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Abstract
Continual Few-Shot Relation Learning (CFRL) aims to learn an increasing number of new relational patterns from a
data stream. However, due to the limited number of samples and the continual training mode, this method frequently
encounters the catastrophic forgetting issues. The research on causal inference suggests that this issue is caused by
the loss of causal effects from old data during the new training process. Inspired by the causal graph, we propose a
unified causal framework for CFRL to restore the causal effects. Specifically, we establish two additional causal paths
from old data to predictions by having the new data and memory data collide with old data separately in the old
feature space. This augmentation allows us to preserve causal effects effectively and enhance the utilization of
valuable information within memory data, thereby alleviating the phenomenon of catastrophic forgetting. Furthermore,
we introduce a self-adaptive weight to achieve a delicate balance of causal effects between the new and old relation
types. Extensive experiments demonstrate the superiority of our method over existing state-of-the-art approaches in
CFRL task settings. Our codes are publicly available at: https://github.com/ywh140/CECF.
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1. Introduction

Relation Extraction (RE) aims to extract relations
between entities from unstructured text. For exam-
ple, it involves detecting the relation founder in the
sentence “Jobs is the founder of Apple.” for the two
entities Jobs and Apple. It holds substantial utility
across various downstream applications, including
knowledge augmentation, question answering, text
generation, and summarization (Wang et al., 2022;
Dong et al., 2015). Traditional RE methods rely
on fixed pre-defined sets of relations (Han et al.,
2018b; Gao et al., 2019; Xiong et al., 2017). Nev-
ertheless, in practical scenarios, the new relation
types emerge constantly, necessitating more flex-
ible approaches to accommodate these evolving
circumstances.

To address this issue, some researchers have ex-
plored formalizing RE as Continual Relation Learn-
ing (CRL) (Wang et al., 2019). As shown in Figure
1, the model continuously learns a series of tasks,
each with its own set of relations. However, it is uni-
versally acknowledged that the major challenge in
Continual Learning (CL) is catastrophic forgetting
(McCloskey and Cohen, 1989). In other words, the
model tends to forget previously learned relation
tasks while learning new ones.

In the field of Natural Language Processing
(NLP), memory-based methods have proven to
be effective solutions to the catastrophic forget-
ting problem in CL (Wang et al., 2019; de Mas-
son D’Autume et al., 2019). The memory-based
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Figure 1: A conceptual framework of Continual
Relation Learning (CRL). (a) Representative strate-
gies have targeted various aspects of deep learning.
(b) CRL requires adapting to incremental tasks with
dynamic relation data.

methods select samples from previous tasks and
stores them in memory. Subsequently, when learn-
ing a new task, the stored memory data is re-
played to consolidate previously acquired knowl-
edge. Prominent memory-based methods include
EA-EMR (Wang et al., 2019), ARPER (Mi et al.,
2020) and EMAR (Han et al., 2020).

Nevertheless, existing memory-based methods
heavily rely on extensive training data to learn new
relations. In real-world scenarios, acquiring large
labeled datasets for nascent events can be chal-
lenging. In response to such circumstances, evolu-
tion has empowered human with strong adaptabil-
ity to acquire knowledge from a limited number of
samples. Naturally, we expect that CRL can also
possess this ability. Unfortunately, some continual



5042

learning methods face issues of overfitting. Re-
cently, Qin and Joty (2022) proposed a method for
Continual Few-shot Relation Learning (CFRL).

Through causal inference, Hu et al. (2021) dis-
covered that the forgetting is due to the absence of
causal paths from old data to the predictions, result-
ing in the lack of causal effects from old data. In the
general training process of CFRL, we first employ
simple training to select memory samples and then
proceed with anti-forgetting training. While the data
replay method establishes a causal path to restore
the causal effect in anti-forgetting training, there is
no causal path in simple training to resist forgetting.
Additionally, the memory data is not utilized at all
in simple training. In the case of abundant data,
simple training has a small impact on the final re-
sults because it constitutes a small proportion of
the total training epochs. However, in the few-shot
setting, as its proportion increases, its impact also
grows.

Based on causal inference, this study presents
a Causal Effect Continual Few-shot Frame-
work(CECF) to address these issues. Specifically,
we propose to add a causal path between old data
and predictions leveraging the colliding effect. In
order to better leverage valuable information within
the memory data, we establish an additional causal
path by colliding memory data with old data in the
old feature space. Because these added causal
paths effectively preserve the causal effects of old
data, the problem of catastrophic forgetting is miti-
gated. In addition, we introduce the self-adaptive
weight mechanism to balance the causal effects of
new and old relations. We conduct experiments in
different settings on two benchmark datasets, and
the results demonstrate that our approach outper-
forms existing state-of-the-art methods in CFRL. In
summary, our main contributions are as follows:

• We are the first to understand CFRL from a
causal graph perspective and propose a uni-
fied causal framework to effectively preserve
the causal effects of old data.

• For mitigating forgetting, we are the first to dis-
till causal effects from new data and memory
data in simple training. We also introduce a
self-adaptive weight to balance the causal ef-
fects of new and old relations.

• Through extensive experiments in various set-
tings on two datasets, we observe consis-
tent performance improvements. For example,
CECF outperforms previous baselines by up
to 3.04% on FewRel and 4.2% on TACRED.

2. Related Work

RE techniques are commonly classified into several
logical categories: supervised (Zelenko et al., 2003;

Zeng et al., 2014; Miwa and Bansal, 2016), semi-
supervised (Chen et al., 2006; Sun et al., 2011; Hu
et al., 2020) and distant supervision based tech-
niques (Mintz et al., 2009; Zeng et al., 2015; Han
et al., 2018a). These methods heavily rely on ex-
tensive pre-defined data. Yet in the real world, new
relations emerge rapidly, and it is challenging to
acquire a sufficient number of labeled data quickly
at such times. Hence, some researchers propose
Continual Few-shot Relation Learning (CFRL),
in order to learn relations without large pre-defined
relation sets (Qin and Joty, 2022). The achieve-
ment of this goal involves two critical techniques:
Continual Learning and Few-shot Learning.

Continual Learning (CL) focuses on learning
from an infinite stream of data, with the goal of grad-
ually extending the pool of acquired knowledge for
future learning (De Lange et al., 2021). The main
challenge is achieving CL without catastrophic for-
getting (McCloskey and Cohen, 1989), where the
knowledge of old tasks is lost when learning new re-
lations. As depicted in Figure 1, there are currently
three prevalent strategies in CL. First, data replay
(memory-based) methods involve storing samples
or generating synthetic samples through genera-
tive models. When learning new tasks, these sam-
ples from previous tasks are replayed to counteract
the phenomenon of forgetting (Rebuffi et al., 2017;
Lopez-Paz and Ranzato, 2017; Atkinson et al.,
2018). Second, architecture-based methods dy-
namically modify the model’s architecture to accom-
modate new information while preserving knowl-
edge gleaned from prior tasks (Chen et al., 2015;
Rusu et al., 2016; Fernando et al., 2017; Chaudhry
et al., 2018). Finally, regularization-based methods
introduce additional regularization terms into the
loss function (Li and Hoiem, 2017; Kirkpatrick et al.,
2017; Nguyen et al., 2017).

Few-shot Learning (FSL) refers to the prob-
lem of learning underlying patterns in data with
only a few training samples. (Wang et al., 2020).
FSL can be categorized into three directions: (1)
data-based methods employ prior knowledge to en-
hance supervision experience (Santoro et al., 2016;
Benaim and Wolf, 2018; Qin and Joty, 2022); (2)
model-based methods reduce the size of hypothe-
sis space with prior knowledge (Triantafillou et al.,
2017; Hu et al., 2018); and (3) algorithm-based
methods change the search method for optimal
hypotheses in a given hypothesis space (Hoffman
et al., 2013; Ravi and Larochelle, 2016; Finn et al.,
2017).

Causal Inference (Pearl et al., 2016; Schölkopf,
2022) recently has been applied to aid NLP tasks,
addressing issues such as spurious correlations
(Gururangan et al., 2018; Veitch et al., 2021; Rosen-
feld et al., 2020), biases in textual data (Hardt
et al., 2016; Kilbertus et al., 2017), and model inter-
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pretability (Feder et al., 2022; Karimi et al., 2021;
Vig et al., 2020; Finlayson et al., 2021). Zheng
et al. (2022) also leveraged causal inference to re-
tain knowledge from samples of Other-Class for
Named Entity Recognition (NER). Inspired by the
pioneering work of Hu et al. (2021), which utilizes
causal view to explain catastrophic forgetting, we
aim to employ causal inference to confront long-
standing challenges in CFRL.
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Figure 2: The proposed causal graphs explaining
the forgetting and anti-forgetting in CRL.

3. (Anti-) Forgetting in Causal Views

In this section, we provide a causal perspective
on understanding the principles of forgetting and
introduce how to create causal paths to mitigate
forgetting.

3.1. Causal Graphs
Figure 2(a) illustrates a causal graph of the CRL.
In this depiction, nodes serve as variables, while
directed edges symbolize causal relations between
pairs of nodes. Specifically, we define I0 as the old
data, I as the new data, X and X0 as the extracted
features from the new and old model, and Y and Y0

as the predicted labels from the new and old model
, respectively. The important links in this graph are
as follows: (1) I → X signifies the utilization of the
new model to extract features X from the input sen-
tence I. (2) X → Y indicates using the extracted
features X to predict the results Y . (3) (I0, I)→ X0

denotes that for a given new input sentence I, we
can obtain the feature representation X0 in the old
feature space by using the old model trained on
old data I0. As observed in Figure 2(a), forgetting

occurs when all the causal paths from I0 to Y are
blocked by colliders (e.g.X0). Figure 2(b) repre-
sents the causal graph of the data replay method,
where exists a causal path connecting I0 and Y .

3.2. Colliding Effects
In addition to the commonly used anti-forgetting
methods such as data replay and distillation, Hu
et al. (2021) proposed a novel approach that lever-
ages the colliding effect to establish causal paths
between old data and predictions. As depicted in
Figure 2(c), the colliding effect involves controlling
the collider X0 to establish mutual associations be-
tween the nodes I and I0. A causal graph from
real life can be used to aid understanding. For
example, Temperature → Sensation ← Wind in-
dicates that the perceived temperature is influenced
by both the actual temperature and the wind. Typi-
cally, actual temperature and wind speed are con-
sidered as independent variables. However, when
a person feels cold and the wind speed is low, it
can be inferred that the actual temperature might
be low, and vice versa.

4. Methodology

In this section, we present a unified causal frame-
work for retrieving causal effects from both new data
and memory data. Furthermore, a self-adaptive
weight is introduced to effectively address the is-
sue of data imbalance.

4.1. Problem Definition
In CFRL, the model M needs to learn a series of
tasks T = (T1, T2, ..., Ti, ..., Tn) . Each task Ti con-
tains a set of relations Ri and corresponds to a spe-
cific dataset Di. This dataset consists of samples
{(xk, yk)}|D|

k=1, where the relation label yk comes
from the relation set Ri. As discussed earlier, the
few-shot task scenario is characterized by a limited
number of labeled samples (e.g., 5), in all tasks
except the initial one. Assuming that each few-shot
task includes N relations, and each relation con-
tains K samples, this setting is commonly referred
to as N-way K-shot continual learning.

The target of CFRL is to learn the best RE
model Mi to identify the relation set R̂i =

⋃i
k=1 Rk.

Achieving this goal necessitates addressing the
challenge of catastrophic forgetting, which pertains
to the model’s ability to retain previously learned
knowledge while acquiring new knowledge from lim-
ited data. To mitigate catastrophic forgetting, in the
i-th step, the RE model Mi−1, previously trained on
the dataset Di−1, serves as the initialization point
for the new model Mi. The teacher model Mi−1

guides the learning process of the student model
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Mi through knowledge distillation. Moreover, the
memory data Q̂i−1 = {Q1, · · · ,Qi−1} consists of
the samples selected from each relation in previous
tasks.
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Figure 3: The causal graph for CFRL: (a) ERDA
has only one causal path from old data to new pre-
dictions, which comes from data replay; (b) CECF
builds additional two causal paths from old data to
new predictions through new training data D and
memory data Q.

4.2. Distilling Colliding Effect in CFRL
By analyzing the causal graph in Figure 3(a), we
observe that the data replay methods establish a
causal path. However, this path exists only in the
anti-forgetting training. The simple training lacks
intrinsic mechanisms to effectively mitigate forget-
ting. The utilization of the colliding effect emerges
as a solution to introduce novel causal paths aimed
at alleviating the phenomenon of forgetting.

To establish the new causal path using the col-
liding effect, we identify sentences in new data that
have the similar feature representations X0 to the
input in the old feature space. Initially, we compute
the old feature representations of the input and
other samples. Following Hu et al. (2021), we em-
ploy the K−Nearest−Neighbors (KNN) strategy
to search the K sentences whose features bear
a greater similarity to the feature of input. Next,
during the prediction phase for the input sentence,
we leverage these matched sentences for joint pre-
diction.

In simple training, the model does not utilize the
valuable information within the memory data. We
consider colliding the memory data with the old
data in the old feature space to establish an addi-
tional causal path. The new causal paths augment
the influence of old data on predictions, thereby
ameliorating the model’s propensity for forgetting
during the training process.

Based on the distinctive attributes of CFRL, we
extended the causal graph from Figure 3(a) to
Figure 3(b). The key modification is that the new
relation data D and the memory data Q collide
separately with old data I0 on nodes XD

0 and XQ
0

in the old feature space. In this way, we introduce
two causal paths from old data I0 to predictions Y .
In the absence of colliding effects, the original class
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Figure 4: Our causal framework for CFRL.

boundaries in the feature space are more likely to
be disrupted during the training process, leading
to forgetting. When the input sample collides with
other sentences with similar representations, the
original class boundaries in the feature space are
more likely to be preserved, naturally alleviating
forgetting.

4.3. Overall Framework

Our framework is illustrated in Figure 4, and the
training process is depicted in Algorithm 1. The
CFRL learning process typically encompasses
three steps: learning with new data (simple train-
ing), selecting samples for memory, and alleviating
forgetting through memory (anti-forgetting training).
Our proposed improvements primarily concentrate
on the first step. It is noteworthy that the settings
for the subsequent steps are the same as Qin and
Joty (2022).

In the i-th CFRL step, given the training data Di

for the task Ti. If the task is the initial task, we have
D̃i = Di. For data augmentation, we use a fine-
tuned BERT (Devlin et al., 2018) as the relational
similarity model S to select unlabeled samples from
the Wikipedia corpus C which have a high similarity
score. Then, we merge these chosen samples with
the training set Di to create a new extended training
set D̃i.

To distill causal effects from old data and en-
hance the utilization of memory data, we first ini-
tialize the model Mi using the pre-existing model
Mi−1 after the initial task. Then we use the model
Mi−1 to calculate the old feature representations
xk ∈ Rd for the expanded training data D̃i and
xl ∈ Rd for the memory data Q̂i−1. After that, we
employ the KNN method to select K sentences
that are most similar to the input sentence from D̃i

or Q̂i−1 in the old feature space. Finally, we use
the loss L to update the model Mi, and the total
loss L is defined as:
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Algorithm 1 training process at time step i

Require: The training set, Di; The current task, Ti;
The current memory set Q̂i−1 The relation set,
Ri; The model Mi; The refer model Mi−1; The
similarity model S; The unlabeled text corpus
C.

1: if i == 1 then ▷ initial task
2: D̃i = Di

3: else ▷ few-shot task
4: Select similar samples from C using S for

every sample in Di and store them in A

5: D̃i = A
⋃
Di

6: Mi ←Mi−1 ▷ initialize new model
7: X d

0 ←Mi−1(D̃i) ▷ represent in old features
8: X q

0 ←Mi−1(Q̂i−1)
9: Nd ← Knn(Mi−1(xk),X d

0 )
10: Nq ← Knn(Mi−1(xl),X q

0 )
11: end if
12: Initialize rk for every relation rk ∈ Ri

13: for i = 1, ..., iter1 do ▷ train on new task
14: Update Mi with L on

{
D̃i, Q̂i−1,Nd,Nq

}
15: end for
16: Select key samples from Di for every relation

rk ∈ Ri to save in Qi

17: R̂i = R̂i−1

⋃
Ri

18: Q̂i = Q̂i−1

⋃
Qi ▷ update memory

19: H̃i = D̃i

⋃
Q̂i

20: for i = 1, ..., iter2 do
21: Update Mi on H̃i

22: Update rk for every relation rk ∈ R̂i

23: end for

L = λceLce + λklLkl + λmmLmm + λpmLpm (1)

where λce, λkl, λmm and λpm are the weights
corresponding to their respective losses. The de-
tailed explanations for losses Lce and Lkl can be
found in sections 4.3.1 and 4.3.2 respectively. We
also adopt a margin-based loss Lmm and a pair-
wise margin loss Lpm like Qin and Joty (2022) to
improve the discriminative ability of the model.

4.3.1. Distilling Causal Effect of New Data

At time step i, we use the reference model Mi−1 to
compute the old feature representation xk of each
new sample xk ∈ D̃i. xk is stored in X d

0 . In the
old feature space, we select top K matched sam-
ples within the expanded dataset D̃i that closely
resemble to the input xk to distill the colliding effect.
The matched samples constitute the set Nd. The
distance calculation formula is as follows:

dist =

√√√√ d∑
m=1

(pm − qm)2 (2)

where d is the number of dimensions, pm and
qm are the m-th dimensions of the old feature rep-
resentations p,q ∈ X d

0 .
Then we calculate the loss Lce by leveraging

the matched samples Nd and the expanded data
D̃i together. The weight allocation during the joint
training process is as follows:

Ȳk =WkYk +
∑K

j=1 WkjYkj

s.t. Wk ≥Wk1 ≥Wk2 ≥ · · · ≥WkK

Wk +
∑K

j=1 Wkj = 1

(3)

Yk,Ykj are the predicted scores of the input xk

and its j-th matched sample. Wk,Wkj are their re-
spective weights. K is the number of matched
sentences. The weight constraints ensure that the
sample closer to the input has a more significant
impact. And as long as they satisfy the equation,
their influence on the final result is not substantial
(Hu et al., 2021). The specific cross entropy loss
Lce is used for relation classification:

Lce =
∑

(xk,yk)∈D̃i

|R̂i|∑
n=1

δyk,rn × log(Ȳk) (4)

Ȳk =
1

2
S(Mi(xk)) +

1

2K

K∑
j=1

S(Mi(xkj)) (5)

where R̂i is the ensemble of all known relations
at the present step, and xkj is the j-th matched
sample of the input xk. δyk,rn signifies a symbolic
function (0 or 1). It assumes 1 when the number of
relation types in the sample yk equals rn, otherwise,
it assumes 0. S represents the Softmax function.

4.3.2. Distilling Causal Effect of Memory Data

To combat forgetting and better leverage the ef-
fective information stored in the memory data, we
establish an additional causal path. The model
Mi−1 encodes each memory sample xl ∈ Q̂i−1

into its representation xl in the old feature space.
These representations are stored inX q

0 . We employ
Equation 2 to search the K most similar samples
for each input sample xl, where p,q ∈ X q

0 . The
matched samples are saved in Nq. Following this,
we calculate the loss Lkl by jointly considering both
the memory data Q̂i−1 and the matched samples
Nq. The distillation loss Lkl is defined as:

Lkl =
∑

(xl,yl)∈Q̂i−1

|R̂i−1|∑
n=1

δyl,rn × log
Ȳs

Yt
(6)
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Ȳs =
1

2
S(

Mi(xl)

Ts
) +

1

2K

K∑
j=1

S(
Mi(xlj)

Ts
) (7)

Yt = S(
Mi−1(xl)

Tt
) (8)

where the temperature parameters Tt, Ts for the
teacher model Mi−1 and the student model Mi, re-
spectively. xlj represents the j-th matched sample
of the memory sample xl.

4.3.3. Balancing Causal Effects

The overall causal effect consists of learning new
relations and reviewing old relations. As the steps
increase, the number of relations to be learned for
new tasks remains the same, while the number of
relations to be reviewed for old tasks continues to
grow. Therefore, there is a need to balance the
learning ability between new and old relation types
continuously. To achieve this, we introduce a self-
adaptive weight:

λkl = λ

√
Ro

Rn
(9)

Where λ is an initial weight, Ro is the number of
old relations, and Rn is the number of new relations.
This way, as the number of old relations continues
to increase, the weight can be automatically ad-
justed to balance the learning abilities.

5. Experiment

5.1. Settings
Benchmark We conduct experiments on two
widely used datasets for CFRL. FewRel (Han et al.,
2018b) comprises 80 relations, each with hundreds
of samples. Following the CFRL benchmark (Qin
and Joty, 2022), we divide these relations into 8
tasks, with each task consisting of 10 relations (10-
way). The first task has 100 samples for each rela-
tion, while subsequent tasks have fewer samples.
To demonstrate the effectiveness of our method, we
perform 2-shot, 5-shot, and 10-shot experiments
on the subsequent tasks.

Furthermore, we conduct experiments on TA-
CRED (Zhang et al., 2017) to showcase the gen-
eralizability of our method. TACRED includes 41
available relations, which we divide into 8 tasks.
The first task contains 6 relations, each with 100
samples, while the remaining tasks have 5 relations
(5-way). Similar to Fewrel, we conduct experiments
with 5-shot and 10-shot settings.
Metric At time step i, we evaluate the model’s
relation classification predictions by using the test
set of the i-th task along with the test sets from all

Figure 5: Comparison results of different methods
with a Bi-LSTM encoder and a BERT encoder on
FewRel benchmark. For both encoders, CECF is
better than ERDA in the 10-way 5-shot setting.

previous time steps. This evaluation metric effec-
tively reflects whether the model has the ability to
mitigate catastrophic forgetting in CFRL. Consid-
ering that the selection and order of relation sets
may affect the model’s performance, we conduct
six experiments using different random seeds to
eliminate randomness. The reported results are
the average performance of these six experiments.
Baseline We compare our method with the fol-
lowing baselines:

• SeqRun fine-tunes the model directly on new
task data would lead to severe catastrophic
forgetting, serving as a lower bound.

• Joint Training combines the training data of
the current task with the training data of all
previous tasks and jointly trains. It serves as
an upper bound.

• EMR (Wang et al., 2019) stores samples se-
lected from all previous steps. In the subse-
quent step, these samples are added to the
current training data for joint training.

• EMAR (Han et al., 2020) introduces Memory
Activation and reconsolidation into CRL.

• ERDA (Qin and Joty, 2022) is the state-of-the-
art in CFRL. It proposes a novel method based
on embedding space regularization and data
augmentation to avoid catastrophic forgetting.

Hyper-Parameter We set the number of
matched samples K = 3. For the parameter of
weight allocation, we set the weights Wk = 1

2 and
Wkj = 1

2K . We initialize the self-adaptive weight
λ = 1.2.

5.2. Main Results
We compare the performance of different methods
using the same setting as ERDA (Qin and Joty,
2022), which uses a Bi-LSTM encoder and a BERT
encoder.
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Method Task index
1 2 3 4 5 6 7 8

SeqRun 92.78 52.11 30.08 24.33 19.83 16.90 14.36 12.34
Joint Train 92.78 76.29 69.39 64.75 60.45 57.64 52.80 50.03
EMR 92.78 69.14 56.24 50.03 46.50 43.21 39.88 37.51
EMAR 85.20 62.02 52.45 48.95 46.77 44.33 40.75 39.04
ERDA 91.98 78.09 68.59 63.32 60.2 57.13 54.91 52.45
CECF 92.32 76.48 69.73 65.24 60.65 58.99 57.26 55.49

Table 1: Accuracy (%) of different methods at every time step on FewRel benchmark for 10-way 5-shot
CFRL. CECF is better than ERDA with a Bi-LSTM encoder.

Figure 6: Comparison results at each time step
on FewRel benchmark for 10-way 10-shot and
2-shot settings. For both settings, CECF is better
than ERDA with a Bi-LSTM encoder.

FewRel Benchmark with Bi-LSTM We report
the results of previous baselines and the proposed
model on 10-way 5-shot in Table 1 and Figure 5.
Additionally, Figure 6 displays the results on the 10-
way 10-shot and 10-way 2-shot settings. We com-
pare our experiments under the setting of FewRel
10-way 5-shot with all the baselines. For a clear
comparison, other settings will be compared only
with ERDA. From these results, we can observe
that:

Our proposed method CECF consistently outper-
forms the baselines, highlighting the effectiveness
of our approach. EMR and EMAR tend to overfit
and suffer from catastrophic forgetting when con-
fronted with few-shot tasks, because they rely on
a substantial amount of training data. The perfor-
mance of ERDA surpasses that of EMR and EMAR
as ERDA is specifically designed for few-shot con-
tinual learning tasks. ERDA mitigates catastrophic
forgetting by enforcing extra constraints on the rela-
tional embeddings and adding extra relevant data
in a self-supervised manner. However, there are
no anti-forgetting measures when the model learns
new relations. Introducing new paths from old data
to predictions through colliding effects can obtain
causal effects from old data.

In CFRL, joint training is not always the upper
bound due to the data imbalance in few-shot tasks.
Since the ERDA model is designed for few-shot
tasks, it outperforms joint training in the last two

Method Task index
1 2 3 4 5 6 7 8

SeqRun 96.35 70.23 58.13 54.17 48.82 43.52 37.9 33.97
Joint Train 96.35 87.85 82.87 80.05 77.62 74.69 72.23 69.74
EMR 96.35 88.02 78.83 75.15 72 69.41 66.7 63.68
EMAR 92.03 78.87 72.81 69.19 68.05 66.23 63.68 61.77
ERDA 96.3 87.96 81.64 77.8 74.64 71.86 69.23 67.3
CECF 95.75 87.24 81.94 77.71 74.18 72.69 71.21 69.44

Table 2: Accuracy (%) of different methods at every
time step on FewRel benchmark for 10-way 5-shot
CFRL. CECF is better than ERDA with a BERT
encoder.

Figure 7: Comparison results of different methods
on FewRel benchmark for 10-way 10-shot and
2-shot settings. CECF is better than ERDA with a
BERT encoder for both settings.

tasks in the 10-way 5-shot setting. However, our
method surpasses joint training to a greater ex-
tent. After the second task, CECF consistently
surpasses joint training, and the performance gap
continues to widen.

After learning all few-shot tasks, CECF outper-
forms ERDA by 1.73%, 3.04%, and 2% in the 2-
shot, 5-shot, and 10-shot settings, respectively.
Moreover, we observe that the benefits of our
method continue to improve as the number of tasks
increases. This indicates that our approach is par-
ticularly suitable for longer CFRL tasks and effec-
tively mitigates catastrophic forgetting.
FewRel Benchmark with BERT Table 2 and
Figure 5 show the experiment results using a BERT
encoder on Fewrel with the 10-way 5-shot setting.
Figure 7 shows the results on Fewrel for 10-way
2-shot and 10-shot. It is evident that our method
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Figure 8: Comparison results of different methods
on TACRED benchmark for 5-way 5-shot and 10-
shot settings. CECF is better than ERDA with a
BERT encoder for both settings.

Method Task index
1 2 3 4 5 6 7 8

CECF 92.32 76.48 69.73 65.24 60.65 58.99 57.26 55.49
w.o. AW 92.4 77.49 69.08 65.03 60.89 58.42 56.33 54.16
w.o.ET 92.42 78.4 69.68 64.32 61.31 58.23 56.86 53.84
w.o.EM 92.25 77.77 68.93 64.04 59.91 57.34 55.84 54.42
w.o.EM&T 91.98 78.09 68.59 63.32 60.2 57.13 54.91 52.45

Table 3: Ablations on FewRel benchmark (10-way
5-shot). AW: adaptive weight; ET : colliding effect
in training data; EM : colliding effect in memory
data.

outperforms previous baselines with a BERT en-
coder by up to 2.92% (10-way 10-shot), affirming
the generalizability of our approach.
TACRED Benchmark Figure 8 depicts the 5-
way 5-shot and 5-way 10-shot results on TACRED
using a BERT encoder. It can be observed that our
performance remains superior to the baseline by
1.63% and 4.2% on TACRED, demonstrating its
strong generalization ability.

5.3. Ablation Study
We conduct several ablation experiments to ana-
lyze the contributions of different components of
our method on FewRel in the 10-way 5-shot setting.
It is important to note that our model is the same
as ERDA when there is no causal effect. In each
experiment iteration, we remove one component or
combine the removal of two components: (a) the
adaptive weight module AW, (b) the colliding effect
ET in training data, where we calculate the regular
cross-entropy loss for classification, (c) the collid-
ing effect EM in memory data, (d) both the colliding
effects EM&T in training data and memory data.
Combining the Equation 1 and Equation 9, we can
observe that our AW module represents the weight
λkl before the loss Lkl. Therefore, in cases (c) and
(d), removing the loss Lkl will inevitably result in
the ineffectiveness of the AW module, where (d) is
the same as the ERDA model.

From Table 3, we observe that all components
improve the performance of our model. Specifically,
the adaptive weight module contributes to a 1.33%
accuracy boost by balancing the weights between

K 1 2 3 5 10
Accuracy(%) 54.75 53.91 55.49 54.35 54.56

Table 4: Hyper-parameter K analysis on FewRel
benchmark (10-way 5-shot).

λ 0.6 0.9 1.2 1.5 1.8
Accuracy(%) 53.97 53.64 55.49 53.61 53.90

Table 5: Hyper-parameter λ analysis on FewRel
benchmark (10-way 5-shot).

old and new relations, particularly when there is a
significant disparity in their quantities. The colliding
effect in training data results in a 1.65% accuracy
improvement, and it contributes more significantly
over longer time steps. The colliding effect in mem-
ory data enhances performance by 1.07% accu-
racy, indicating improved utilization of information
from the stored memory data. This demonstrates
the effectiveness of establishing causal paths be-
tween old data and predictions.
Hyper-Parameter Analysis We provide a hyper-
parameter analysis on FewRel in the 10-way 5-shot
setting. We consider two hyper-parameters: the
number of matched sentences K and the initial
value of the adaptive weight λ. The results in Table
4 indicate that the best performance is achieved
when K = 3. A larger K tends to perform better
in scenarios with abundant data. However, in few-
shot tasks, a larger K can lead to a higher likelihood
of retrieving data from other incorrect classes, re-
sulting in a decrease in performance. Additionally,
Table 5 demonstrates that the model achieves the
best accuracy with λ = 1.2. Please note that we
did not perform an exhaustive search for the best
hyper-parameters. Therefore, in specific cases,
some carefully tuned hyper-parameters may lead
to superior performance.

6. Conclusion

In Continual Few-shot Relation Learning (CFRL),
causal inference can help us understand that forget-
ting occurs due to the loss of causal effects from old
data. In order to address this issue, we propose
a novel architecture called CECF from a causal
graph perspective. CECF uses the colliding effect
to establish two causal paths from old data to pre-
dictions, thereby enhancing the causal effects and
effectively utilizing the valuable information in the
memory data. Furthermore, we introduce a self-
adaptive weight to balance the causal effects of new
and old relation types. Comprehensive experimen-
tal results and analysis consistently demonstrate
that CECF surpasses previous methods in terms
of performance. In the future, we plan to further
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address the issue of catastrophic forgetting from a
causal perspective.

7. Limitations

Although our method partially alleviates catas-
trophic forgetting, it cannot guarantee an increasing
gap from the baseline. Additionally, the improve-
ments in simple training may affect the model’s
ability to learn new relations, thereby affecting the
selection of memory data. We suspect that this
may be the reason why our first two tasks did not
perform well under some settings. Furthermore,
since extra sentence matching needs to be com-
puted, the training time inevitably increases.
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