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Abstract
We propose DOC-RAG - Domain-distributed Co-occurrence Retrieval Augmentation for ASR language model
personalization aiming to improve the automatic speech recognition of rare word patterns in unseen domains. Our
approach involves contrastively training a document retrieval module to rank external knowledge domains based
on their semantic similarity with respect to the input query. We further use n-gram co-occurrence distribution to
recognize rare word patterns associated with specific domains. We aggregate the next word probability distribution
based on the relative importance of different domains. Extensive experiments on three user-specific speech-to-text
tasks for meetings, TED talks, and financial earnings calls show that DOC-RAG significantly outperforms strong
baselines with an 8-15% improvement in terms of perplexity and a 4-7% reduction in terms of Word Error Rates in
various settings.
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1. Introduction

Language modeling is a core problem in natural
language processing and is critical for automatic
speech recognition (ASR) (Mikolov et al., 2010;
Chen et al., 2015; Xu et al., 2018). Recently,
Transformer-based LMs trained on large corpora
have been extensively used for next-word predic-
tion tasks and in the re-scoring stage of ASR sys-
tems (Irie et al., 2019a; Li et al., 2020a). Language
models tend to memorize knowledge within their
parameters during their training process (Petroni
et al., 2019; Jang et al., 2022). The existence of
user-preferred word patterns, named entities, and
other domain-specific tail words that are not seen
frequently in the training data make it difficult to
personalize LMs for ASR second-pass re-scoring
for unseen users and domains(Schick and Schütze,
2019; Maynez et al., 2020; Serai et al., 2022).

Retrieval augmentation (Lewis et al., 2020) has
been recently proposed to adapt LMs to external
world knowledge at inference time by using a re-
trieval mechanism to select and attend over rele-
vant knowledge from an external data store to help
inform its predictions(Naik et al., 2022; Liu et al.,
2022; Borgeaud et al., 2022). Prior research has
explored explicit memorization through k-Nearest
Neighbor Language Models (kNN-LM) (Khandel-
wal et al., 2020), attention-based history through
Grave et al., and non-parametric retrieval-based
LM pre-training such as REALM (Guu et al., 2020)
and RAG (Lewis et al., 2020). However, these
methods were initially proposed to enhance the

* Work done during internship at Meta

LM memorization capabilities rather than personal-
izing LMs to specific domains or users.

Our work drives motivation from the hypoth-
esis that rare word patterns are domain/user-
specific. By augmenting LM predictions with
n-gram probabilities from a subset of query-
relevant users/domains may address the prob-
lem of ASR LM personalization. To personalize
ASR models without the need to continually re-
train LMs for newer information, we propose -
Domain-Distributed Co-occurrence (DOC-RAG),
a novel retrieval augmentation approach that aug-
ments a pre-trained language model with a knowl-
edge retriever which is trained via contrastive learn-
ing to rank textual documents/recordings from an
external knowledge data store based on their se-
mantic similarity with the input query. Our approach
rewards retrievals that are contextually relevant to
the input query while penalizing uninformative re-
trievals by assigning a probability distribution over
the external knowledge domains to appropriately
weigh their individual contribution.

Inspired by (Mathur et al., 2023), we address
the challenge of capturing personalized word pat-
terns associated with specific users/domains by
exploiting bi-gram word frequencies from a subset
of highly related and overlapping domains to the
input query. We aggregate the target word proba-
bility distribution from different domains, weighted
according to their relative importance to the query
for the next word prediction and ASR second-pass
re-scoring. The main contributions of this work are:

• We propose DOC-RAG, a
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Figure 1: Domain-distributed Co-occurrence Retrieval Augmentation: (Left) Input query q and domain-specific
text/recordings are encoded using BERT models (η1, η2), which are used as an input to the Neural Retriever and
trained via contrastive learning to score correct positive pairs higher than negative query–context pairs. (Right) At
inference, we compute the relevance score P (di|q) between the query and each domain di as a dot product of their
encoded representations using pre-trained BERT models (see red). Distributed co-occurrence matrices for each
target domain represent the bi-gram frequencies f̂ i

(wt−1,wt)
. We sum the word co-occurrence probabilities weighted

by the relevance of the selected domain to obtain the probability P (wt|q) for next-word prediction.

Domain-distributed Co-occurrence
Retrieval Augmentation that contrastively
trains a neural retriever to select the most rele-
vant external knowledge domains to the input
query and uses n-gram word co-occurrence
distribution to bias LM predictions.

• Experimental results show that our proposed
approach achieves SOTA results on four
datasets: WikiText-103, Earnings conference
calls, AMI Meetings Corpus, and TED LIUMv3,
significantly outperforming prior systems by a
reduction of 8-15% in perplexity and 4-7% in
Word Error Rate (WER).

2. Methodology

Fig. 1 describes our proposed DOC-RAG that bi-
ases the next word predictions from a base LM (pre-
trained on a generic corpus G) based on the rele-
vance of K unseen domains/users d1, d2, · · · , dK
to the input query q = {w1, w2, · · · , wt−1}. We hy-
pothesize that rare words are domain-specific and
that their distribution varies with topics/users. Fig.
1-Left illustrates the contrastively trained retriever
of DOC-RAG which selects the best matching do-
mains/users from a large external knowledge base
for the input query. Fig. 1-Right shows how DOC-
RAG augments the next word probability distribu-
tion PLM (wt|q) over the target token wt from the
LM with domain-distributed word co-occurrence
information. DOC-RAG calculates the probability
distribution of NWP over the vocabulary by condi-
tioning on the relevance of the underlying domains
to the incoming query (q) based on the retrieved
out-of-domain training set as PDOC−RAG(wt|q) =∑K

i=1 P (di|q) × P (wt|di, q). The query in the ex-
periments can refer to either a partial text string
for which we aim to find the next word (Next Word
Prediction Task) or it may refer to the n-best hypoth-
esis from audio models that are rescored based on
language model perplexity (ASR 2nd-pass rescor-
ing).

Encoding Query and Domain-specific Training
Corpus: Given a query q and a large number of
target domain contexts (di), we map them to fixed-
length vectors using separate encoders η1 and η2,
respectively. We use BERT (Devlin et al., 2019),
a bidirectional Transformer architecture to encode
the query and the domain context using the [CLS]
token representation from the last layer. The query
embedding is represented by q̂ = η1(q) and the do-
main context is represented by d̂i = η2(di). If the
input length is larger than 512, the context embed-
ding is calculated as the average of all sentence
embedding cj as d̂i = η2(di) =

∑l
j=0 η2(cj).

Training DOC-RAG Retriever: The neural re-
triever inputs the set of input query and domain
contexts to output a relevance score s(q, di) for
each domain di. We use the dot product between
the encoded query and the context vectors as the
scoring function s(q, di) = ⟨q̂, d̂i⟩. During training,
we use contrastive learning to teach the model to
discriminate and to score positive pairs (from the
same domains) higher than negative (from different
domains) query–context pairs. Formally, given a
query q with an associated positive domain d+, and
a pool of negative domains (d−i ), the contrastive
InfoNCE loss compares the positive and the nega-
tive pairs based on the relevance score as defined
below with τ as a temperature parameter.

L(q, d) =
− exp(s(q, d+)/τ)

exp(s(q, d+)/τ) +
∑K

i=1 exp(s(q, d
−
i )/τ)

Retrieving Relevant Domains: At inference, the
probability of the retriever model choosing a par-
ticular domain from the out-of-domain training
set P (di|q) is computed as the relevance score
between the query and the domain context as
P (di|q) = s(q, di) encoded by the trained retriever.
Constructing Distributed Co-occurrence Matrix:
Words that occur together in the out-of-domain
training set are more likely to trigger together at
inference as well. This chance co-occurrence is
also highly dependent on the underlying domain
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of the query. Hence, we construct word-level co-
occurrence matrices corresponding to each target
domain di. To represent possible next words, we
compute the bi-gram frequencies f̂ i

(wt−1,wt)
for all

vocabulary words V in a particular domain/user
document di. For the last token in the input query
sequence q, the probability of the target token for
the next word prediction (NWP) conditioned on
the selected domain is calculated as P (wt|di, q) =
[f̂ i

(wt−1,1)
, f̂ i

(wt−1,2)
, · · · , f̂ i

(wt−1,V )].
Language Model Augmentation: DOC-RAG
computes the retrieved next-word probability
by summing the word co-occurrence proba-
bilities weighted by the relevance of the se-
lected domain to obtain the probability distribu-
tion of the next word prediction across each
word as PDOC−RAG(wt|q) =

∑K
i=0 s(q, di) ·

[f̂ i
(wt−1,1)

, · · · , f̂ i
(wt−1,V )].

Next, we estimate the retrieved next-word proba-
bility distribution through DOC-RAG retrieval aug-
mentation (pDOC−RAG) with the language model
output (PLM ) using a hyperparameter λ to produce
the final NWP probability distribution as P (wt|q) =
λPDOC−RAG(wt|q) + (1− λ)PLM (wt|q).

3. Experiments

Datasets: Inspired by (Mathur et al., 2023), we
use Librispeech (Panayotov et al., 2015) text for
LM pre-training. We evaluate LM personalization
on two text datasets - WikiText-103 (Merity et al.,
2017), financial earnings calls corpus (Earnings-
21+22) (Rio et al., 2021; Del Rio et al., 2022);
and two speech datasets - AMI Meetings (Kraaij
et al., 2005), speaker TED talks (Hernandez et al.,
2018). To study the personalization of ASR LMs,
we reformulated existing datasets to identify ex-
plicit users/domains (wiki page, financial company,
speaker, or meeting). For each dataset, we com-
bined the original train/val/test portions and split
user-based data in the ratio of 70:10:20 such that
each user/domain appears only in one of the splits.
Table 1 shows domain distribution and corpus size.
Domains in our work refer to the categories with a
distribution different from the data used to train the
base model. It refers to different users/topics/call
recordings based on the dataset. Domains in the
AMI Meeting corpus are formed based on speaker
IDs. Domains in Earnings-21+22 data correspond
to different companies. A specific domain in the
TED-LIUM v3 dataset refers to a particular user.
Domains in Wikitext-103 correspond to individual
Wikipedia pages.
Language Model Architecture: Inspired by
(Mathur et al., 2023), we experiment with both
LSTM and Transformer LMs. LSTM model
configurations: 2 layers, 300-d embedding layer,
hidden dimension of 1500. Transformer LM

configurations: 4 layers encoder-decoder, 12
heads, 128-d hidden representations, feed-forward
layer of 3072-d. We use a pre-trained RNN-T ASR
Model with Emformer encoder (Shi et al., 2021),
LSTM predictor, and a joiner with 80M parameters
for generating ASR n-best hypotheses.
Retriever Model Architecture: We use asymmet-
ric dual encoders for domain retrieval to overcome
domain distribution shift. We leverage two differ-
ent Bert models (Devlin et al., 2019) for query and
context encoding. We use pre-trained BERT with
frozen weights for the query encoder. The BERT
model for context encoder is fine-tuned via con-
trastive learning.
Pre-training LMs: Inspired by (Mathur et al.,
2023), LSTM and Transformer LMs are pre-trained
on Librispeech (Panayotov et al., 2015) training
set for 25 epochs with a batch size of 256, Adam
optimizer and cross-entropy loss for NWP task and
benchmarked on the least perplexity of the Lib-
rispeech validation set.
Adaptation to Unseen Domains: Inspired by
(Mathur et al., 2023), we evaluate the retrieval
augmentation Without fine-tuning (LM pre-trained
on generic corpus) and with fine-tuning (LM pre-
trained on generic corpus and fine-tuned on out-of-
domain train corpus). Evaluation is benchmarked
on the out-of-domain test set.
Baselines: Inspired by (Mathur et al., 2023), we
benchmark the following baselines:

• (i) LSTM/Transformer: Language model with-
out any augmentation

• (ii) Neural Cache Model (Grave et al.) LM
augmented with a continuous cache memory
of previous hidden states. The stored keys are
used to retrieve the next word through a dot
product-based memory lookup with the query.

• (iii) kNN-LM (Khandelwal et al., 2020): Fol-
lowing (Das et al., 2022), kNN-LM memorizes
context vectors from out-of-domain train set in
an external data store. At inference, LM output
is interpolated with the k-nearest neighbors of
the decoder output representations.

• (iii) RAG w\ DPR: Retriever Augmented Gen-
eration (Lewis et al., 2020) with Dense Pas-
sage Retriever for ranking.

Ablation Studies: We run the following ablation
studies:

• (i) DOC-RAG w\o Contrastive Retriever: query
and domain context encoded through a pre-
trained BERT to compute relevance scores.
We evaluate frozen Bert models for both query
and context encoding.
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Dataset Train Val Test Vocab Size ASR Application # Domains
Earnings-21+22 49.6K 7.1K 14.2K 20K Earning Call 169
AMI Meeting Corpus 17.1K 2.7K 5.8K 11K Meeting Recording 135
TED-LIUM v3 188.9K 26.6K 9.3K 46K TED Talk 2351
Wikitext-103 2M 300K 10K 200K Wikipedia Page 30k

Table 1: Data Statistics

• (ii) DOC-RAG w\ Distributed Co-occurrence :
No retriever step, a single co-occurrence ma-
trix computed over combined out-of-domain
train set of all users/domains.

Evaluation: (1) Word-level perplexity scores to
evaluate LM performance for next-word prediction.
(2) Word Error Rate (WER) for ASR second-pass
re-scoring in speech datasets. Results report mini-
mal perplexity by iterating the interpolation param-
eter λ between (0, 1) in increments of 0.1.

4. Results and Analysis

Perplexity Evaluation: Table 2 compares the per-
plexity of the proposed DOC-RAG retrieval augmen-
tation against baselines. We observe that the
Neural Cache model (Li et al., 2020b) is ineffec-
tive due to its inability to handle long-range de-
pendencies compared to other baselines. kNN-
LM (Khandelwal et al., 2020) decreases perplexity
by 5-10%, yet faces difficulties due to the non-
parametric fuzzy characteristic of k-nearest con-
text spans within tens of millions of stored con-
texts throughout the entire data store. This leads
to sub-optimal retrieval of contexts from domains
unrelated to the input query. RAG (Lewis et al.,
2020) is the strongest baseline but has the draw-
back of not explicitly capturing user-specific word
patterns. Our proposed DOC-RAG achieves state-
of-the-art performance as it improves the perplex-
ity scores by a significant margin on WikiText-
103 (54.6 − 50.5% w\o fine-tuning, 8.5 − 12.6%
with fine-tuning), Earnings21+22 (37.4 − 37.7%
w\o fine-tuning, 8.4 − 9.2% with fine-tuning), AMI
Meeting Corpus (61.2 − 61.9% w\o fine-tuning,
5.3 − 9.2% with fine-tuning), and TED LIUMv3
(19.1− 22.2% w\o fine-tuning, 2.2− 2.8% with fine-
tuning). These experiments prove that contextu-
ally matching queries with external domains via
contrastive learning improves retrieval task perfor-
mance and reinforces the NWP task. Further, Ta-
ble 2 shows that our proposed approach improves
WER by 2-5% for second-pass ASR rescoring on
AMI Meetings and TED LIUMv3 datasets due to its
ability to correctly recognize domain-specific rare
words in n-best hypotheses produced by the audio
model. Variations in perplexity WER scores for
LSTM and Transformers are highly correlated with
the domain of the training data. Overall, Transform-

ers are better than LSTM for ASR personalization
tasks due to a higher number of parameters.
Ablation Analysis: Replacing the distributed word
co-occurrence with a unified bi-gram frequency
for all external domains significantly deteorites LM
performance across various settings. This shows
the advantage of incorporating distributed word
co-occurrences for exploiting domain/user-specific
word patterns. Using a contrastive retriever in place
of a Dense Passage Retriever further improves the
performance as it is able to use the rare word pat-
terns from different domains based on their contex-
tual similarity to the input, with additional benefits
of reduced computation and memory requirements
at inference. DOC-RAG shows the best performance
by combining both the contributions to adaptively
weigh augmented predictions with LM output. We
also observe that an increase in hyperparameter
λ corresponds to an increase in perplexity scores
as explicit memorization of rare word patterns ex-
tracted from similar domains benefits the NWP
task. However, it steadily decreases after reaching
an inflection point.
Adaptation to Unseen Domains: We observe
that retrieval augmentation on fine-tuned models
shows an increase of 5-18% compared to non-fine-
tuned counterparts. This observation supports our
hypothesis that transfer learning improves model
performance on the out-of-domain test sets. More-
over, we see that explicit memorization from the
out-of-domain train set is pivotal to effectively pre-
dict domain-specific rare word patterns missed dur-
ing supervised fine-tuning step.
Runtime and Memory Cost: Let us assume the
time complexity for a single pass through LM with-
out augmentation is constant O(C). Let us assume
N domain-specific documents for any input sample.
The vocab size of the dataset is V. Each document
Neural Retriever model computes the relevance
score for N documents and the query with overall
time complexity of O(NC). Bi-gram matrix com-
putation for N documents can be approximated to
O(NV ) considering each document may contain
at most some multiple of V tokens. However, these
bi-gram matrices are cached and their computation
needs to be done only once for the entire external
data. Finally, computing the augmented probability
scores requires O(NxV ) time complexity, where V
is the vocab size. Hence, overall time complexity is
O(NC +N +NV ). Therefore, time Complexity of
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Model WikiText-103 Earnings-21+22
Perplexity (↓) Perplexity (↓)

w
\o

Fi
ne

-t
un

in
g LSTM 1384.1 757.6

+ Neural Cache 1325.3 723.8
+ kNN-LM 1191.6 659.1
+ RAG 585.4 452.5
+ DOC-RAG 539.8 412.3
+ DOC-RAG w \o Distributed Co-occurrence 603.6 477.2
+ DOC-RAG w \o Contrastive Retriever 544.3 420.3

W
ith

Fi
ne

-t
un

in
g LSTM 103.9 66.2

+ Neural Cache 97.6 66.0
+ kNN-LM 91.8 65.7
+ RAG 85.3 63.1
+ DOC-RAG 80.2* 59.6*
+ DOC-RAG w \o Distributed Co-occurrence 89.2 64.5
+ DOC-RAG w \o Contrastive Retriever 84.2 63.0

(a) LSTM LM

Model WikiText-103 Earnings-21+22
Perplexity (↓) Perplexity (↓)

w
\o

Fi
ne

-t
un

in
g Transformer 1322.3 834.2

+ Neural Cache 1295.3 802.4
+ kNN-LM 1150.4 717.8
+ RAG 555.1 463.5
+ DOC-RAG 569.3* 446.1*
+ DOC-RAG w \o Distributed Co-occurrence 585.3 454.8
+ DOC-RAG w o Contrastive Retriever 578.2 452.7

W
ith

Fi
ne

-t
un

in
g Transformer 88.6 55.2

+ Neural Cache 86.8 54.9
+ kNN-LM 79.3 54.2
+ RAG 75.3 52.5
+ DOC-RAG 72.5* 49.6*
+ DOC-RAG w \o Distributed Co-occurrence 76.5 53.8
+ DOC-RAG w \o Contrastive Retriever 76.1 52.6

(b) Transformer LM
Model AMI Meeting Corpus TED LIUMv3

Perplexity (↓) WER (↓) Perplexity (↓) WER (↓)

w
\o

Fi
ne

-t
un

in
g Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + LSTM 1636.4 31.75 427.7 13.51
+ Neural Cache 1545.4 31.69 414.5 13.25
+ kNN-LM 1232.2 31.62 389.7 7.82
+ RAG 535.1 31.43 336.6 7.35
+ DOC-RAG 471.2* 31.15* 315.0* 7.16*
+ DOC-RAG w \o Distributed Co-occurrence 606.7 31.25 335.4 7.34
+ DOC-RAG w \o Contrastive Retriever 490.5 31.22 332.8 7.23

W
ith

Fi
ne

-t
un

in
g Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + LSTM 37.7 31.40 132.6 13.27
+ Neural Cache 37.5 31.36 132.2 13.03
+ kNN-LM 37.1 31.27 131.5 7.76
+ RAG 36.5 31.20 131.0 7.36
+ DOC-RAG 35.1* 31.14* 128.7* 7.03*
+ DOC-RAG w \o Distributed Co-occurrence 36.6 31.20 130.3 7.44
+ DOC-RAG w \o Contrastive Retriever 36.2 31.16 130.2 7.28

(c) LSTM LM

Model AMI Meeting Corpus TED LIUMv3
Perplexity (↓) WER (↓) Perplexity (↓) WER (↓)

w
\o

Fi
ne

-t
un

in
g Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + Transformer 2114.3 32.05 442.0 13.24
+ Neural Cache 1987.5 32.01 424.5 13.18
+ kNN-LM 1579.0 31.95 398.6 7.57
+ RAG 865.2 31.39 330.6 7.20
+ DOC-RAG 601.4* 31.25* 310.1* 7.05*
+ DOC-RAG w \o Distributed Co-occurrence 637.1 31.37 332.3 7.22
+ DOC-RAG w \o Contrastive Retriever 624.9 31.33 327.4 7.14

W
ith

Fi
ne

-t
un

in
g Audio Model Only (Emformer) – 32.54 – 17.23

Audio Model + Transformer 29.5 31.28 116.7 12.98
+ Neural Cache 29.3 31.24 116.2 12.78
+ kNN-LM 29.1 31.19 115.6 7.35
+ RAG 27.4 31.09 114.2 7.15
+ DOC-RAG 26.4* 31.03* 112.3* 6.93*
+ DOC-RAG w \o Distributed Co-occurrence 28.1 31.14 114.0 7.21
+ DOC-RAG w \o Contrastive Retriever 27.7 31.10 113.0 7.04

(d) Transformer LM

Figure 2: Performance comparison of DOC-RAG for (a,c) LSTM and (b,d) Transformer LMs and ablations (in red) for
the Next Word Prediction and Second-Pass ASR Re-scoring tasks on (1) WikiText-103, (2) Earnings-21+22, (3)
AMI Meeting Corpus, (4)TED LIUMv3 datasets. DOC-RAG achieves the lowest perplexity scores and minimum WER
in all settings. * indicates statistically significant results based on Wilcoxon’s signed rank test (5 runs, p < 0.001).

DOC-RAG at inference: O(N(C + V )); time com-
plexity for Bi-gram matrix computation: O(NV );
memory for DOC-RAG cache: O(NV 2).

Time and memory complexity for RAG with DPR
is similar to DOC-RAG as it still needs to compute
the relevance score without training the neural re-
triever from scratch (O(constant+NV ) which ap-
proximates to O(NV )). In Knn-LM, the datastore
caches all context vectors for the entire train set.
Each context vector requires a single pass through
the BERT encoder, taking an over time complexity
of at most O(NV ∗ C). Each context vector is of
fixed dimension D (D=768 for BERT). So we com-
pute context vectors for all tokens in the training
set (O(NV )). Therefore, time complexity of Knn-
LM at inference: O(NV ); time complexity of data
store computation: O(NV C); memory for Knn-LM:
O(NV ∗D).

DOC-RAG is more time efficient both during data
store computation as it does not require a pass
through encoder for each token in the data set.
DOC-RAG has a slightly more time complexity due
to domain ranking. Although it may seem that
DOC-RAG requires more memory than KNN-LM,
a large majority of the bi-gram matrices are sparse
due to their cells being close to zero. Hence, we
use Numpy sparse matrix implementation to com-
press their memory footprint. This is not possible
in KNN-LM due to the high dimensionality of BERT
embeddings that cannot be further compressed

without loss of information.

5. Conclusion and Future Work

We introduce Domain-Distributed Co-occurrence
Retrieval Augmentation (DOC-RAG) for ASR LM
personalization. This technique involves a con-
trastively trained retrieval module ranking external
knowledge domains based on their semantic simi-
larity with the input query. We use bi-gram word fre-
quency distribution to recognize personalized word
patterns associated with specific users/domains
and aggregate the contextual probabilities of the
next word prediction task from different domains
through relative augmentation of the input query.
Experiments on four user-specific ASR corpora
show that DOC-RAG achieves the best perplexity
and WER. our proposed method is easily exten-
sible to any encoder, including large Transformer
decoder models like LLama (Touvron et al., 2023).
by just using the next word prediction probabilities
from such large models. This profound advantage
of our method helps make our work relevant even
for future ASR LLM decoder models where we can
utilize DOC-RAG augmentation without any archi-
tectural changes. Our method can also be directly
utilized for improving LLM text generation perfor-
mance for novel unseen domains. Future work will
explore multilingual and streaming ASR.
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