properties. It’s been observed that contrastive
learning produces commendable results when fea-
tures are projected onto this space (Wang et al.,
2017). Diving into the underlying rationale, Bach-
man et al. (2019) presents an explanation rooted
in the InfoMax principle (Linsker, 1988). They em-
phasize the significance of maximizing mutual in-
formation from varied perspectives within the hy-
persphere space. Intuitively, achieving maximum
information entropy happens when features are
evenly spread across the hypersphere, resulting
in more representative learned features. Support-
ing this notion, Bojanowski and Joulin (2017) man-
aged to derive quality representations by directly
mapping uniformly sampled points onto the unit
hypersphere.

The challenge lies in ensuring vectors are uni-
formly distributed on the hypersphere. While this
is an ideal scenario, in practice, efforts often re-
volve around decreasing vector correlations. For
instance, Liu et al. (2018) achieved this by minimiz-
ing potential energy, while Wang et al. (2020) opted
to maximize minimum angles, thereby cutting down
on neural weight connections.

Most preceding works have aimed to evenly dis-
tribute inter-class vectors on the hypersphere but
tend to overlook the distinction of intra-class vectors.
Contrarily, our proposed method not only differenti-
ates between inter-class features but also enables a
pronounced distinction of intra-class features, prov-
ing advantageous for subsequent generation tasks.

4. Methodology

4.1. Model Architecture
In the pre-training stage, our model is composed
of two main components: an encoder network, de-
noted as Enc(·), and a projection network, Proj(·),
as described in Chen et al. (2020). The encoder
utilizes the BERT structure in conjunction with aver-
age pooling to map the input into a representation
vector. The projection network then processes this
encoder output for further dimensionality reduc-
tion. Specifically, we employ a multilayer percep-
tron with a 768-dimensional input that produces
a 128-dimensional output. It’s crucial to note that
this projection is active only during training and is
omitted in the inference phase.
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Figure 4: Pre-training framework, we pre-train an
encoder by minimizing the distance between pro-
jected codes from the same category and maximiz-
ing those from different categories.

For differentiation of inter-category vectors, we
integrate supervised contrastive learning (Khosla
et al., 2020). In contrast, the MMA method (Wang
et al., 2020) is used for intra-category vector differ-
entiation. Both techniques are applied to our model
based on specific learning stages. For the down-
stream code summarization task, we enhance each
command with positional encoding, which reflects
their execution sequence in the source code.

4.2. Supervised Contrastive Loss
Consider a random batch of data. Let’s denote its
index by i ∈ I ≡ {1 . . . P . . . N}. In this notation,
i ∈ {1 . . . P} signifies the index of all samples that
belong to the same category. The supervised loss
function can be represented as:

Lc =
−1

|P (i)|
∑

p∈P (i)

log
exp (sim(zi,zp)/τ)∑

a∈A(i) exp (sim(zi,za)/τ)

Here, A(i) ≡ I\{i}, index i represents the anchor,
P (i) ≡ {p ∈ A(i) : yp = yi} represents the positive
cases, the remaining N −P samples represent the
negative cases. |P (i)| is the number of all positive
samples in a batch, τ is a scalar temperature pa-
rameter. Where zl = Proj(Enc(xl)), sim is the dot
product operation of two normalized vectors, i.e.
sim (zi, zj) = zTi zj/ ∥zi∥2 ∥zj∥2.

4.3. Maximizes the Minimum Angle Loss
In our effort to enhance the distinction of intra-class
features, we draw inspiration from the "Thomson
problem" (Thomson, 1904). This problem seeks
to determine the optimal arrangement of n points
on a unit sphere such that the minimum distance
between any two points is maximized. There ex-
ist both numerical and analytical solutions to this
problem. However, the analytical solution is only
applicable for specific combinations of n (number of
vectors) and d (vector dimension). While the analyt-
ical solution may not be suitable for our context, the
advancements in optimizers and automatic deriva-
tive libraries (Paszke et al., 2017) make it feasible to

derive approximate solutions through numerical ap-
proaches. Thus, we primarily employ a numerical
solution, which can be expressed as:

LMMA = − 1

n

n∑
i=1

min
j,j ̸=i

θij , θ = arccos
(
ẐẐ

T
)

In this formulation, Ẑ ∈ Rn×d denotes a set of
vectors distributed on the unit hypersphere. Mean-
while, θ ∈ Rn×n represents the pairwise angle
matrix. It’s noteworthy that optimizing solely based
on the global minimum angle in each batch iter-
ation can be inefficient. Therefore, we consider
the average of the minimal angle for each vector.
Here, n indicates the total count of positive sam-
ples in a batch.The numerical approach, focusing
exclusively on the optimization of within-class fea-
tures, proves more effective and robust, especially
when contrasted with loss functions of the form cos
(Wang et al., 2020), which it surpasses in terms
of faster convergence, particularly evident when
vectors are in close proximity.

4.4. Pre-training Overall Objective
A basic approach to incorporate both loss functions
is illustrated in equation:

L
′
= LC + λ · LMMA

However, in practical settings, LC and LMMA, hav-
ing distinct optimization objectives, often counter-
balance each other. As a result, achieving simul-
taneous optimization for both is challenging. We
anticipate that these functions might operate more
efficiently if allowed to act independently during dif-
ferent training periods. While manually balancing
the two can be cumbersome, an automated learn-
ing approach, inspired by dynamic weight average
(Liu et al., 2019a), becomes more appealing. In-
stead of resorting to time-intensive access to the
network’s internal gradients, we assess different
training phases by tracking the rate of loss changes.
Here, λ is designated for LMMA, and 1−λ is for Lc.
Our primary optimization goal is then described by
equation:

L = (1− λt) · Lc + λt · β · LMMA

λt = tanh

(
Lc(t− 1)

Lc(t− 2)

)
In this context, λt gauges the decreasing rate of Lc

and lies within the range of (0,1). It steers the sig-
nificance between the two optimization objectives.
A value of λt close to 1 (which tends to stabilize
around 0.75 when Lc levels off) implies Lc near-
ing convergence, prioritizing optimization towards
LMMA. Moreover, β remains the sole hyperparam-
eter and dictates the dominance between the two,
independent of the training phase.
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In our methodology, when t is 1 or 2, we initialize
λt to 0. The loss values for Lc and LMMA are
calculated as an average over multiple iterations
within each epoch, mitigating potential variances
from stochastic data choices and gradient descent
nuances.

4.5. Transfer Learning
Our model is built upon the standard encode-
decode architecture. In the encoding phase, after
the pre-training, we transfer the encoder with its re-
tained pre-trained weights to the downstream task.
This encoder processes a configuration language
code, consisting of n commands s1, s2, . . . , sn, and
outputs an n × d feature matrix. Given the paral-
lel processing of input features and the absence
of inherent positional information, we incorporate
Sinusoidal encoding (Vaswani et al., 2017) to cap-
ture each command’s sequential position within the
code fragment.{

pk,2i = sin
(
k/100002i/d

)
pk,2i+1 = cos

(
k/100002i/d

)
Specifically, pk,2i,pk,2i+1 denote the 2i-th and 2i+1-
th components of the k-th command’s encoding
vector. After calculating this positional encoding, it
merges with the original feature matrix to yield the
final output features. For the decoding phase in
the summarization task, we employ a transformer
decoder, which is trained from scratch, to bridge the
gap between the target space and the encoder’s
output. The model is then trained on a parallel
dataset using a cross-entropy loss function.

5. Experiment

5.1. Datasets
In the realm of configuration languages, Huawei
and Cisco stand out as the largest network equip-
ment providers. We sourced configuration com-
mands for network equipment by crawling openly
accessible data from the companies’ websites1.
The dataset encompasses both command tem-
plates and pairs of commands with their natu-
ral language descriptions, denoted as <code, nl>
pairs. Specifically, the Cisco dataset encompasses
325 templates, totaling around 12,000 commands,
which encapsulates all necessary commands for
device configuration. Within this dataset, there
are 21,462 <code, nl> pairs. On the other hand,
the Huawei dataset boasts 364 templates, approxi-
mately 14,000 commands, and 26,400 <code, nl>

1https://www.cisco.com/c/en/
us/td/docs/switches/datacenter/
nexus5500/sw/command/reference/unicast/
n5500-ucast-cr/n5500-bgp_cmds_n.html

pairs. We’ve partitioned the final dataset into 80%
for training, 10% for validation, and 10% for testing.

Data Parsing On public websites, we can access
templates for each configuration command, such
as "router bgp <as-number>", the segment within
angle brackets represents the command parameter.
In our context, the parameter typically identifies the
network device and has minimal impact on code
summarization performance. To mitigate the influ-
ence of these parameters, we identify their posi-
tions within the command line and substitute them
with the corresponding parameter names. Thus,
"route bgp 100" becomes "route bgp as-number".
This substitution occurs during both the pre-training
and fine-tuning stages to maintain consistency and
enhance the generalizability of the pre-trained fea-
ture representation.

5.2. Baseline Methods

We compare our approach with four baseline mod-
els: the Pointer Network, highlights the utilization of
a shared vocabulary between the source and target
domains. The remaining models are focused on
traditional methodologies within the spheres of text
and code summarization.

Pointer Network (Vinyals et al., 2015): A pointer
structure is added to the seq2seq model to de-
termine whether the current prediction is copied
straight from the source text or generated from
the vocabulary, addressing summary inaccuracies.
This seq2seq model is a Transformer-based archi-
tecture, pre-trained on our <code, nl> corpus.

BART (Lewis et al., 2019): Using the standard
transformer structure, it is possible to fine-tune the
text summary task directly on the <code,nl> corpus.
In our work, we treat the source code as plain text,
using separators to denote distinct command lines.

Dual Model (Wei et al., 2019): Treating code sum-
marizing and code generation as a dual task, with
the connection between the two tasks as a training
constraint, it increases the performance of both the
code summary task and the generation task.

CodeBERT (Feng et al., 2020): A model capa-
ble of managing bimodal data. In the pre-training
phase, replacement token detection (RTD) and
masked language modeling (MLM) techniques are
applied to unimodal command input. During the
fine-tuning phase, the bimodal paired data is uti-
lized. The downstream decoder is consistent with
our model and is trained on the <code,nl> corpus.

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-bgp_cmds_n.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-bgp_cmds_n.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-bgp_cmds_n.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5500/sw/command/reference/unicast/n5500-ucast-cr/n5500-bgp_cmds_n.html
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Approach Cisco Huawei
B-1 B-2 B-3 B-4 METEOR ROUGE-L B-1 B-2 B-3 B-4 METEOR ROUGE-L

Pointer Network 31.71 18.62 10.34 7.12 15.64 45.28 32.85 20.11 11.62 8.24 14.37 47.39
BART 35.76 21.32 13.94 11.62 18.26 47.19 37.74 22.96 15.14 11.93 20.61 48.27
Dual Model 42.36 27.41 21.54 15.33 21.42 51.27 41.26 28.91 22.63 16.27 22.51 50.65
CodeBERT 51.78 30.61 23.87 17.21 24.82 52.63 52.61 32.17 24.66 18.92 25.74 53.82
Our Model 58.23 36.79 27.14 20.32 26.72 54.93 57.21 37.83 29.67 22.34 27.98 55.71

Table 1: BLEU 1-4, METEOR and ROUGE-L comparision of our model with other counterparts. The best
results are in bold font.

Approach Cisco Huawei
B-1 B-2 B-3 B-4 METEOR ROUGE-L B-1 B-2 B-3 B-4 METEOR ROUGE-L

w/o Category Constraint 49.81 31.27 23.64 16.31 24.23 51.07 50.41 32.47 23.82 17.53 24.96 50.44
w/o MMA 50.67 29.87 22.93 17.61 24.97 52.76 51.84 30.65 22.04 18.15 25.62 53.81
w/o Relative Positon 56.41 35.92 26.87 19.31 26.31 54.37 57.52 35.43 27.16 21.40 27.55 54.83
Our Model 58.23 36.79 27.14 20.32 26.72 54.93 57.21 37.83 29.67 22.34 27.98 55.71

Table 2: The effects of different components.

5.3. Evaluation Metrics
Accuracy metrics We evaluate the config code
summarization performance using the following
metrics, BLEU-1, BLEU-2, BLEU-3, BLEU-4 (Pap-
ineni et al., 2002), ROUGE-L2 (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005). The basic idea
of BLEU and ROUGE is calculate the proportion
of repeated words between the reference and gen-
erated sentences, where the BLEU-1 measures
word-level accuracy and the higher-order BLEU
measures sentence fluency. METEOR3 introduced
synonym matching using an additional knowledge
source (such as WordNet).

Uniformity metric To further validate our ap-
proach, we employed the quantifiable metrics from
Wang and Isola (2020) to assess the uniformity of
vector distribution in space. As illustrated below,
this metric adheres to the Gaussian potential ker-
nel, yielding values between 0 and 1 that diminish
with increasing distance.

G(u, v) ≜ e∥u−v∥2
2 = e2(u

⊤v−1)

We use the expectation E [Gt(u, v)] to examine the
overall data distribution characteristics. It’s impor-
tant to note that this metric is minimized only when
the distribution is uniform. When using the Eulerian
distance, it can achieve its lowest value for any dis-
tribution with a zero mean. For a comprehensive
discussion, please see Wang and Isola (2020) and
Borodachov et al. (2019).

2https://github.com/google-research/
google-research/tree/master/rouge

3https://www.cs.cmu.edu/~alavie/
METEOR/README.html

5.4. Experimental Settings
We utilize an embedding and hidden vector dimen-
sion of 512, with both the Encoder and Decoder
consisting of 6 layers. Multi-head attention is em-
ployed with 8 heads. For training, we use 5 positive
samples per batch and a batch size of 2048. Our
temperature coefficient is set to 0.1, which deter-
mines how much attention the contrast loss pays to
difficult negative samples, and a hyperparameter
β set at 0.3. During inference, a beam size of 4
is applied. The Adam optimizer (Kingma and Ba,
2014) is employed throughout the training. Detailed
hyperparameter configurations are elaborated in
Section 8.

6. Results and Discussion

6.1. Code Summarization Results
Table 1 presents the performance of our proposed
method alongside baseline methodologies. Text
summarization models like Pointer Network and
BART offer notable improvements over preceding
methods, they still lag our technique by a 7.7% mar-
gin in ROUGE-L. This gap underscores that despite
some similarities between config code and natural
language, treating it purely as a text summarization
task may not be adequate. Both CodeBERT and
our method, benefitting from training on a bimodal
corpus (command templates and <code,nl> paired
dataset), excel in capturing inter-code semantic nu-
ances. However, our model’s capacity to integrate
both high-level category and intricate low-level de-
tails accounts for its superior performance across
metrics.

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://www.cs.cmu.edu/~alavie/METEOR/README.html
https://www.cs.cmu.edu/~alavie/METEOR/README.html
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Supervised
Contrastive

Contrastive
Learning

Our
Model

Uniformity
Score 0.64 0.27 0.31

Table 3: Measurement of distribution uniformity
among different models

6.2. Ablation Study

We analyzed the impact of different model compo-
nents as outlined in Table 2. Our observations sug-
gest that while most components play a pivotal role
in model performance, the omission of some might
not significantly degrade the performance metrics.
To elaborate: (1) Category Constraints: When re-
moved, the model essentially reverts to a basic con-
trastive learning framework. In this context, each
dataset sample and its augmentation (achieved
via methods such as dropout (Gao et al., 2021),
commonly used in contrastive learning) serve as
mutual positive examples. This change results in
a decline of the BLEU-1 score to 49.81 and the
METEOR to 24.23, underscoring the importance
of the category constraints in our design. (2) MMA
Component: Without MMA, our model mirrors su-
pervised contrastive learning. Consequently, repre-
sentations of samples from the same category lose
their distinctiveness. This is evident from the ME-
TEOR score, which drops to 24.97. This highlights
the significance of discriminative representation in
enhancing model performance. (3) Position Em-
bedding: Its omission led to a slight reduction in
the METEOR score to 26.31. The impact on perfor-
mance is relatively minimal. A plausible rationale is
that while certain functions demand specific com-
mands, altering their sequence might make them
unable to work on actual devices, but their intended
functionality remains unchanged.

In Table 3, we present the uniformity metric re-
sults for the three discussed models. This metric
evaluates how uniformly the learned feature vec-
tors are distributed over the unit hypersphere. A
smaller value denotes a more uniform distribution.
From the results, our model ranks second, follow-
ing contrastive learning, showcasing our method
as an intermediate solution between the two.

6.3. Intra-Class Distance vs. Inter-Class
Distance

To validate our method further, we examined the
intra-class and inter-class distances of command
representations in the unit hypersphere across dif-
ferent training phases, as depicted in Figure 5. For
representations of the same category, one was
randomly chosen as the anchor. The intra-class
distance represents the average distance between

Figure 5: intra-class(black) and inter-class(red) dis-
tances throughout training periods

instances of the same category and the anchor.
In contrast, the inter-class distance measures the
distance between the anchor and its closest neigh-
boring class.

To evaluate the effectiveness of our proposed
loss form L, we compared it against the model’s
performance using L′ as the loss. Tests were con-
ducted with β values of 1, 0.5, and 0 for L′ . A
beta value of 0 implies the model performs only
classification. For L, the optimal beta value was
chosen based on performance. Key observations:
(1) Using L as the loss, the inter-class distance
initially increases substantially. This suggests that
the model initially clusters representations of the
same class in the neighboring feature space, and
later distinguishes at the instance level, causing the
inter-class distance to reduce and the intra-class
distance to increase. (2) For L′ , when β is 0, the
inter-class distance diminishes while the intra-class
distance grows, indicating the model’s sole focus
on classification. With β values of 1 or 0.5, the
model struggles to converge.

7. Human Evaluation

We perform a human evaluation to ensure that our
increase in scores is also followed by an increase
in human readability and quality. In particular, we
want to know whether the category constraints in
conjunction with the MMA loss function did improve
readability compared to other baselines.

Model Readability Relevance
Pointer Network 4.81 4.32
BART 7.32 4.76
Dual Model 6.32 6.54
CodeBERT 6.48 7.14
Our Model 7.21 7.43

Table 4: Manual evaluation results



5013

Evaluation Setup To perform human evaluation,
we randomly selected 100 test examples from the
<code,nl> dataset. For each example, we showed
the evaluator the source code, the ground truth
summary as well as summaries generated by differ-
ent models. The human evaluator does not know
which summary is the ground truth and which model
the summary is generated from. We employed two
metrics, scored from 1 to 10, assessing relevance
(summary’s alignment with source code content)
and readability. Five evaluators from network op-
erations and maintenance scored each summary,
with final results being the average across evalu-
ators and examples. The evaluation criteria focus
on several key dimensions: the precision of the
summary content, the accurate use of technical
vocabulary, the clear expression of configuration
instructions, and the coherence and readability of
the entire summary structure. This assessment de-
sign aims to ensure that the generated summaries
are rigorous on a technical level and can be easily
understood and adopted by network engineers and
developers.

Results While CodeBERT excels in METEOR
and ROUGE-L metrics, its readability lags. A BART-
like model yields fluent sentences but lacks task-
specific relevance. Conversely, our model scores
high on both metrics, underscoring the efficacy of
our approach for code summarization.

8. Hyper-Parameter Analysis

Figure 6: METEOR score under different tempera-
ture coefficients and β

8.1. Effect of Temperature in Loss
Function

The temperature coefficient is instrumental in reg-
ulating attention towards challenging samples.
Specifically, a smaller coefficient amplifies the em-
phasis on distinguishing such samples from their
most similar counterparts. In our exploration of su-
pervised contrastive learning, we found that this
temperature, when optimally set in the loss func-
tion, can enhance model performance by nearly
3%. Experimental results indicated that a temper-
ature coefficient of 0.1 yielded the best METEOR

Positive 1 3 5 7 9
METEOR 25.2 25.6 26.7 26.4 26.2

Table 5: METEOR score under different number of
positive samples

score. Detailed results across varying temperature
values are illustrated in Figure 6(a).

8.2. Effect of Hyperparameter β

The hyperparameter β balances the two loss func-
tions. As illustrated in Figure 6(b), an optimal out-
come is achieved with a value of 0.3.

8.3. Effect of Number of Positives

We conducted ablation experiments to assess the
influence of the number of positive samples on our
results. As presented in Table 5, optimal results
were achieved with five positive samples. It’s note-
worthy that each batch of positive samples consists
of commands from the same category. A single pos-
itive sample equates to self-supervised contrastive
learning.

9. Conclusion

In this study, we introduce a distantly supervised
contrastive learning approach designed for script-
ing language summarization. This methodology is
meticulously crafted, taking into account not only
the categorical constraints that govern scripting lan-
guages but also the characteristic limited atomic
commands that define this style of coding. Our ap-
proach is particularly tailored to harness the power
of minimal parallel data to deliver summarization re-
sults that stand out in terms of quality and precision.
Through a series of comprehensive experiments,
we rigorously test and validate the efficacy of our
method, demonstrating its significant advantages
and the potential it holds for advancing the field of
code summarization.
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12. Appendices

12.1. Case Study

To demonstrate the superiority of our method, sev-
eral examples on the test set, which are generated
by our method and the existing competitive base-
lines, are given in Table 6. Specifically, in the first
example, both Pointer Network and CodeBERT are
missing the scenario information “BGP”, and Code-
BERT summarizes “selection” as “add ”, which is
an inaccurate representation of the information. In
the second example, Pointer Network simply picks
words from the source code and the sentence does
not make sense, and CodeBERT omits the function
description of “receive capability”.

# router bgp [as-number]
# address-family vpnv4 unicast
# additional-paths selection
-route-policy [route-policy-name]
Gold: enable selection of additional paths under BGP
routing process.
Pointer Network: enable additional paths selection.
CodeBERT: it show how to add additional paths.
Our method: it enable selection of additional paths
when config BGP.
# router bgp [as-number]
# neighbor [ip-address]
# address-family ipv4 unicast
# aigp
Gold: enable aigp send and receive capability under
neighbor address family ipv4 unicast.
Pointer Network: enable address family ipv4 unicast
under neighbor.
CodeBERT: enable aigp under ipv4 unicast.
Our method: enable aigp and receive capability
under ipv4 .
# dhcp ipv4
# profile client proxy
# helper-address vrf vrf1 foo [ip-address]
Gold: enter the DHCP ipv4 profile proxy submode
and forward
UDP broadcastrs
Pointer Network: enter DHCP ipv4 profile client proxy
CodeBERT: enter DHCP profile proxy submode and
forward broadcastrs
Our method: enter DHCP ipv4 proxy submode
and forwarf UDP broadcastrs

Table 6: Summarizations generate by our method,
Pointer Network and CodeBERT from the Cisco
test dataset.

Length 5 10 15 20 25 ≥ 25

% 8.4 29.3 25.8 20.3 11.5 4.7

Table 7: Code length statistics

12.2. Statistics Analysis

Code length statistics Table 7 illustrates the dis-
tribution of code lengths, indicating the proportion
of codes with varying numbers of commands. For
instance, ’5’ represents code lengths ranging from
0-5 commands, and so forth. The majority of the
code lengths fall within the 5-25 command range.

Category distribution statistics As shown in
the Figure 7(a), the horizontal axis represents the
length of the source code and the vertical axis rep-
resents the number of identical categories. For
each length, we randomly selected the same num-
ber of codes for counting. When the code length
is 0-5, a segment of code will contain an average
of 2 or 3 command categories that have appeared

https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.18653/v1/2020.acl-main.451
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Figure 7: Category distribution and model perfor-
mance under different lengths

Figure 8: Code snippet for syntax parser

in different segments of the same length. Further-
more, the number of identical categories increases
as the length of the code increases, and the two
are roughly positively correlated. This also demon-
strates the feasibility of treating categories as "weak
labels" in different code segments.

Impact of code length We investigated how
code length (number of commands) influences
summary performance. The test data was seg-
mented based on code length. Given that most of
our data has a length between 5 to 25 commands,
we sampled more from this range to balance the
data distribution. The comparative performance
of the three methods, as per the METEOR met-
ric, is showcased in Figure 7(b). Key observations
include: As code length increases, there’s an evi-
dent inverse relationship between supervised and
unsupervised contrastive learning. The former em-
phasizes command categories, while the latter fo-
cuses on individual commands. Models prioritizing
only categories tend to underperform for shorter
code lengths. One plausible reason is the critical
role each command plays in achieving a specific
function in shorter codes, necessitating instance-
level differentiation. For longer codes, the signif-
icance of a single command diminishes, making
categorization more apt. Notably, supervised con-
trastive learning excels in longer code scenarios.
Our method considers both categories and indi-
vidual commands, ensuring robust performance
across different code lengths.

12.3. Command Template Parsing
Figure 9 illustrates the basic syntax rules of the
configuration language. The font requirements are
merely for display distinction between variables and
keywords; during parsing, we enclose parameter
with ’<>’. The specific parser can be easily writ-
ten based on its syntax rules. For example, curly

Template
clear ip bgp [ipv4 {unicast | multicast} | all] damp-
ening [neighbor | prefix]
Commands
clear ip bgp dampening
clear ip bgp dampening neighbor
clear ip bgp dampening prefix
clear ip bgp ipv4 unicast dampening
clear ip bgp ipv4 unicast dampening neighbor
clear ip bgp ipv4 unicast dampening prefix
clear ip bgp ipv4 multicast dampening
clear ip bgp ipv4 multicast dampening neighbor
clear ip bgp ipv4 multicast dampening prefix
clear ip bgp all dampening
clear ip bgp all dampening neighbor
clear ip bgp all dampening prefix
Template
eigrp stub [direct | leak-map <map-name> |
receive-only | redistributed]
Commands
eigrp stub
eigrp stub direct
eigrp stub leak-map <map-name>
eigrp stub receive-only
eigrp stub redistributed

Table 8: Parsing Examples of Templates

Figure 9: The basic syntax structure of config code

braces { } are used to denote selected branches,
and square brackets [ ] indicate optional branches.
We can utilize syntax parsing generators, such as
pyparsing (McGuire, 2007) (Figure 8), to parse our
command templates.
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