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Abstract
With an auxiliary corpus (non-target speaker corpus) for model pre-training, Text-to-Speech (TTS) methods can
generate high-quality speech with a limited target speaker corpus. However, this approach comes with expensive
training costs. To overcome the challenge, a high-quality TTS method is proposed, significantly reducing training costs
while maintaining the naturalness of synthesized speech. In this paper, we propose an auxiliary corpus compression
algorithm that reduces the training cost while the naturalness of the synthesized speech is not significantly degraded.
We then use the compressed corpus to pre-train the proposed TTS model CMDTTS, which fuses phoneme and word
multi-level prosody modeling components and denoises the generated mel-spectrograms using denoising diffusion
probabilistic models (DDPMs). In addition, a fine-tuning step that the conditional generative adversarial network
(cGAN) is introduced to embed the target speaker feature and improve speech quality using the target speaker
corpus. Experiments are conducted on Chinese and English single speaker’s corpora, and the results show that
the method effectively balances the model training speed and the synthesized speech quality and outperforms the
current models.
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1. Introduction

Recently, there have been notable advancements
in Text-to-Speech (TTS) systems based on deep
learning (Liu et al., 2024) concerning the generation
of high-fidelity speech (Skerry-Ryan et al., 2018;
Ren et al., 2020). Nonetheless, achieving high-
quality models like Tacotron2 (Shen et al., 2018)
and FastSpeech2 (Ren et al., 2020) demands ex-
tensive training data. Given the expense of col-
lecting such a sizable corpus, researchers have
explored various strategies for synthesizing speech
using a limited target speaker corpus. Some stud-
ies have concentrated on enlarging the corpus
through the data augmentation methods (Xu et al.,
2020). Meanwhile, several investigations seek to
mitigate the constraints imposed by a limited target
speaker corpus through the multi-speaker modeling
techniques (Cooper et al., 2020) and knowledge
transfer from non-target speakers.

In the quest to enhance synthesized speech
quality, researchers have embraced various tech-
niques. These include prosody modeling with a
GMM-based mixture density network (Du and Yu,
2021), multi-speaker modeling (Cooper et al., 2020)
and acoustic feature post-processing (Bollepalli
et al., 2019). The main goal of such methods is to
enrich the naturalness of the synthesized speech.

The advancement of denoising diffusion probabilis-
tic models (DDPMs) (Ho et al., 2020; Zhang et al.,
2023) has led to the emergence of methods such as
DiffWave (Kong et al., 2020b) and Prodiff (Huang
et al., 2022), aimed at enhancing the fidelity of
synthesized speech. However, little attention has
been paid to improving the quality of synthesized
speech with compressed auxiliary corpus. More
data can provide more learning opportunities and
help the model better capture the characteristics
of the speech. Therefore, improving the quality of
speech synthesis while reducing the training cost
by reducing the training data is a contradiction. We
analyze the corpus characteristics to address this
problem and propose a novel speech synthesis
method with limited target speaker corpus.

An auxiliary corpus compression algorithm is
proposed to reduce the corpus size while main-
taining its representativeness and diversity. The
compressed auxiliary corpus is used to train the
proposed TTS model CMDTTS. We use a neu-
ral network-based reference encoder to extract
the prosody information better from the real mel-
spectrograms. The phonemes are embedded and
encoded, and the words in the input text and the
context information are extracted using a BiLSTM.
To improve the naturalness of the synthesized
speech, the improved DDPMs is used to fine-tune
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the generated mel-spectrograms. In addition, we
introduce conditional generative adversarial net-
works (cGAN), a fine-tuning process using the tar-
get speaker corpus while embedding the target
speaker’s style, resulting in personalized speech
synthesis. Experiments show that the auxiliary cor-
pus compression algorithm works well in Chinese
and English corpora. Compared to state-of-the-art
methods, the proposed method completes model
training faster and with less quality degradation.

Our contributions are as follows: 1) A novel al-
gorithm is proposed for compressing auxiliary cor-
pora, which effectively mitigates the negative im-
pact of corpus compression on speech quality while
reducing model training costs; 2) We introduce
a non-autoregressive model CMDTTS that com-
bines a multi-level prosody modeling component
and DDPMs fine-tuning mel-spectrograms. The
reference encoder captures phoneme-level and
word-level features from the real mel-spectrogram,
while the addition of DDPMs helps in generating
mel-spectrograms that closely resemble the real
data; 3) We propose a fine-tuning strategy that uses
cGAN to fine-tune CMDTTS to synthesize speech
with a higher degree of naturalness and speaker
similarity.

2. Related Work

2.1. Text-to-Speech with Limited Target
Speaker Corpus

In recent years, speech synthesis models based
on a large non-target speaker corpus and a lim-
ited target speaker corpus have made remarkable
progress in the quality of speech synthesis. Cur-
rently, transfer learning (TL) (Xing et al., 2022) has
become one of the important techniques for im-
proving the performance of speech synthesis, es-
pecially when dealing with limited target speaker
data. The main idea of TL is to learn knowledge
from non-target speaker corpora and apply it to the
target speaker. However, training such high-quality
TTS models requires a large amount of high-quality
multi-speaker speech corpora. This significantly
increases the training cost of the model.

In cases where the target speaker data is lim-
ited, researchers have proposed data augmenta-
tion methods based on Voice Conversion (VC) (Wal-
czyna and Piotrowski, 2023). Huybrechts et al.
(Huybrechts et al., 2021) proposed a method for
synthesizing speech with a limited target speaker
corpus by training a VC model to generate speech
with the style of the target speaker. This synthe-
sized speech and the target corpus are used to
jointly train a TTS model, followed by fine-tuning
using the target speaker corpus. Building upon
this, Shah et al. (Shah et al., 2021) enhanced the

naturalness and similarity to the target speaker by
replacing the autoregressive model used in (Huy-
brechts et al., 2021) with a non-autoregressive
model and subsequently fine-tuning it using cGAN
(Mirza and Osindero, 2014). However, both of
these methods heavily rely on the capability of the
VC model, significantly increasing the training cost
of the TTS model.

2.2. Denoising Diffusion Probabilistic
Models

The denoising diffusion probability models is a prob-
abilistic denoising method. Specifically, this model
first establishes the joint probability distribution be-
tween noise and speech signals by observing their
statistical characteristics. Then, by maximizing this
joint probability distribution, the noise parameters
are estimated. Finally, using these parameters, the
elimination of noise is achieved.

Recently, the DDPMs have been developed
rapidly in various applications such as text-to-image
(Zhang et al., 2023) and text-to-speech (Huang
et al., 2022). Grad-TTS(Popov et al., 2021) employs
a framework based on stochastic differential equa-
tions to model the noise and various parameters of
the reconstructed data. A diffusion-based decoder
converts the parametric Gaussian noise output by
the encoder into a mel-spectrogram. However, the
diffusion process requires multiple iterations, result-
ing in a slower sampling speed. Researchers have
proposed adversarial learning methods to reduce
iterations and learn adaptive noise schedules to ad-
dress this issue. Salimans et al. (Salimans and Ho,
2022) proposed a method that utilizes knowledge
distillation (Gou et al., 2021) to accelerate sampling
and demonstrated its strong performance. These
methods primarily focused on the image domain.
Huang et al. (Huang et al., 2022) investigated a pro-
gressive fast diffusion model for speech synthesis
and demonstrated improved sampling speed and
high-quality synthesized speech. Nevertheless, the
abovementioned method must be performed on a
large target speaker corpus.

2.3. Generative Adversarial Networks

Generative adversarial networks (GANs) consist
of two parts: a generator and a discriminator. The
goal of the generator is to generate data that are
as realistic as possible, while the goal of the dis-
criminator is to differentiate between the gener-
ated data and real data. GANs perform well in
acoustic models and vocoders for speech synthe-
sis. Glow-WaveGAN (Cong et al., 2021) generates
high-quality speech by combining variational auto-
encoder and GANs to learn latent representations
and model them directly. HiFi-GAN (Kong et al.,
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2020a) improves sample quality by modeling peri-
odic patterns in audio. Jets (Lim et al., 2022) en-
hances the expressiveness of the trained models
by training FastSpeech2 with HiFi-GAN and elim-
inates the reliance on external text-speech align-
ment tools by aligning the learning objectives. Yuan
et al. (Yuan et al., 2022) achieved speech synthesis
for a small number of target corpora by pretraining
with a public corpus on two GANs-based vocoders
and fine-tuning with a small amount of adaptation
data. However, all these methods trained directly
by GANs are costly.

3. Proposed Method

The approach for speech synthesis with a limited
corpus of target speakers includes three primary
stages, as shown in Figure 1. Initially, redundancy
data in the auxiliary corpus is eliminated following
the proposed auxiliary corpus compression algo-
rithm, aiming at reducing training costs. Subse-
quently, the CMDTTS is trained utilizing the com-
pressed corpus. Finally, the CMDTTS model is
improved by fine-tuning with the target speaker cor-
pus employing a cGAN to enhance the quality of
speech signals.

Compressed
Corpus

CMDTTS

Multi-level
Prosody-modeling

Denoising diffusion 
probabilistic models

Auxiliary
Corpus

Target Speaker 
Corpus

Conditional generative adversarial 
networks

Text-to-Speech model

Data input & 
preprocessing

Compress

Train

Fine-tune

Modeling 
& Train

Model output

Figure 1: The input consists of an auxiliary corpus
and a target speaker corpus. Through auxiliary
corpus compression, model training, and cGAN
fine-tuning, a TTS model is obtained as the output.

3.1. Auxiliary Corpus Compression
Algorithm

To reduce the word error rate (WER) of synthe-
sized speech, it is necessary to minimize the dif-
ferences in the types of phonemes and function
words before and after compression of the auxiliary
corpus. Meanwhile, the distribution of phonemes
and function words in the compressed corpus is

homogenized to achieve more natural synthesized
speech. The difference between the target domain
data of the corpus before and after compression is
minimized when training domain-specific speech
synthesis models.

We use Np and Nfw to denote the number of
phonemes and function words data in the auxiliary
corpus, and N ′

p and N ′
fw denote the number of

phonemes and function words in the compressed
corpus, respectively. N ′

ps and N ′
fws represent the

number of phonemes in the compressed corpus
phoneme set and the number of function words in
the function word set respectively. The probability
function is denoted by P () and the weight of zn
is denoted by λn. The smaller Z is, the better the
performance of the compressed corpus.
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Algorithm 1 is proposed based on Equation 1
for compressing a single-speaker corpus. Nps and
Nfws represent the number of phonemes in the
auxiliary corpus phoneme set and the number of
function words in the function word set, respectively.
Si represents the redundancy score of utterance
Ui, and C and C ′, respectively, denote the number
of utterances in the corpus before and after com-
pression. Algorithm 1 requires the user to provide
the compression ratio of the corpus.

Algorithm 1: Compressing auxiliary corpus
Requires: auxiliary corpus C, compression ratio
r
1 Initialize C ′ = C
2 for each utterance Ui with index i in C do
3 Si =

∑ α1Nps

Np
+

∑ α2Nfw

Nfw
+ α3

len(Ui)

4 endfor
5 Sort (C ′) based on Si

6 for each utterance U ′
j with index j in C ′ do

7 if |C ′| > (1− r) |C| do
8 if Nps == N ′

ps & Nfws == N ′
fws do

9 Remove U ′
j from C ′

10 endfor

3.2. CMDTTS
3.2.1. Architecture

The architecture of CMDTTS is shown in Figure
2. The encoder, duration predictor, and decoder
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followed FastSpeech2. A prosody modeling compo-
nent, which consists of a self-attention module and
a reference encoder, is used to improve the extrac-
tion and prediction of prosody information. We in-
troduce DDPMs to fine-tune the mel-spectrograms
obtained from decoding to improve the quality of
synthesized speech.

Text Ground-truth
Mel-spectrogram

Prosody-modeling
component

Phoneme
Embedding

Word
Embedding

Denoising diffusion probabilistic models

Encoder

Positional
Encoding

Self-attention
Module

Mel-spectrogram

Decoder

Positional
Encoding

Reference
Encoder

Prosody
Predictor

Duration
Predictor

Figure 2: The overall architecture for CMDTTS.
Both the auxiliary corpus and the compressed cor-
pus can be used as input to the TTS model.

3.2.2. Prosody Modeling Component

The multi-level prosody modeling component is
shown in Figure 2. The inputs of this component
are the text and the ground-truth mel-spectrogram.
The encoder encodes the phoneme embedding
and generates a phoneme hidden sequence. Word
embeddings are applied to the input text, and a
self-attention module is used to capture the depen-
dencies of adjacent words. We use a reference en-
coder based on a neural network to extract prosody
information.

The self-attention module aims to capture depen-
dency between adjacent words in the text by using
the attention weights, as shown in Figure 3. It con-
sists of identical self-attention blocks. A BiLSTM
is used to enhance the sequence modeling. The
word embedding sequence is the input to the mod-
ule; two LSTMs process the sequence in opposite
directions to compute two final hidden states, and
the input text sequence is computed by a summa-

tion operation. The details of the forward LSTM are
as follows:

ft = sigmoid (WfvVt +WfhHt−1 + bf ) , (2)

it = sigmoid (WivVt +WihHt−1 + bi) , (3)
ot = sigmoid (WovVt +WohHt−1 + bo) , (4)
C̃t = tanh (WcvVt +WchHt−1 + bc) , (5)

where Vt and Ht indicate the input vector and the
hidden unit vector, respectively. Wfv, Wix, Wox,
Wcv denote the different weight matrices for Vt;
Wfh, Wih, Woh, Wch are the different weight matri-
ces for ht; and bf , bi, bo, bc denote the bias vectors.

 (a) Self-attention Module (b) Reference Encoder

Add & Norm

Multi-head
Self-attention

Add & Norm

BiLSTM

Linear Layer

Final State

128-unit GRU

Conv 2D

BN + ReLU

×6

Figure 3: The left subfigure is the self-attention
module, and the right subfigure is the reference
encoder.

Taking inspiration from Skerry et al.’s work
(Skerry-Ryan et al., 2018), we employ a reference
encoder to extract prosody information. The archi-
tecture is shown in Figure 3, starting with a 6-layer
2D convolutional network. After each convolutional
layer, a ReLU activation function is applied to zero
out all negative values, which allows the network to
learn more complex, nonlinear mappings. A 128-
width GRU layer compresses the sequence into a
fixed-length vector. The output of 128 dimensions
is summed up and finally projected onto the desired
dimension through a linear layer.

3.2.3. Denoising Diffusion Probabilistic
Models

As shown in Figure 4, the input of DDPMs is mel-
spectrograms xt which takes noisy, diffusion time
index t and variance v, and the output is denoised
mel-spectrograms x0. The Linear Layer, ReLU,
and Swish denote the fully connected layer and
activation function. The number of residual layers
is M .

Inspired by (Jeong et al., 2021), the clean data
are predicted directly in DDPMs to improve the



529

t
x
t

Conv 1D
ReLU

Conv 3D

v Conv 1D

 i = 0

i = 1

i = M-1

Conv 1D Conv 1D

…

Conv 1D
ReLU

Conv 1D

x0

Residual 
layers

Linear Layer
Swish

×2

Figure 4: The network of denoising diffusion prob-
abilistic models.

quality of mel-spectrograms. Knowledge distilla-
tion technology reduces the order of magnitude of
sampling time. vp, ve, and vd denote the pitch, en-
ergy, and duration respectively. v̂p, v̂e, and v̂d are
used to denote the corresponding predicted values
respectively. The sample reconstruction loss Lθ,
the variance reconstruction loss Lv and the loss of
DDPMs LDDPMs are calculated as follows:

Lθ =

∥∥∥∥xθ

(
αtx0 +

√
1− α2

t ϵ

)
− x̂0

∥∥∥∥2
2

, (6)

Lv = ∥vp − v̂p∥22 + ∥ve − v̂e∥22 + ∥vd − v̂d∥22 , (7)

LDDPMs = Lθ + Lv, (8)

where ϵ denotes the standard Gaussian noise.

3.3. Fine-tuning with cGAN
The architecture of cGAN is shown in Figure 5.
We use the trained CMDTTS model as the genera-
tor. s is the ground-truth mel-spectrogram, G(s)
is the generated mel-spectrogram, and c is the
conditional information (target domain and target
speaker). Fine-tuning is performed by feeding c as
an additional input layer to the generator and dis-
criminator. The generator’s priori input noise and
condition are combined in a joint hidden represen-
tation, and the inputs c and s of the discriminator
are passed through a discriminant function to de-
termine the authenticity of G(s).

cs

true fake

Generator

G(s)

Discriminator

Figure 5: The network structure of cGAN.

The generator and discriminator follow the two-
player min-max game in model training, and the
loss function is as follows:

LcGAN =Es∼ddata(s) [logD (s |c )] +
Ez∼dz(z) [log (1−D (G (s |c )))] ,

(9)

where s is a sample from the actual data distribu-
tion ddata and z is a sample from the noise distri-
bution dz, D(s |c ) denotes the prediction result of
the discriminator for the actual sample s given the
condition c, and G(s |c ) denotes the fake sample
generated by the generator based on the noise z
given the condition c.

4. Experiment

To evaluate the method, the CSMSC (Baker, 2017),
the Chinese part of CSS10 (Park and Mulc, 2019),
and the LJSpeech (Ito and Johnson, 2017) are
treated as the auxiliary corpora. A single speaker’s
data in VCTK(Veaux et al., 2016) is the English tar-
get speaker corpus called MHTO. A Chinese target
speaker corpus LQDE is also collected, containing
6-minute recordings from a voice-over specialist.
All the trainings are conducted on a single GeForce
RTX 2080Ti GPU. After the acoustic model infer-
ence, we use a well-trained HiFi-GAN(Kong et al.,
2020a) as the vocoder to generate speech.1.

For the subjective evaluation, we invited 20 Chi-
nese speakers and 20 English speakers to evaluate
the Mean Opinion Scores (MOS) of synthesized
speech. The speech quality on a scale of 0 to
5, with 5 being the best. In each test, scores are
given for 20 test utterances synthesized by each
experimental model and are reported with a 95%
confidence interval.

1Synthesized speech samples are available at:
https://2579356425.github.io/CMDTTS/
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4.1. Performance of Auxiliary Corpus
Compression Algorithm

In this section, the CSMSC, CSS10, and LJSpeech
are compressed by a random method and the algo-
rithm 1, respectively. Then we use the compressed
corpora to train FastSpeech2. We evaluate the
speech quality with MOS, speech intelligibility with
WER, and training speed with model training time.
The results are shown in Figure 6 and Figure 7.

(a) MOS of synthesized speech

(b) WER of synthesized speech

Figure 6: This figure shows the performance of the
algorithm 1. Subfigure (a) shows the MOS of the
synthesized speech and subfigure (b) shows the
objective evaluation WER.

Figure 6 shows that within the compression ra-
tio of 0 to 0.2, both the random compression ap-
proach and algorithm 1 exhibit negligible influence
on the naturalness and intelligibility of synthesized
speech. However, as compression ratios elevate to
0.2 to 0.4 and 0.4 to 0.6, the random compression
method results in a significant decrease in MOS
and a surge in WER. Conversely, using algorithm
1 for corpus compression reduces speech quality
less. Both compression methods lead to substan-
tial degradation of model performance during the
process of compression ratio from 0.6 to 0.8.

This is mainly due to the large volume of data
in the auxiliary corpus and the redundancy of

Figure 7: The figure of model training time with the
change of compression ratio.

phonemes and function words. Both compres-
sion methods can remove redundant data within
the compression ratio threshold range of 0 to 0.2.
When the compression ratio is within 0.2 to 0.6, al-
gorithm 1 can continuously remove redundant data,
while the random compression method removes
rare phonemes and function words. In contrast, the
random compression method eliminates phonemes
and function words, which are already relatively
scarce. As the compression ratio increases from
0.6 to 0.8, algorithm 1 continues to remove redun-
dant utterances from the corpus. When the ratio
reaches a critical point, there is no more redun-
dancy in the corpus. Further compression of the
corpus reduces the variety of phonemes and func-
tion words, resulting in a rapid decline in speech
quality.

As seen from Figure 7, model training time de-
creases proportionally with the increase of corpus
compression ratio. The results show that algorithm
1 effectively improves the speed of model training
and reduces the degradation of speech quality.

4.2. Parameters Studies of Algorithm 1

In this section, we studied the impact of the parame-
ter µn in algorithm 1 on synthesized speech during

corpus compression. Due to
3∑

n=1
µn = 1, we con-

ducted the study by varying µ1 and µ2 while keeping
other variables constant. We trained FastSpeech2
(Ren et al., 2020) on three different corpora and
evaluated the quality of synthesized speech using
the average of MOS.

As shown in Figure 8, it can be seen that the qual-
ity of synthesized speech is different for different
corpora using the same parameters to compress
the corpus. When µ1 is in the interval [0.4, 0.5]
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Table 1: The results of ablation studies. The best MOS, second MOS, and worst training time are in red,
orange, and brown colors, respectively.

Model CSMSC & LQDE CSS10 & LQDE LJSpeech & MHTO
MOS Time (s) MOS Time (s) MOS Time (s)

Base 3.80± 0.08 6.94× 105 3.78± 0.07 2.05× 105 3.82± 0.08 1.01× 106

Base+MD 4.00± 0.07 8.60× 105 3.93± 0.09 2.53× 105 4.00± 0.07 1.26× 106

Base+cGAN 3.85± 0.08 7.04× 105 3.82± 0.07 2.16× 105 3.87± 0.07 1.02× 106

Base+MD+cGAN 4.05± 0.05 8.72× 105 4.00± 0.08 2.65× 105 4.03± 0.09 1.27× 106

Base+C 3.78± 0.09 2.05× 105 3.74± 0.06 6.14× 104 3.80± 0.07 3.04× 105

Base+C+MD 3.96± 0.07 2.56× 105 3.90± 0.08 7.65× 104 3.96± 0.08 3.79× 105

Base+C+cGAN 3.83± 0.08 2.20× 105 3.80± 0.06 7.43× 104 3.85± 0.06 3.17× 105

Base+C+MD+cGAN 4.04± 0.07 2.71× 105 4.00± 0.06 8.94× 104 4.02± 0.07 3.92× 105

MOS

CSMSC
CSS10
LJSpeech

μ1

μ2

Figure 8: PESQ follows the parameters µn.

and µ2 is in the interval [0.3, 0.4], the algorithm 1
shows good performance on CSMSC, CSS10 and
LJSpeech. The reason is that the type and number
of phonemes and function words have a greater
impact on the synthesized speech than the length
of a single utterance.

4.3. Ablation Studies for Proposed
Method

In this section, we validated the effectiveness of
each module by conducting ablation studies. These
modules include using algorithm 1 to compress
the corpus, the proposed speech synthesis model
CMDTTS which fuse multi-level prosody modeling
component and DDPMs, and fine-tuning the model
using cGAN. CSMSC and CSS10 are Chinese aux-
iliary corpora, while LQDE is the Chinese target
speaker corpus. LJSpeech and MHTO are respec-
tively auxiliary and target speaker corpora for En-
glish. The batch size for training and fine-tuning all
models in this section is set to 4. We evaluate the
following 8 models:

(1). (Base) FastSpeech2 was trained using an aux-
iliary corpus and then fine-tuned with the target
speaker corpus in the same language.

(2). (Base+MD) CMDTTS was trained utilizing an
auxiliary corpus for initial training and then fine-
tuning with the target speaker corpus.

(3). (Base+cGAN) CGAN was introduced into the
fine-tuning step towards (Base), keeping other
steps unchanged.

(4). (Base+MD+cGAN) CGAN was introduced into
the fine-tuning step towards (Base+MD), keep-
ing other steps unchanged.

(5). (Base+C) Auxiliary corpus was compressed
using algorithm 1 with a compression ratio
0.7. FastSpeech2 was trained using the com-
pressed corpus and then fine-tuned with the
target speaker corpus in the same language.

(6). (Base+C+MD) The model architecture was re-
placed by CMDTTS while keeping other set-
tings the same as (Base+C).

(7). (Base+C+cGAN) The model training corpus
was compressed by algorithm 1. Other set-
tings are identical to (Base+cGAN).

(8). (Base+C+MD+cGAN) The model architecture
was replaced by CMDTTS while keeping other
settings the same as (Base+C+cGAN).

The results are shown in Table 1. Comparing the
results of three auxiliary corpora, the MOS of model
(Base+C) decreased by 0.02 to 0.04 compared to
(B), yet the training time of (Base+C) is only one-
third of (Base). Similarly, the MOS of (Base+C+MD)
decreased by 0.03 to 0.04 compared to (Base+MD),
with the training time of (Base+C+MD) being only
one-third of (Base+MD). This indicates that the pro-
posed algorithm 1 significantly reduces the training
cost of the model with a compression ratio of 0.7
while maintaining the naturalness of synthesized
speech without significant degradation.

Comparing (Base+MD) with (Base), it is evident
that the model’s training time increased by approx-
imately one-fourth. Yet, there was a significant
improvement in speech quality, with an average
MOS increase of 0.18 across the three auxiliary
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Table 2: Our method is matched with (Base+C+MD+cGAN) in ablation studies. The best MOS, second
MOS, and best training time are in red, orange and blue colors, respectively.

Model CSMSC & LQDE CSS10 & LQDE LJSpeech & MHTO
MOS Time (s) MOS Time (s) MOS Time (s)

Tacotron2 3.92± 0.07 1.37× 106 3.87± 0.06 4.01× 105 3.91± 0.07 1.98× 106

FastSpeech2 3.93± 0.08 1.19× 106 3.77± 0.07 3.48× 105 3.92± 0.07 1.72× 106

JETS 4.04± 0.07 1.24× 106 3.94± 0.08 3.63× 105 4.02± 0.06 1.79× 106

VITS 4.05± 0.07 1.43× 106 3.96± 0.08 4.19× 105 4.03± 0.07 1.76× 106

ProDiff 4.08± 0.05 1.65× 106 4.01± 0.06 4.84× 105 4.05± 0.08 2.02× 106

Our Method 4.05± 0.05 4.15× 105 4.00± 0.07 1.22× 105 4.03± 0.06 5.14× 105

corpora. In comparison between (Base+C+MD)
and (Base+C), the average MOS increased by 0.17,
with the additional model training time decreasing
by an order of magnitude compared to the original
time. Furthermore, (Base+C+MD+cGAN) exhibited
an average MOS increase of approximately 0.19
over (Base+C+cGAN), while the cost of increased
model training time decreased by an order of mag-
nitude compared to before. The CMDTTS architec-
ture demonstrated exceptionally high performance,
showcasing the effectiveness of integrating multi-
level prosody modeling components and denoising
diffusion probability models in enhancing speech
quality.

Compared to (Base), (Base+cGAN) resulted in
an increase in MOS for synthesized speech by
0.05 to 0.07, while the average model training
time increased by only 1.1 × 104 seconds. Simi-
larly, (Base+C+cGAN) exhibited an MOS improve-
ment of 0.05 to 0.06 over (Base+C), with the fine-
tuning time increasing by one order of magni-
tude less than the training of (Base+C). Moreover,
(Base+C+MD+cGAN) showed an MOS improve-
ment of approximately 0.09 over (Base+C+MD),
with a little additional fine-tuning time. This indi-
cates that cGAN fine-tuning can effectively enhance
speech quality relatively cheaply.

In conclusion, algorithm 1, multi-level prosody
modeling, DDPMs, and cGAN fine-tuning can be
combined to increase the model training speed
without significantly degrading speech quality.

4.4. Performance Comparison with Other
Methods

In this section, a performance comparison be-
tween our method and other speech synthesis
methods is given in Table 2. The methods in-
clude Tacotron2 (Shen et al., 2018), FastSpeech2
(Ren et al., 2020), JETS (Lim et al., 2022), VITS
(Kim et al., 2021), and ProDiff (Huang et al., 2022).
These five models are trained using an auxiliary cor-
pus and fine-tuned using the target speaker corpus,
which has the same language. Our method follows
the (Base+C+MD+cGAN) in ablation studies.

Compared with the traditional autoregressive

model Tacotron2, our method not only improves
the Mean Opinion Score (MOS) by 0.13 but also
reduces the training time of the model by an or-
der of magnitude. In addition, a comparison study
with the baseline FastSpeech2 shows a 0.11 in-
crease in MOS and a 1.85 times increase in model
training speed. This indicates that successfully
combining multi-level prosodic modeling compo-
nents, DDPMs, and cGAN fine-tuning techniques
significantly improves speech quality.

Our approach shows remarkable performance
through meticulous comparisons with other state-of-
the-art methods, closely rivaling the leading model,
ProDiff, regarding speech quality while surpassing
both VITS and JETS, ranking in the second-best po-
sition. Our method consistently outperforms VITS,
JETS, and ProDiff in model training time by an order
of magnitude across corpora such as CSMSC and
LJSpeech. Furthermore, on the CSS10, our ap-
proach demonstrates superiority over these three
methods by a significant margin, ranging from two
to three times faster. When considering both model
training speed and speech quality jointly, our pro-
posed method outperforms traditional TTS models
and the current approaches.

5. Conclusion

In this work, we propose a method for fast-training
speech synthesis models with a limited target
speaker corpus. An algorithm is designed to com-
press the auxiliary corpus, which removes redun-
dant utterances and significantly reduces the model
training cost. The CMDTTS is proposed, which
fuses multi-level prosody modeling and DDPMs,
using a neural network-based reference encoder to
extract prosody information from mel-spectrograms
and DDPMs as a post-processing network to fine-
tune the generated mel-spectrograms. CGAN
was introduced to fine-tune the model with the tar-
get speaker feature. Experimental results on Chi-
nese and English corpora show that our proposed
method performs better than all baseline methods
regarding combined model training speed and nat-
uralness of synthesized speech.
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