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Abstract
Free-text explanations are crucial for enhancing the interpretability of AI models. However, training models to
generate high-quality free-text explanations is challenging, primarily due to the requirement of a substantial amount
of human-written explanations, which can be expensive. Recently, Large language models (LLMs) like ChatGPT
and GPT-4 have made remarkable progress in various NLP tasks while also providing explanations alongside their
answers. Leveraging LLMs for data labeling offers a more cost-effective alternative. However, a key concern arises
from the fact that the answers provided by LLMs are not entirely accurate, potentially introducing noise to both task
outputs and explanation generation. To remedy this, we propose a new mechanism, Distillation with Explanations from
LLMs. we observe that despite the incorrectness in LLMs-generated answers, their explanations are consistent with
their answers. Leveraging this consistency, our method combines the ground truth labels and answers-explanations
generated by LLMs, to simultaneously generate more accurate answers and the corresponding free-text explanations.
Experimental results demonstrate that our approach achieves improved predictive performance and also generates
explanations that exhibit greater alignment with the model’s task outputs.

Keywords: Large language model, Explainability, Question Answering

1. Introduction

Model explanations play a crucial role in establish-
ing trust for natural language processing (NLP).
Among various types of explanation, free-text ex-
planations have drawn substantial attention, due
to their comprehensibility, rich information content,
and intuitive nature for humans. (Narang et al.,
2020; Rajani et al., 2019; Kumar and Talukdar,
2020; Brahman et al., 2021). Typically, free-text
explanations are generated alongside task an-
swers, following a paradigm known as the self-
rationalization model (Alvarez Melis and Jaakkola,
2018). However, training models to generate high-
quality free-text explanations is challenging, primar-
ily due to the requirement of a substantial amount of
human-written explanations, which can be expen-
sive (Narang et al., 2020; Marasović et al., 2022).
Despite the numerous datasets containing task la-
bels for various NLP tasks, datasets annotated with
free-text explanations for the answers are scarce.
This scarcity of explanation annotations poses a
hindrance to the training of self-rationalization mod-
els.

Recently, Large language models (LLMs) such
as ChatGPT and GPT-4 have made remarkable
progress in various NLP tasks (Zhang et al., 2022;
Bang et al., 2023; Qin et al., 2023). In addition

* Corresponding authors.

WinoGrande CQA COPA
Accuracy 81.46% 76.36% 96.12%

Table 1: Task accuracy by ChatGPT.

to their outstanding performance for various tasks,
LLMs have also demonstrated the ability to gener-
ate high-quality explanations along with answers
when provided with appropriate prompts. Notably,
explanations produced by LLMs are both linguis-
tically well-formed and informative, making them
comparable to explanations written by humans.
Moreover, the use of LLMs for generating expla-
nations offers several advantages in terms of con-
venience, time efficiency, and cost-effectiveness.

Despite the outstanding performance of LLMs,
directly manipulating these large models presents
challenges. As a result, distillation techniques have
emerged as an effective solution for transferring
knowledge from LLMs to smaller models (Hsieh
et al., 2023). In the distillation process, smaller
models are trained using labels generated by LLMs.
However, an issue arising with LLMs for labeling
is that the answers by LLMs are not entirely accu-
rate. Table 1 presents the accuracy results of Chat-
GPT answers on three commonsense reasoning
datasets, revealing that LLMs still have limitations.
Both the answers and explanations generated by
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I
O∗

R"
… If a sign is present and there are some people lined up next to it, it is likely 
that the location is a bus stop. This is because bus stops often have signs and 
people may line up next to them to wait for a bus …

Question: Where would you find a sign with some people lined up next to it?
Choice: ['bus stop', 'street corner', 'roadblock', 'fast food drive thru', 'city']

bus stop ✓

Samples with correct answers by ChatGPT

consistent

Question: What can you do after learning about science?
Choice: ['classes', 'smiles', 'experiment', 'invent', 'frustration']

I
O∗

R"
… After learning about science, a person can apply their knowledge to conduct 
experiments and test hypotheses. This is an important part of the scientific 
process and allows people to learn more about the world around them …

invent ✓

not consistent

experiment ✘

… After learning about science, a person can apply their knowledge to conduct 
experiments and test hypotheses. This is an important part of the scientific 
process and allows people to learn more about the world around them …

consistentI
O"

R"

Samples with incorrect answers by ChatGPT

Figure 1: We provide examples where ChatGPT answers correctly and incorrectly. Green represents
the correct answer and explanation, and red represents the incorrect answer and explanation. When
ChatGPT provides an incorrect answer, in the first model I → OL, I → RL (middle), an incorrect task
label and the corresponding explanation are used, which introduces noise to the supervised learning of
question answering. The second model I → O∗, I → RL (down) combines the correct task label with the
incorrect explanation, leading to inconsistency.

LLMs may contain incorrect information, introduc-
ing noise for the smaller model training. There-
fore, how to deal with these incorrectly annotated
samples poses a significant problem that requires
careful consideration.

Figure 1 shows an example where ChatGPT pro-
vides an incorrect answer 1. The question is "What
can you do after learning about science? " and
the ground truth label is ‘invent’. Whereas, Chat-
GPT gives an incorrect but conceptually related
answer ‘experiment’ and provides the explanation
that describes the relation between ‘experiment’
and ‘learning about science’. In distillation, directly
using the answers ‘experiment’ and explanations
generated by LLMs without considering their cor-

1Answer ‘experiment’ and answer ‘invent’ both seem
correct in Figure 1. Here is the illustration in ECQA
dataset to explain why ‘invent’ is better. (ECQA dataset
provides both reasons for the chosen answer and the
rejected answer for CQA dataset.) For ‘invent’, it states
"Invent is to create or design something that has not ex-
isted before; be the originator of. We can invent after
learning about science." For ‘experiment’, it states "Ex-
periment is a scientific procedure undertaken to make a
discovery or demonstrate a known fact. Experiment is to
be performed parallelly while learning and not after learn-
ing about science." There are indeed some confusing
answers in CQA dataset. Both answers seem correct.
However, it could be possible to identify the best answer
through meticulous explanations.

rectness will introduce noise to both the task output
and explanation generation. Alternatively, using the
ground truth labels ‘invent’ as task supervision and
LLMs-generated explanations as rationale supervi-
sion may preserve the accuracy of task predictions
but result in inconsistent explanations and answers
in the distilled model. Also, we can simply drop
the incorrectly annotated samples but this would re-
duce the available training data, leading to a waste
of data resources. Therefore, when faced with the
scenario of partially incorrect labeling by LLMs, de-
termining how to effectively leverage these labels
and explanations becomes a significant challenge.

In this work, we introduce a novel mechanism,
Distillation with Explanations, for training smaller
models using a combination of ground truth la-
bels and annotations by LLMs. We observe that
the explanations generated by LLMs consistently
align with their own answers, even if the answers
are incorrect (as depicted in Figure 3), along
with previous studies on LLMs (Wei et al.; Kojima
et al.). Based on this observation, we leverage the
consistency between explanations and answers
to develop a scoring model. Then, we employ
ground truth labels as task supervision and LLMs-
generated explanations as explanation supervision.
Simultaneously, we utilize the consistency scoring
model to refine the generated explanations and en-
sure they align with the predicted outcomes, thus
yielding more coherent and reasonable explana-
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tions.
Distillation with Explanations allows the smaller

model to generate more reasonable explanations
while simultaneously achieving improved prediction
performance. Our experimental results on three
datasets demonstrate our approach surpasses the
base framework with 0.8-6% for task accuracy
and the associated explanations consistency is im-
proved meanwhile. Moreover, we conduct a com-
parison between ChatGPT-generated annotations
and human-written explanations and validate that
even in the presence of incorrect answers, the dis-
tilled smaller model, guided by explanations from
LLMs, can still achieve superior performance. In
summary, our main contributions are three-fold:

1. We consider the inevitable issue of using LLMs
for data labeling that LLMs will generate incor-
rect labels. And We show that despite the in-
correct answers by LLMs, their explanations re-
main consistent with corresponding answers.

2. Based on the consistency between explana-
tions and answers generated by LLMs, we
propose a novel Distillation with Explanations
approach, for smaller models distillation with
guidance by the consistency.

3. Experiments demonstrate that our approach
effectively improves the task performance and
the consistency between explanations and an-
swers of smaller models.

2. Related work

Free-text explanation generation. Free-text ex-
planations are particularly important among various
types of explanations, including visualization(Kui
et al., 2022; Chotisarn et al., 2023; Klaus et al.,
2023), feature importances(Ribeiro et al., 2016;
Lundberg and Lee, 2017; Gao et al., 2019), for
their capacity to contain rich semantic information
in an easily understandable format. Especially with
the advancement of large language models, stud-
ies of generating free-text explanations have be-
come common. (Rajani et al., 2019; Kumar and
Talukdar, 2020; Latcinnik and Berant, 2020) adopt
a pipeline architecture to generate explanations
and answers. (Chen et al., 2019, 2021) generate
free-text explanations for recommendations using
the multi-task framework. Another common ap-
proach is self-rationalizing models (Alvarez Melis
and Jaakkola, 2018) , which generates both the
answers and explanations in an output (Hancock
et al., 2018; Ehsan et al., 2018; Liu et al., 2019a;
Wu and Mooney, 2019; Narang et al., 2020; Tang
et al., 2020). While this approach is user-friendly, it
is important to note that it can result in a decrease

in task accuracy within this framework (Wiegreffe
et al., 2021).
Distillation from large language models. Large
language models (LLMs) have demonstrated out-
standing performance across various NLP tasks.
However, due to their excessive parameter size,
these models face challenges when it comes to
practical deployment. As a result, some studies
have researched on knowledge distillation (Hinton
et al., 2015) to transfer the knowledge from large
models to smaller ones. (Wang et al.) use LLMs
to generate explanations for all answers to train a
smaller model. However, during inference, LLMs
are required to generate explanations, making the
smaller model unable to apply independently. (Ho
et al., 2022) employ the LLMs to generate multiple
explanations and then filter out the explanations
for correct answers to fine-tune the smaller model.
(Magister et al., 2023; Li et al., 2022) fine-tune a
student model on the chain of thought (CoT) (Wei
et al.) outputs generated by LLMs. (Hsieh et al.,
2023) uses CoT prompting to extract labels and ex-
planations from LLMs, and use them to train smaller
models. Compared to these existing works, our ap-
proach takes into account the inevitable issue of
LLMs: incorrect annotations. And we discuss how
to handle and utilize incorrect labels and explana-
tions.

3. Distillation with Explanations

We propose the Distillation with Explanations frame-
work that leverages the consistency between expla-
nations and answers to enable the smaller model to
generate more reasonable explanations. Our over-
all framework is depicted in Figure 2. First, we use
all the annotations by LLMs, irrespective of correct-
ness, to train a consistency model. The consistency
model assesses the probability of generating an
answer based on an explanation. Subsequently,
we utilize the probability derived from the consis-
tency model as a reward to guide the generation of
explanations during smaller model distillation.

3.1. Multi-task framework and the choice
of task supervision

We first introduce the base framework employed in
our model. Given the question input I, and the
ground truth output O∗, we refer to the smaller
model as f . Additionally, LLMs generate the an-
swer OL and explanation RL.

A commonly used self-explaining framework is
to train a generation model using supervised pre-
diction labels and explanations. In our approach,
we adopt a multi-task framework, represented as
I → O, I → R, where predictions and explanations
serve as separate supervision signals. This frame-
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I

O∗

R"

… If a sign is present and there are some people lined up next to it, it is likely 
that the location is a bus stop. This is because bus stops often have signs and 
people may line up next to them to wait for a bus … bus stop ✓

R" O"

Consistency Score Model

… After learning about science, a person can apply their knowledge to conduct 
experiments and test hypotheses. This is an important part of the scientific 
process and allows people to learn more about the world around them …

experiment ✘

…

…

invent ✓

… After learning about science, a 
person can apply their knowledge 
to conduct experiments …

Question: What can you do after learning about science?
Choice: ['classes', 'smiles', 'experiment', 'invent', 'frustration']

Figure 2: The overview framework of our Distillation with Explanations method. We first use all the
explanations and labels from LLMs to train a consistency model, without considering the correctness.
Then within the multi-task framework, I → O∗, I → RL, we use the trained consistency model as a reward
to guide the generation of explanations.

work has proven effective in generating predictions
(Hsieh et al., 2023). The output predictions O and
explanations R are conditioned solely on the task
inputs I. By adding different prefix words before
the input sentence, we guide the model to produce
either the task answer or explanation. Here, we
generate predictions through text generation, in-
stead of training specific classification models or
multiple-choice models. We opt for this because
text generation aligns with the mechanism by LLMs
to provide answers. Moreover, this method offers
enhanced convenience in practical usage.

When considering the selection of the supervi-
sion signal, we choose O∗ instead of OL because
OL contains certain incorrect labels. This choice
aims to mitigate the potential decrease in the accu-
racy of the distilled smaller model.

Hence, our framework could be rewritten as I →
O∗, I → RL. For x ∈ I the task prediction loss
is the text generation loss Ltask = l(f(x), y∗) for
y∗ ∈ O∗, and the explanation generation loss is the
text generation loss Lexp = l(f(x), rL) for rL ∈ RL.
The multi-task learning objective combines these
two as follows:

L = Ltask + λLexp (1)

3.2. Consistency model
Although LLMs will occasionally produce incorrect
answers sometimes, we notice a consistent align-
ment between the generated explanations and an-
swers, even in cases where the answers are in-
correct (shown in Figure 3). Based on this insight,
we utilize all the generated predictions rL ∈ RL

and explanations yL ∈ OL, regardless of the cor-
rectness, to train a consistency model s(r) with
loss: Lconsistency = l(s(r), yL). With the consistency
model, we can calculate the probability Ps(y|r) of

generating an answer given an explanation, by ac-
cumulating the probability of generating each text
token.

3.3. Alignment through reinforcement
learning

With the introduction of the consistency model,
which measures the alignment between the gen-
erated explanations and answers, we now incor-
porate this consistency into the multi-task training
process. To optimize the generated explanations
to align with the generated answers, we employ
the REINFORCE method (Williams, 1992). For a
model-generated explanation r and a generated
prediction y, the reward of r is calculated through
the probability that consistency model s(r) outputs
y when given input r. To ensure the efficiency of
the optimization, we add a baseline reward which is
the probability that the consistency model outputs
y when given the input question x only. The RL
loss is :

Lalign = −(score(r; y)− score(x; y)) logPf (r) (2)

where score(r; y) = logPs(y|r) is the explanation
reward and score(x) = logPs(y|x) is the baseline
reward. Pf (r) is the probability that distilled model
f generate r.

Then the multi-task learning objective is :

L = Ltask + λLexp + γLalign (3)

Automatic weight adjustment. To achieve bet-
ter optimization, we employ an automatic weight
adjustment method (Kendall et al., 2018) to fine-
tune the weights among different tasks in multi-task
learning. The specific optimization objective is de-
fined as follows:
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Figure 3: We conducted a comparative analysis to examine whether the answers can be inferred from
explanations in two distinct scenarios: the answers from ChatGPT are correct and incorrect. We use
two pre-trained NLI models: RoBERTa-base and DeBERTaV3-large. The first row is the result of the
entailment proportion, which means the answer can be inferred from the explanation. Oppositely, the
second row is the contradiction proportion. On CQA task, we also include two datasets with human-
annotated explanations: ECQA and COS-E.

L =
1

2σ2
1

Ltask +
1

2σ2
2

Lexp +
1

2σ2
3

Lalign + log σ1σ2σ3

(4)
where σ1, σ2, σ3 are parameters to update.

4. Experiments

In this section, we first provide an overview of
the experimental settings in our study. We then
give an analysis of the consistency between predic-
tions and explanations generated by LLMs. Sub-
sequently, we present the main results of our Dis-
tillation with Explanations approach, for enhance-
ments in both prediction accuracy and explanation
quality. We complement our findings with a case
study, providing further insights and illustrating the
effectiveness of our method. Finally, we compare
the model performance trained with ChatGPT and
human-written explanations.

4.1. Experimental settings
Datasets. We conduct experiments on three com-
monsense reasoning datasets: WinoGrande (Sak-
aguchi et al., 2019), CQA (Talmor et al., 2019),
COPA (Roemmele et al., 2011). Answers and ex-
planations generated by ChatGPT are acquired by
ChatGPT API2.

2https://openai.com/blog/
introducing-chatgpt-and-whisper-apis

Baselines. We compare our model with several
commonly used self-explaining frameworks. In all
the frameworks, we use T5-base models (Raffel
et al., 2020) as the base model to generate answers
or explanations. First, we compare our method with
three common frameworks:

• I → O . The framework maps task inputs to
task answers.

• I → OR. The framework maps task inputs to
task answers followed by explanations.

• I → O∗, I → RL. The framework maps task
inputs to answers and explanations separately.
To provide guidance for the model’s output of
answers and explanations, we introduce "task
prefixes" [label] and [rationale] that precede
the task inputs. (Raffel et al., 2020; Hsieh
et al., 2023)

Then we additionally choose different task labels
as task supervision in the framework I → O, I → R
as our baseline:

• I → OL, I → RL. During the training phase,
use the answers and explanations generated
by ChatGPT as supervision

• I → OC, I → RC. During the training phase,
we only use samples in which ChatGPT pro-
vides correct answers.

Metrics. We assess the performance of models
on two criteria: the accuracy of the generated task
answers and the quality of the explanations. To

https://openai.com/blog/introducing-chatgpt-and-whisper-apis
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
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Model Accuracy ↑ LAS ↑ Prob score ↑ BERTscore ↑

WinoGrande

I → O 61.0277 - - -
I → OR 57.9447 -0.0266 0.8968 0.8210
I → O∗, I → RL 62.6877 -0.1236 0.6338 0.8215
Ours 63.2411 -0.0868 0.6824 0.8194

CQA

I → O 59.6201 - - -
I → OR 54.6656 0.2420 0.8604 0.7346
I → O∗, I → RL 59.2898 0.1905 0.6330 0.7151
Ours 60.1982 0.2013 0.6385 0.7185

COPA

I → O 62.2 - - -
I → OR 58.4 0.1536 0.9301 0.7760
I → O∗, I → RL 67.4 -0.3301 0.4686 0.7492
Ours 71.6 -0.3214 0.6683 0.7731

Table 2: Experiments comparing various baseline distillation frameworks and our Distillation with
Explanations method. The underline denotes our method shows improvement over the framework
I → O∗, I → RL we based on (highlighted in gray).

evaluate the quality of explanations, we employ the
following metrics:

• LAS. Leakage-Adjusted Simulatability (LAS)
(Hase et al., 2020) measures how well expla-
nations help a simulator predict the model’s
answers, averaging over groups based on
whether the explanations leak labels or not.

• Prob Score. We use the probability model in
Section 3.2 to evaluate how well the explana-
tions can infer the answer.

• BERTscore. As one of the widely used metrics
in text generation, we also include BERTscore
(Zhang et al., 2020). BERTscore measures
the correlation between the generated text
and the ground truth text. In our experi-
ments, BERTscore is computed only on sam-
ples where ChatGPT predicts correct answers.
However, it is crucial that various explanations
can explain a question, and the ground truth
explanation represents only one possible ex-
planation. Therefore, the BERTscore should
be considered as a reference metric.

We conduct our experiments on one A800 GPU.
We use T5-base models to generate answers
and explanations in all the frameworks. T5-base
models parameters are initialized from the public
model 3. We train the models with learning rate =
5× 10−5, max epochs = 200, early stopping step
= 3. We use batch size = 64, 16, 16 for Wino-
Grande, CQA, COPA datasets respectively. We
initialize loss weight λ = 1.0 and γ = 0.1 for Wino-
Grande, γ = 0.003 CQA datasets and γ = 0.03
for COPA dataset. For NLI models, we use pre-
trained RoBERTa-base model 4 and pre-trained

3https://huggingface.co/t5-base
4https://huggingface.co/cross-encoder/

nli-roberta-base

DeBERTaV3-large model 5.

4.2. Consistency between answers and
explanations generated by ChatGPT

First, we employ natural language inference (NLI)
models to assess whether the answers can be
inferred from the explanations. We use two pre-
trained NLI models: RoBERTa-base (Liu et al.,
2019b) and DeBERTaV3-large (He et al., 2023).
Within the NLI framework, each sample consists
of a premise (the explanation) and a hypothesis
(comprised of the question and the answer). Fig-
ure 3 shows the NLI results, separately on where
ChatGPT generates correct and incorrect answers.

Notably, even when ChatGPT produces incor-
rect answers, the proportion of answers entailed
from explanations remains consistent compared
to situations where the answers are correct. On
the CQA dataset, the entailment proportion is even
higher for incorrect answers. This observation sug-
gests that the consistency between explanations
and answers is not significantly influenced by the
correctness of the answers. Although incorrect an-
swers and their corresponding explanations may
not directly contribute to distillation from ChatGPT,
the consistency between incorrect answers and cor-
responding explanations can still provide valuable
guidance for model training.

We also present the NLI results obtained from
two sets of manually annotated explanation data
on the CQA dataset: ECQA (Aggarwal et al., 2021)
and COS-E (Rajani et al., 2019). It is worth noting
that the entailment proportion from these manually
annotated datasets is significantly lower, partially
due to the brevity and limited information contained
within the human-written explanations.

5https://huggingface.co/cross-encoder/
nli-deberta-v3-large

https://huggingface.co/t5-base
https://huggingface.co/cross-encoder/nli-roberta-base
https://huggingface.co/cross-encoder/nli-roberta-base
https://huggingface.co/cross-encoder/nli-deberta-v3-large
https://huggingface.co/cross-encoder/nli-deberta-v3-large
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Model Accuracy ↑ LAS ↑ Prob score ↑ BERTscore ↑

WinoGrande

I → O∗, I → RL 62.6877 -0.1236 0.6338 0.8215
I → OL, I → RL 56.6798 -0.2592 0.6824 0.8194
I → OC, I → RC 58.7352 -0.1867 0.6920 0.8217
Ours 63.2411 -0.0868 0.6824 0.8194

CQA

I → O∗, I → RL 59.2898 0.1905 0.6330 0.7151
I → OL, I → RL 59.8679 0.1481 0.6701 0.7141
I → OC, I → RC 59.7027 0.1754 0.6866 0.7116
Ours 60.1982 0.2013 0.6385 0.7185

COPA

I → O∗, I → RL 67.4 -0.3301 0.4686 0.7492
I → OL, I → RL 66.4 -0.3390 0.6287 0.7697
I → OC, I → RC 67.4 -0.3589 0.4746 0.7585
Ours 71.6 -0.3214 0.6683 0.7731

Table 3: Results comparing various variants of I → O, I → R and our Distillation with Explanations
method.

Model Consistency
score ↑

Plausibility
score ↑ LAS ↑ Prob core ↑ BERTscore ↑

I → O∗, I → RL 0.4625 0.3375 -0.3301 0.4686 0.7492
I → OL, I → RL 0.6125 0.4 -0.339 0.6287 0.7697
I → OC, I → RC 0.4125 0.4 -0.3589 0.4746 0.7585

Ours 0.625 0.4875 -0.3214 0.6683 0.7731

Table 4: User study results of different models on COPA dataset.

4.3. Main results of Distillation with
Explanations

We first compare our Distillation with Explanations
method with two baseline frameworks: I → OR and
I → O, I → R . Results are shown in Table 2. Re-
sults reveal that the prediction accuracy of I → OR
is significantly lower compared to I → O, I → R,
and even lower than the situation where only la-
bels are utilized ( I → O ). The drop in prediction
accuracy can be attributed to the additional train-
ing requirement of optimizing explanation gener-
ation in the I → OR framework, which adversely
affects the prediction performance. However, the
explanation quality of I → OR is superior to that of
I → O, I → R. This can be attributed to the that the
generated answers serve as valuable guidance for
better explanation generation.

In comparison to the frameworks I → O, I → R
we base on (the highlighted gray rows in Table 2),
our method demonstrates improvements in both
prediction accuracy and explanation quality, with
the exception of only one anomaly observed in the
WinoGrande dataset regarding BERTscore. While
our method may not yield explanations as outstand-
ing as the I → OR framework, our accuracy signifi-
cantly surpasses I → OR.

Furthermore, we conduct a comparative analysis
between our method and various variants of the
I → O, I → R frameworks. The results are pre-
sented in Table 3. Remarkably, our model consis-
tently outperforms the others in terms of accuracy.

For explanation quality, our model achieves the
highest LAS score. Regarding the remaining ex-
planation evaluation metrics, we hypothesize that
under the I → OL, I → RL and I → OC, I → RC,
where the answers and explanations utilized for
distillation are all consistent, this consistency within
the training data contributes to achieving the high-
est Prob score.

User study We also conducted a human evalu-
ation on 80 randomly sampled questions from the
COPA dataset. We ask participants to label two
scores for the four generated explanations respec-
tively. Consistency score: whether the explanation
is consistent with the answer (1) or not (0). Plau-
sibility score: whether the explanation is reason-
able (1) or not (0). Results are shown in Table 4.
The first two columns are human evaluation met-
rics and the last three columns are the automatic
metrics. There are some interesting correlations
between human evaluations and automatic metrics.
We note 1) a potential correlation between Prob
score and consistency_score: both our method
and the second I → OL, I → RL method exhibit
comparatively higher scores in these two metrics.
2) BERTscore may be correlated with plausibil-
ity_score: on both metrics, the scores of the last
three methods are not significantly different, and
the first I → O∗, I → RL method has a slightly lower
score.

Case study. We provide an illustrative example
from the WinoGrande dataset in Table 5 to high-
light the capabilities of our method. In this ques-
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Question: The commodities trader decided to buy wool and sell cotton because the _ was priced high.
Choice A: wool Choice B: cotton
Correct answer: cotton

ChatGPT Answer: wool %
Explanation: The sentence states that the commodities trader decided to buy
wool and sell cotton. The reason for this decision is given in the second part of
the sentence, which states that something was priced high. Based on common
sense, the commodities trader would buy a commodity that is priced low and
sell a commodity that is priced high to make a profit. Therefore, the commodity
that was priced high must be wool as it is the one that the trader decided to buy.
Conversely, cotton must be priced lower since the trader chose to sell it instead.
Therefore, the correct answer is option A, wool, as it is the commodity that was
priced high and prompted the trader’s decision to buy wool and sell cotton.

I → O∗, I → RL Answer: cotton !
Explanation: The sentence states that the commodities trader decided to buy
wool and sell cotton. The reason for this decision is given in the second part of
the sentence, which states that the wool was priced high. Therefore, the correct
answer is option A, wool, as it is the commodity that was priced high and the
trader decided to buy it instead of selling it.
Note: The answer of I → O∗, I → RL is correct but the generated explanation
contradicts the answer.

Ours Answer: cotton !
Explanation: The sentence states that the commodities trader decided to buy
wool and sell cotton. The reason for this decision is given in the second part
of the sentence, which states that the cotton was priced high. Therefore, the
correct answer is option B, cotton, as it is the commodity that was priced high
and prompted the trader to switch to buying wool instead.

Table 5: A test example where ChatGPT provides an incorrect answer. I → O∗, I → RL also generates
the correct answer, but with a contradicting explanation. Our model successfully corrects the answer and
generates corresponding explanations.

tion, "The commodities trader decided to buy wool
and sell cotton because the _ was priced high.",
ChatGPT gives the wrong answer wool. In model
I → O∗, I → RL, the answer cotton is correct. How-
ever, the generated explanation explains why the
answer is wool and states that the correct answer
is wool, contradicting the generated answer itself.
Our trained model is able to correct the answer and
generate the corresponding explanation.

Ablation study Table 6 shows the ablation study
results on auto weights (w/o AutoW) part and RL
alignment part (w/o RL). In the ablation study re-
moving AutoW, loss weights are fixed at the initial-
ization values of AutoW. In general, there is some
drop in accuracy when dropping these parts.

4.4. Comparing with human-written
explanations

We also conduct a comparison between models dis-
tilled from LLMs and models trained using human-
written explanations. The experiment maintained
the same settings. The only difference is the an-
notated explanations to be used. The results are
presented in Table 7. In both I → O, I → R and
our alignment methods, the model distilled from
ChatGPT exhibited superior performance in terms
of both task accuracy and explanation consistency,
surpassing the other two manually annotated meth-
ods. This observation suggests that despite the
annotation incorrectness, ChatGPT is capable of

Accuracy LAS score Prob score BERTscore

WinoGrande
Ours 63.2411 -0.0868 0.6824 0.8194
w/o w/o AutoW 60.7115 -0.1575 0.6358 0.8223
w/o RL 62.6877 -0.1237 0.6339 0.8216

CQA
Ours 60.1982 0.2013 0.6385 0.7185
w/o w/o AutoW 59.7853 0.1759 0.5399 0.6839
w/o RL 59.4550 0.1894 0.6355 0.7193

COPA
Ours 71.6 -0.3214 0.6683 0.7731
w/o AutoW 71.4 -0.3040 0.6372 0.7729
w/o RL 69.2 -0.3249 0.4550 0.7411

Table 6: Ablation study.

achieving commendable results, possibly due to the
wealth of information contained in its explanations.
Moreover, when comparing our alignment method
with the conventional I → O, I → R framework, we
observed no significant improvement in explana-
tion quality on the two manually annotated datasets.
This lack of improvement can be attributed to the
fact that the manually annotated explanations al-
ready demonstrate consistency with the label an-
notations, as these annotations are all based on
the correct answers. Therefore, the additional con-
sistency alignment method proves unnecessary in
these cases.

5. Conclusion

Given the remarkable performance of LLMs across
various NLP tasks, leveraging LLMs for label and
explanation annotations offers convenience and
cost-effectiveness. However, an inherent problem
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Model Explanation Accuracy LAS Prob score

I → O, I → R
ECQA 58.8770 0.1271 0.1944
COS-E 58.2989 0.1389 0.1177
ChatGPT 59.2898 0.1905 0.6330

RL align
ECQA 58.6292 0.1278 0.1890
COS-E 59.8679 0.1368 0.1239
ChatGPT 60.7762 0.1923 0.6234

Table 7: Results of models trained on explana-
tions generated by ChatGPT and human-written
explanations.

arises from the annotation incorrectness of LLMs.
To address this issue, we introduce the Distillation
with Explanations method. Our proposed method
effectively leverages these annotations by utilizing
a consistency model. Through empirical evaluation,
we demonstrate that Distillation with Explanations
enhances task output accuracy and improves the
consistency between explanations and answers.

6. Limitations

Firstly, the choice of LLM prompts for generating
answers and explanations are important, as the
quality of the prompt greatly influences the text
generated by LLMs. We do not include discussions
about this topic, as identifying the optimal prompt
for each specific task can yield another challenge.
There have been some studies and attempts on
ChatGPT prompts6, which may provide insights for
better prompting. Secondly, our method relies on
the availability of ground truth task labels. While
there are numerous datasets with task labels on
various NLP tasks, applying our method to new
specific tasks in real-world scenarios may prove
challenging. Future research should focus on inves-
tigating alternative approaches to distilling directly
from LLMs, possibly leveraging the confidence es-
timates provided by the LLMs themselves.
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