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Abstract
Argument structure learning (ASL) entails predicting relations between arguments. Because it can structure a
document to facilitate its understanding, it has been widely applied in many fields (medical, commercial, and
scientific domains). Despite its broad utilization, ASL remains a challenging task because it involves examining the
complex relationships between the sentences in a potentially unstructured discourse. To resolve this problem, we
have developed a simple yet effective approach called Dual-tower Multi-scale cOnvolution neural Network (DMON)
for the ASL task. Specifically, we organize arguments into a relationship matrix that together with the argument
embeddings forms a relationship tensor and design a mechanism to capture relations with contextual arguments.
Experimental results on three different-domain argument mining datasets demonstrate that our framework outperforms
state-of-the-art models. The code is available at https://github.com/VRCMF/DMON.git.
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1. Introduction

Argument structure learning (ASL) (Moens, 2013;
Lawrence and Reed, 2020) involves detecting and
tagging relationships between argumentative com-
ponents in a text. Figure 1 shows an illustrative ex-
ample of an argumentative structure for a medical
report where pairs of sentences are annotated with
whether there is a supportive or attacking relation-
ship between them. This problem is a cornerstone
in the semantic analysis of natural language text
because it helps to elucidate the relational structure.
Consequently, it helps facilitate more accurate and
deeper comprehension of text and hence plays a
critical role in various NLP applications such as
patient-generated content analysis (Mayer et al.,
2020; Stylianou and Vlahavas, 2021), legal reason-
ing (Poudyal et al., 2020), and opinion mining (Nic-
ulae et al., 2017).

Despite of its broad application, solving the ASL
task is still challenging due to the complexity of text
structures and diversity of relationships. Moreover,
real-world data often contains inconsistencies and
are largely unstructured. Fully understanding the
relationship between two arguments often require
contextual knowledge from other arguments, or
even their relationships.

A key challenge posed by ASL is that fully un-
derstanding the relationship between two argu-
ments often requires capturing contextual knowl-
edge about other arguments and their relationships.
In Figure 1, to classify the relationship C → D, ex-
amples of contextual argument relationships are
A → D and B → D. Mayer et al. (2020), Stylianou
and Vlahavas (2021) and Galassi et al. (2021) tried
to conduct pairwise relation classification for ASL
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Figure 1: A simple example of an argumentative
structure showing attack (orange arrow) and sup-
port (green arrow) relationships.

without contextual information, yielding sub-optimal
classification performance. A more recent attempt
by Hua and Wang (2022) encodes the contextual
arguments with a transformer architecture. This
helped to improve its accuracy, but they still ignored
the relationships between contextual arguments.

In this paper, we for the first time propose to
exploit contextual argument relationships to solve
the ASL task. As shown in Figure 2, we represent
the argument structure as a relationship tensor to
capture the contextual information about argument
relationships. This also allows us to naturally model
the relationships between pairs of arguments that
can be bidirectional and asymmetric. We propose
a bidirectional learning approach that uses a sep-
arate model for each direction. Moreover, training
is also hampered by the fact that there is limited
labeled data for ASL problems due to the high an-

https://github.com/VRCMF/DMON.git
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notation costs. Therefore, we propose a cropping
strategy that randomly samples a subtensor that
maintains the ordering of the selected relationships.
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Figure 2: We select argument C as the observa-
tion object. This example shows the correlation
between the head (red) and tail (blue) relationship
information and a relationship tensor. Each ele-
ment in this relationship tensor is the concatenation
of two arguments.

The main contributions of this paper are the fol-
lowing:

• We propose a novel approach called DMON
to encode contextual arguments and their rela-
tionships by connecting the argument structure
with a relationship tensor.

• We propose a bidirectional learning mecha-
nism that allows distinguishing head and tail
arguments in a relationship.

• We design a cropping strategy to handle the
scarcity of training data.

• Experimental results on three different-domain
argument mining datasets show that our
method outperforms state-of-the-art models
for the ASL task.

First, we discuss related works in section 2. Next,
in section 3, we provide a detailed description of
the DMON framework. Then, in section 4, we
present experimental results on two argument min-
ing datasets from different domains and conduct
an ablation study to analyze the proposed frame-
work and its outcomes. Finally, in section 5, we
summarize this paper.

2. Related Work

2.1. Argument Structure Learning
Argument Structure Learning is a challenging
but essential task in text mining (Moens, 2013;
Lawrence and Reed, 2020). Most papers tackle
argument relationship classification by performing
pairwise ASL and classifying two concatenated sen-
tences due to it simplicity and effectiveness (Mayer
et al., 2020; Stylianou and Vlahavas, 2021; Galassi
et al., 2021).

In Hua and Wang (2022), argument components
and their contextual sentences were encoded to-
gether using a RoBERTa encoder to obtain neigh-
boring arguments information. The experimental
results demonstrate that incorporating contextual
information enhances performance. This method
primarily relies on self-attention to capture relation-
ships between the concatenated sentences. How-
ever, self-attention can be computationally expen-
sive as it involves computing a pairwise similarity
matrix for every token in all argument components.
In this paper we explicitly model contextual argu-
mentative relationships and, given that a convo-
lution operation can effectively capture input-data
features (Alzubaidi et al., 2021; Andreoli, 2019; Du-
moulin and Visin, 2016), we utilize convolutional
modules to represent a pair of arguments and con-
textual pairs of arguments.

2.2. Structured Learning in NLP
Structured learning (SL) also called structured pre-
diction plays a crucial role in many NLP tasks. It
models complex relationships and dependencies
within text data to improve the performance of var-
ious discourse-related applications, such as sen-
timent analysis (Ein-Dor et al., 2022), and sum-
marization (Xu et al., 2020). In argument mining,
Niculae et al. (2017) use a structured support vec-
tor machine, while Bao et al. (2021) implement
transition-based dependency parsing to reveal the
argumentative structure.

3. Method

Problem Setting: Given a document containing
n sentences, we treat each one as a potential ar-
gument and use A to denote the argument set.
We convert A into the set of ordered pairs CA =

{(ai, aj)|aj ∈ A and ai ∈ A} ∈ Rn2 . The goal of
ASL is to classify all relations in the set CA with
the domain-specific labels contained in the given
dataset.
Method Overview: We introduce a Dual-tower
Multi-scale cOnvolution neural Network (DMON)
for the ASL task. The model has four components
(Figure 3). Firstly, we use an encoder to extract pair-
wise argument representations. Given that an argu-
mentative graph is a directed acyclic graph (DAG),
potential argumentative relationships can be repre-
sented as an asymmetric relationship matrix, or as
a relationship tensor when it includes the pairwise
argument embeddings. Secondly, during training,
a cropping strategy selects sub-tensors from the
relationship tensor. Thirdly, a bidirectional learning
mechanism is applied to the cropped relationship
tensors to capture contextual arguments and their
relationships. Finally, we employ label fusion to
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Figure 3: The structure of Multi-scale Residual Convolution Neural Network (DMON) during training.
During testing, no cropping mechanism is used. In this example, the yellow and green cells in a prediction
matrix correspond to attack and support relations.)

merge two predicted label matrices into one label
matrix. During testing, we feed full relationship
tensors instead of cropped tensors into the model.

3.1. Pairwise Arguments Representation
Following the literature (Mayer et al., 2020; Hua
and Wang, 2022; Stylianou and Vlahavas, 2021),
we treat each sentence as a potential argument.
To capture pairwise interactions, we create all pos-
sible pairs (ai, aj) and concatenate them with a
special token placed between them. Next, we
use a linkBERT model to encode the paired ar-
guments into an average pooled embedding with
dimensionality d. We organize these into a tensor
H ∈ Rn×n×d. Figure 2 illustrates how to transform
the sentences of a discourse into a relationship ten-
sor. Each cell in the relationship tensor represents
the concatenation of a coupled argument, which
typically consists of two elements: the first element
is known as the head argument, while the second
element is referred to as the tail argument.

3.2. Cropping Strategy
We use a cropping strategy to mitigate scarcity of
labeled training data. During each training iteration,
we sample a new sub-tensor H′ ∈ Rm×m×d from H.
Concretely, we sample m indices {i0, i1, . . . , im−1}
without replacement from {0, 1, . . . , n − 1} where
m < n and m is called the window size. Now
we describe in mathematical notation how these
indices induce a sub-tensor. H

′

j,k represents an
element of sub-tensor H′ whose row and column in-
dexes are j and k, and H′

j,k = Hij ,ik . The cropping
strategy keeps the discourse order of arguments
and relations of the full relationship tensor in its
rows and columns. Because the cropping strat-
egy looks at the sub-graph induced by the selected
vertices, it maintains the alignment of contextual
arguments (graph’s vertices) and relations (graph’s
edges). The cropped relationship tensors are re-
sampled in each training iteration, which can be
viewed as a form of data augmentation.

3.3. Bidirectional Learning Mechanism
We have developed a bidirectional learning mecha-
nism to predict the labels of a relationship between
its head and tail. Head and tail relationship infor-
mation is captured by applying a multi-scale (1D)
convolution on the relationship tensor both horizon-
tally and vertically, respectively.

Because the relationship tensor can take into ac-
count both short- and long-distance relationships
between the argument sentences in a discourse,
we leverage a multi-scale residual module (MSRM).
Prior work (Li and Yu, 2020) reveals that a multi-
filter convolutional layer (similar to an Inception
block) can capture varied relationships. However,
(Li et al., 2018) stated that the Inception architec-
ture leads to the underutilization of local features.
Therefore, we choose the MSRM (Li et al., 2018)
as our base module and use different kernel sizes
for the convolutional filters to capture the short- and
long distance relationships. Because of the asym-
metry of the relationships, we apply the MSRM both
horizontally and vertically on the relationship tensor
to generate predictions while taking into account
the contextual argument structure of the discourse.
Figure 4 illustrates the structure of the MSRM.

k1 Conv1d
ReLU

k2 Conv1d
ReLU

k3 Conv1d
ReLU

Concat
k2 Conv1d

ReLU

Concat

k4 Conv1d
Concat

Figure 4: The structure of the multi-scale residual
module (MSRM). k1, k2, k3 and k4 represent the
kernel size of the respective 1D convolution layer.

We illustrate here how to capture the contextual
arguments and head relationship information using
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the horizontal branch during trainng with a cropped
tensor. Firstly, we obtain the representations of the
first row of the relationship tensor, h1 = H

′
[1, :, :] ∈

R1×m×d and pass them into the MSRM. We denote
the 1D convolutional layer with kernel size kx as
Fkx

(·). We omit the bias item in the equations and
the output o1 ∈ R1×m×d is:

S1 = ReLU(Fk1
(h1)), (1)

P1 = ReLU(Fk2
(h1)), (2)

S2 = ReLU(Fk2
(Concat(S1,P1))), (3)

P2 = ReLU(Fk3
(Concat(S1,P1))), (4)

o1 = Fk4
(Concat(S2,P2)) + h1, (5)

whereReLU(·) represents the ReLU activation func-
tion and Concat(·) is the feature concatenation
operation. We repeat the above calculations for
m times and we concatenate all output features
to get the resulting tensor of the head convolu-
tion Om

h = Concat(o1, · · · , om) ∈ Rm×m×d. Thirdly,
a linear classifier layer consisting of flattened logits
are applied to produce the predictions. On the hor-
izontal branch, this is ŷh ∈ Rl where l represents
the label space dimension. The vertical branch
uses the same operations as above but the logits
are denoted as ŷt ∈ Rl.1

The cross-entropy losses of the horizontal and
vertical branches are calculated as follows:

Lh = − 1

m2

m2∑
i=1

l∑
j=1

yi,j log(ŷ
h
i,j), (6)

Ltd = − 1

m2

m2∑
i=1

l∑
j=1

yi,j log(ŷ
t
i,j), (7)

where y ∈ Rl are one-hot encoded vectors rep-
resenting the ground-truth labels. We adopt joint
training for the two branch losses and the joint train-
ing loss is defined as:

L = λhLh + λtLt, (8)

where λh and λt are scaling factors for the horizon-
tal and vertical branches, respectively.

3.4. Label Fusion
During testing, a confidence voter fuses the la-
bel predictions from the horizontal and vertical
branches. Inspired by Vyas et al. (2018) and Weng
et al. (2023), we measure the confidence scores
of logits by the difference between top-1 and top-2
probabilities. Assume that we have logits ỹh ∈ Rl

1Note that during testing (inference stage) in the
above computationsm is replaced by n (number of paired
arguments of the full text) and H

′ by H.

and ỹt ∈ Rl, the difference between the top-1 and
top-2 probabilities for ỹh is c̃h:

s̃h = Softmax(ỹh), (9)

c̃h = Topk(s̃h, k1)− Topk(s̃h, k2), (10)

where Topk(·, k) returns the k−th largest elements
from the given input and Softmax(·) is the softmax
function.2 Secondly, we get the confidence score
for the vertical branch c̃t by following the above
computations. Thridly, we applied the argmax
operation to get the predictions of two branches,
yh ∈ Rn×n and yt ∈ Rn×n. We merge two matri-
ces into y ∈ Rn×n based on confidence scores c̃h

and c̃t. The merging process for the yi,j is:

yi,j =

{
yhi,j , if s̃hi,j ≥ s̃ti,j

yti,j , otherwise
(11)

4. Experiments

The goal is to evaluate the Macro F1 score (it
returns objective results on imbalanced ASL
datasets) of the detection and correct classifica-
tion of argumentative relationships in a discourse,
to compare the results with the results of state-of-
the-art baselines, and to assess the influence of
the proposed components of the DMON model.

4.1. Datasets
We conduct experiments in the medical, legal
and scientific domains, represented by the Ab-
stRCT (Mayer et al., 2020), the Cornell eRulemak-
ing Corpus (CDCP) (Niculae et al., 2017), and the
SciDTB (Yang and Li, 2018) datasets.
AbstRCT: The AbstRCT corpus consists 659
medical documents about the treatment for spe-
cific disease (neoplasm, glaucoma, hypertension,
hepatitis-b, diabetes). Following Mayer et al.
(2020), the corpus is divided into three datasets
based on disease category: neoplasm, glaucoma,
and mixed. The neoplasm (neo) dataset con-
tains 350 documents for training, 50 for validation
and 100 notes for testing. The neoplasm train
set is used as train set for the glaucoma (gla)
and mixed (mix) dataset, which each have 100
instances for testing. The labels of the relation-
ships of the three AbstRCT datasets are ‘attack’,
‘support’, and ‘un-related’.
SciDTB: The SciDTB (SCI) dataset includes 1049
scientific abstracts collected from the ACL Anthol-
ogy. It consists of 743 examples for training, 154
samples for validation and 152 for testing. The

2Results with other normalization functions (e.g., L1,
L2, min-max) did not improve results.
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Models Neoplasm Glaucoma Mixed
F1 S-F1 A-F1 U-F1 F1 S-F1 A-F1 U-F1 F1 S-F1 A-F1 U-F1

AMPERE++ 63.73 - - - - - - - - - - -
Roberta 67.00 - - - 66.00 - - - 69.00 - - -
AMCT-Sci 68.16 59.99 49.12 95.45 62.28 64.71 24.78 95.24 69.43 55.31 58.00 94.76
TransforMED 69.96 58.72 55.65 95.51 69.72 65.32 47.00 96.88 71.82 57.14 63.41 94.90
RESATTARG 70.92 52.77 65.38 94.54 68.40 54.73 56.00 94.36 67.66 49.62 59.09 94.21

DMON 76.30
±0.71

68.25
±0.98

64.13
±0.47

97.33
±0.08

74.16
±1.10

73.16
±1.17

53.41
±0.63

97.27
±0.06

74.07
±1.11

68.35
±1.42

54.05
±0.74

97.08
±0.09

Table 1: Experimental results of argument structure learning in terms of macro-F1 scores on three AbstRCT
medical datasets. S-F1, A-F1, U-F1 and F1 refer to the average macro-F1 score of the support relation,
of the attack relation, of no-relation, and of their average, respectively. For DMON the mean results over
5 runs with variance are shown.

dataset has more fine-grained discourse relation-
ship categories while the number of labels is 27.
CDCP: The CDCP dataset contains 731 user com-
ments about consumer debt collection practices
from an eRulemaking website and include 581 ex-
amples for training and 150 for testing. Labels of
the CDCP dataset are ‘related’ and ‘un-related’.

4.2. Experimental Set-up
Model Settings: The maximum sequence length
is 128. The combination of kernel sizes for
the multi-scale convolution module is set to
{k1, k2, k3, k4, k5} = {7, 5, 5, 3, 1}. The window size
for the cropping is 13. λh and λt are set to 0.5. k1
and k2 is set as 1 and 2 in the label fusion part.
Training Details: We fine-tune the Bi-
oLinkBERT (Yasunaga et al., 2022) for the
AbstRCT dataset and LinkBERT (Yasunaga et al.,
2022) for the SciDTB and CDCP dataset. For the
training, all baseline models and our framework
are trained with FP16. We train all models on
a NVIDIA GeForce RTX 3090 GPU. All models
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a learning scheduler initialized at 2e−5

and linearly decreased to 0.

4.3. Baselines
We consider models that classify the argument re-
lationships given a representation of the pairs of
sentences obtained with a pretrained encoder.
AMPERE++ (Hua and Wang, 2022) uses a Roberta
model to concatenate 20 neighbouring sentences
with an argument and only predicts whether this
argument is a head or tail argument. The authors
did not name this model so we call it AMPERE++.
BERT (Devlin et al., 2019) fine-tunes a pretrained
BERT model to encode an argument pair and pre-
dict its relationship.
Roberta (Liu et al., 2019) fine-tunes a pretrained
Roberta model to represent a pair of sentences and

Models Full-F1 F1 R-F1 U-F1
RESARG - 67.60 38.99 96.20
RESATTARG - 73.64 50.00 97.28
BERT 32.83 73.89 50.47 97.30
AMCT-Sci 34.58 75.89 54.61 97.17
Roberta 35.96 75.88 54.25 97.51

DMON 48.37
±0.54

87.36
±0.25

77.03
±0.36

98.70
±0.02

Table 2: Experimental results of argument struc-
ture learning in terms of macro-F1 scores on the
SciDTB datasets. For DMON the mean results
over 5 runs with variance are shown. Full-F1, R-
F1, U-F1 and F1 refer to the average macro-F1
score of the full label space, the related relation, of
no-relation, and of related and no-relation, respec-
tively. For DMON the mean results over 5 runs with
variance are shown.

classifies the relationships.
AMCT-Sci (Stylianou and Vlahavas, 2021) is simi-
lar to Roberta, but encodes argument pairs with a
domain-specific BERT model.3
TransforMED (Stylianou and Vlahavas, 2021) inte-
grates a medical knowledge system to extract med-
ical entities from arguments. The authors inject
medical knowledge into their model by concatenat-
ing features of arguments and medical entities.
We also consider models that use attention mecha-
nisms to model relationships between arguments.
RESARG (Galassi et al., 2021) used a BiLSTM to
extract textual feature and then applied a residual
neural network to deal with the ASL task.
RESATTARG (Galassi et al., 2021) extended RE-
SARG with a coarse-grained parallel co-attention
mechanism to predict argumentative relations.
TSP-PLBA (Morio et al., 2020) consists of task-

3https://huggingface.co/allenai/
scibert_scivocab_uncased

https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
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specific parameterization (TSP) and proposition-
level biaffine attention (PLBA) to capture argument
structure from documents. TSP encodes the argu-
ments while PLBA predicts argument relations by
using a biaffine scoring function.
We then consider models that train a transition-
based dependency parser.
BERT-Trans (Bao et al., 2021) leverage the BERT
language model to obtain representation and pro-
pose a neural transition-based model to generate
a sequence of actions (shift, delete-delay, delete,
right-arc, right-arc-delay, and left-arc) that build an
argument structure (predicted nodes and relations).

Models F1 R-F1 U-F1
TSP-PLBA - 34.00 -
AMPERE++ 63.10 - -
RESATTARG 64.40 30.60 98.30
BERT-Trans 67.80 37.30 98.30

DMON 68.14
±0.45

38.26
±0.74

98.37
±0.06

Table 3: Experimental results of argument struc-
ture learning in terms of macro-F1 scores on the
CDCP datasets. For DMON the mean results over
5 runs with variance are shown. R-F1, U-F1 and
F1 refer to the average macro-F1 score of the re-
lated relation, of no-relation, and of their average,
respectively.

4.4. Results and Discussion
We run each model five times with different seeds
and report the average macro-F1 scores and their
variance obtained on the three absRCT datasets
the CDCP dataset and the SciDTB dataset.
AbsRCT: Table 1 shows that the DMON outper-
forms all baselines on all average F1 scores. Com-
pared with the state-of-the-art model TransforMED,
our model improves the average macro-F1 scores
by 6.34, 5.76, and 2.25 percentage points on the
Neoplasm, Glaucoma, and Mixed datasets, respec-
tively. Even though TransforMED explicitly injects
external medical knowledge, our approach still per-
forms better.
SciDTB: Table 2 shows that the DMON outper-
forms baseline models by a large margin when
evaluated on the SciDTB dataset. Compared to
the Roberta model, our model improves the aver-
age macro-F1 scores by 12.41, 11.48, and 22.78
percentage points on Full-F1, F1, and R-F1 scores.
CDCP: Table 3 shows that DMON also achieves
the best performance in terms of average macro-
F1 score on the CDCP dataset. Compared to the
BERT-Trans model our method improves the av-
eraged macro-F1 and R-F1 by 0.79 and 1.7 per-
centage points, respectively. Compared with the

BERT-Trans, our model is simple (can be applied
to other pairwise classification models) and can
achieve better performance. Additionally, BERT is
the transformer encoder but the proposed neural
transition-based model is to generate a sequence
of actions (shift, delete-delay, delete, right-arc, right-
arc-delay, and left-arc) that build an argument struc-
ture (predicted nodes and relations). To train this
transition system, they need to convert argument
structure learning data into the transition-based
structure data. This preprocessing adds complex-
ity.
Discussion: We observe that the performance
gains of DMON oompared to state-of-the-art base-
lines are different when analyzing the results ob-
tained on the three domains. For instance, when
comparing with baseline RESATTARG, DMON im-
proves the macro-F1 scores by 13.92, 5.38, 3.74
percentage points on SciDTB, Neoplasm, and
CDCP datasets, respectively. The AbstRCT (of
which Neoplasm is a part) and CDCP are imbal-
anced and have a high ratio of sentence pairs that
exhibit no argumentative relationship ("unrelated"
relationship). This could be a reason why DMON
has somewhat lower performance gains. On the
other hand, AbstRCT and CDCP have few relation-
ship types and it might be that the baselines already
deal with these in a satisfactory way, while they
have more difficulties with the 27 relationship types
of SciDTB. For this more difficult case of argumen-
tative structure learning, DMON has the highest
gains in performamce and improves the average
macro-F1 scores by 12.41, 11.48, and 22.78 per-
centage points on all 27 relationship type, on the
"unrelated" class and on the other 26 relationships,
respectively.
Large Language Models: As large language mod-
els capture the attention of the NLP communities,
we conduct a comparison of LLMs with the pro-
posed algorithm. We pick the GPT 3.5 turbo (gpt-
3.5-turbo-0613), a widely used LLM, and validate
it on the ASL task. We use the in-context prompt
learning (ICL) (Brown et al., 2020) to validate the
ASL task. We found the zero-shot ICL is much
worse than the few-shot ICL, so we reported the
results of the GPT 3.5 turbo by using the few-shot
ICL method. Experimental results show the number
of the demonstration samples is 2. We report the
Macro-F1 scores of the GPT 3.5 on the AbstRCT
(gla), AbstRCT (neo), AbstRCT (mix), CDCP and
SciDTB datasets, which are 12.03, 13.84, 11.19,
11.89, and 17.24, respectively. Results of the GPT
3.5 turbo are much lower than the fine-tuned mod-
els, i.e., our DMON model, whose scores are 73.16,
76.30, 74.07, 87.36, and 68.14. We think the rea-
son why the GPT 3.5 performs badly on the ASL
datasets is because LLMs fail to deal with tasks
which require complex reasoning ability.
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(a) Neoplasm Dataset (b) Glaucoma Dataset (c) Mixed Dataset (d) CDCP Dataset (e) SciDTB Dataset

Figure 5: Macro-F1 scores when changing window size of contextual arguments.

4.5. Ablation Study and Analysis of
Results

We conduct ablation experiments to study DMON’s
components and analyze them.

4.5.1. Bidirectional Learning Mechanism and
Confidence Voter

Table 4 shows results when ablating the bidirec-
tional learning mechanism and confidence voter.
The F1 scores obtained on all datasets are largely
reduced if we remove the bidirectional learning
mechanism and confidence voter. The macro-F1
scores on all three datasets (Neoplasm, Glaucoma,
and CDCP) decrease when we just use the predic-
tions of one of the two branches (i.e., head or tail
relationships) and use no confidence voter. The
same pattern holds when we directly remove one of
two branches when training the model. The macro-
F1 score is reduced on the Mixed dataset when we
remove the confidence voter and use tail prediction.
The macro-F1 shows the same pattern when we
only remove the head branch.

Model Neo Gla Mix CDCP SCI
DMON 76.30 74.16 74.07 68.14 87.36
w/o Voter (h) 74.31 72.04 73.42 67.50 87.08
w/o Voter (t) 75.74 73.83 74.84 67.50 86.58
w/o T 73.74 70.10 71.40 65.39 85.75
w/o H 75.62 71.48 74.88 66.55 87.08
w/o H+T 69.10 71.28 70.35 56.24 74.27

Table 4: Experimental results of argument structure
learning in terms of average macro-F1 scores on
the Neoplasm (Neo), Glaucoma (Gla), Mixed (Mix),
and CDCP datasets. w/o Voter (h) or Voter (t) re-
moves the confidence voter and leverages head
or tail prediction, respectively. w/o T or H removes
either the head branch or tail branch when train-
ing the model. w/o H+T completely removes the
bidirectional learning mechanism.

4.5.2. Cropping Strategy

We analyze several aspects of the cropping strat-
egy.

Training with Different Cropped Tensors: Fig-
ure 5 compares results of DMON using cropped
tensors with the results of using the full relation-
ship tensor as input. We observe that DMON using
cropped tensors outperforms DMON with the full
tensor on the four datasets. Using the cropping
strategy improves the macro-F1 score of our frame-
work by 0.2, 0.95, 4.25, 1.38, and 0.18 percentage
points on Neoplasm, Glaucoma, Mixed and SciDTB
datasets, respectively. The cropped tensors offer
more variation in the training data, and its represen-
tations contribute to the generalization capabilities
of the model.

Model Neo Gla Mix CDCP SCI
DMONwin=13 76.30 74.16 74.07 68.14 87.36
DMONfull 76.10 73.21 69.82 66.76 87.18

Table 5: Results of the cropping strategy with win-
dow size of 13 (DMONwin=13) and of using the com-
plete relationship tensor (DMONfull) during train-
ing.

Information Alignment: To study the information
alignment of the cropping with the original relation-
ship tensor, we develop two shuffle approaches
called order shuffle (ord) and random shuffle (rad).
ord scatters the order of the arguments, that is,
horizontal and vertical indexes of the cropped rela-
tionship tensor are shuffled. rad randomly chooses
pairwise samples to fill the cropped relationship
tensor. Figure 6 shows an example illustrating the
ord and rad approaches. Table 6 shows that the

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Argumentative
Relationship

(3,3) (3,1) (3,2)

(1,3) (1,1) (1,2)

(2,3) (2,1) (2,2)

(2,1) (3,1) (1,3)

(2,2) (2,3) (3,3)

(1,2) (3,2) (1,1)

Order
Shuffled (ord)

1 2 3

1

2

3

3 1 2

3

1

2

Random
Shuffled (rad)

Figure 6: An example that illustrates the order shuf-
fle and random shuffle. For simplicity we only show
the relationship matrix.

macro-F1 score decreases by using the rad method.



5116

Therefore, it is important to keep head and tail re-
lationships aligned, that is, correctly representing
the asymmetric relationships between arguments.
Table 6 also reveals that the order of the argumen-
tative sentence pairs in the relationship tensor is
important as it implicitly captures the coherence of
the discourse.

original ord rad Neo Gla Mix CDCP SCI
✓ ✗ ✗ 76.30 74.16 74.07 68.14 87.36
✗ ✓ ✗ 75.20 68.68 72.44 61.07 75.88
✗ ✗ ✓ 71.43 74.31 72.85 65.86 86.69
✗ ✓ ✓ 59.98 55.08 60.02 50.78 66.27

Table 6: An experiment for exploring the informa-
tion alignment of the cropping strategy. original
represents DMON without any shuffling strategies.

Contextual Windows Size: The results demon-
strate that encoding contextual arguments and their
relationships is beneficial. Figure 5 shows the
macro-F1 scores by changing the window size of
the cropped relationship tensor for the evaluated
datasets. The macro-F1 score curve shows an
upward trend by encoding more neighboring ar-
guments and relationships, but slightly decreases
when considering the full discourse (Table 5).

5. Conclusion

In this paper, we have proposed a novel framework
called the Dual-tower Multi-scale cOnvolution neu-
ral Network (DMON) to deal with the ASL task that
in a flexible way can learn the argumentative DAG
structure taking into account contextual argumenta-
tive relationships. A sentence or clause on its own
seldom fulfils an argumentative role in a discourse,
it is only when paired with another sentence and in
the context of other sentences that its argumenta-
tive role becomes apparent. In an argumentative
DAG structure a sentence can have multiple par-
ents and children, and our model can deal with this
flexibility. We conduct experiments on four datasets
covering the medical, legal and scientific domains,
namely abstRCT, CDCP SciDTB and achieve new
state-of-the-art performance, when compared to
several strong baselines. Furthermore, we perform
ablations and in-depth analyses to prove the effec-
tiveness of each component of our model.

Limitations

The limitation of our paper are reflected as fol-
lows: 1) Computation limitations prevented us
from fully exploring the effectiveness of the self-
attention mechanism in argument structure learn-
ing. In future work, we might leverage more pow-

erful GPUs when implementing a multi-head self-
attention mechanism and thoroughly investigate
its impact. Nevertheless the performance of our
model is better than previous state-of-the-art mod-
els that use attention and are computationally more
expensive. 2) We will test whether our bidirectional
learning mechanism can be embedded to other
pairwise classification models in NLP to improve
their performance. In the future, we will leverage
balancing approaches, such as focal loss and re-
sampling, to alleviate this problem.
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