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Abstract
Despite significant strides in training expansive transformer models, their deployment for niche tasks remains intricate.
This paper delves into deception detection, assessing domain adaptation methodologies from a cross-domain lens
using transformer Large Language Models (LLMs). We roll out a new corpus with roughly 100,000 honest and
misleading statements in seven domains, designed to serve as a benchmark for multidomain deception detection. As
a primary contribution, we present a novel parameter-efficient finetuning adapter, PreXIA, which was proposed and
implemented as part of this work. The design is model-, domain- and task-agnostic, with broad applications that
are not limited by the confines of deception or classification tasks. We comprehensively analyze and rigorously
evaluate LLM tuning methods and our original design using the new benchmark, highlighting their strengths, pointing
out weaknesses, and suggesting potential areas for improvement. The proposed adapter consistently outperforms
all competition on the DIFrauD benchmark used in this study. To the best of our knowledge, it improves on the
state-of-the-art in its class for the deception task. In addition, the evaluation process leads to unexpected findings
that, at the very least, cast doubt on the conclusions made in some of the recently published research regarding
reasoning ability’s unequivocal dominance over representations quality with respect to the relative contribution of
each one to a model’s performance and predictions.
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1. Introduction

Deception in linguistic communication signifies the
intentional act of inducing false beliefs. Decep-
tion detection (DD) employs computational tech-
niques to distinguish between truthful and decep-
tive statements. Although it is generally considered
a binary classification task, DD can classify mes-
sages into various levels of deception. Its relevance
has surged, exacerbated by the escalating neces-
sity for datasets and detectors optimized for the
ever-growing domains where deceptive language
is prevalent. Existing research focuses predomi-
nantly on specific fields, which results in the need
for clarity on linguistic markers associated with de-
ception. We hypothesize that universal features
underlie many deception tasks in distinct domains.

One of the significant obstacles in this research
field is the lack of large, quality multidomain
datasets. To address this issue and further ad-
vance the study of deception detection, we intro-
duce the Domain-Independent Fraud Detection
Benchmark (DIFrauD). This carefully curated and
expansive multidomain corpus contains deceptive
texts, statements, and claims. DIFrauD is publicly
available through Huggingface datasets.1 DIFrauD
offers a finite set of domains and tasks; in the real
world, these elements evolve. Recognizing this
dynamic nature, our goal is to devise a strategy to

1https://huggingface.co/datasets/
redasers/difraud

create a model that can universally detect decep-
tion, regardless of the domain or task.

This study also addresses the broader issue
of the research gap around knowledge transfer
when multiple labeled source datasets are involved.
This problem first became evident in sentiment
analysis (Ruder and Plank, 2017), but it became
especially noticeable as adapters (Pfeiffer et al.,
2020a), transformers (Devlin et al., 2019; Peters
et al., 2019), and LLMs grew in popularity. Early
attempts to address this issue relied on multitask
learning (MTL), which combines datasets during
training, driving the model to find a shared optimal
space for all tasks (Arumae et al., 2020). Another
approach involves training a language model (LM)
with in-domain data (Howard and Ruder, 2018). Al-
though this yields a flexible model without domain
alignment issues, its implementation is complex,
often cost-ineffective (Tay et al., 2021), and rarely
scalable. In-context learners (ICL) (Akyürek et al.,
2022) and TART (Bhatia et al., 2023) are promising
alternatives because they are task-agnostic and
do not require training. However, task-agnostic
models are rarely deployed in practice compared
to parameter-efficient tuning methods (Ding et al.,
2023; Liu et al., 2022). Given the pros and cons of
each method, the optimal choice remains problem-
dependent. Our work seeks to bridge the aforemen-
tioned gap by using the DIFrauD benchmark to re-
visit existing methodologies and evaluate the feasi-
bility of solving the problem of seamlessly adapting
a learner to multiple domains using newer methods

https://huggingface.co/datasets/redasers/difraud
https://huggingface.co/datasets/redasers/difraud
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such as TART and adapters. The contributions of
this paper include the following:

1. A novel multidomain language resource for pub-
lic use and to serve as a deception detection
benchmark. To our knowledge, no similar re-
source of comparable magnitude and coverage
is currently readily available.

2. An original PEFT (Parameter-Efficient Finetun-
ing) adapter design2 that consistently outper-
forms existing adapters and other methods
when evaluated on DIFrauD.

3. Benchmark of a comprehensive collection of
transformer training strategies and the proposed
adapter on DIFrauD to (a) produce an estab-
lished performance baseline for deception de-
tection and (b) gain further insight into each
method’s respective advantages and disadvan-
tages and when each is an appropriate choice.

2. Related Work

Deception detection (DD) has historically been ex-
plored within individual tasks and domains. The
primary reason for such a focused approach was
the absence of comprehensive datasets or models
tailored for deception detection (DD).

2.1. Approaches to Deception Detection
Initial efforts of (Jindal and Liu, 2008) employed
logistic regression that incorporated features cen-
tered on products, reviews, and reviewers. (Ott
et al., 2011) relied on n-gram features, Naïve
Bayes (Rish et al., 2001) and SVM (Boser et al.,
1992) classifiers. Other early methods include the
use of part-of-speech tags, context-free grammar
parse trees, and spatial-temporal attributes (Feng
et al., 2012; Mukherjee et al., 2013; Li et al., 2015).
The hand-crafted features have retained their rele-
vance. In multimodal DD, trial video and audio have
been used in addition to transcripts (Pérez-Rosas
et al., 2015); meanwhile, visual, thermal, and phys-
iological characteristics were explored in (Abouele-
nien et al., 2015).

2.2. The Deep Learning Revolution
In contemporary times, deep learning has eclipsed
traditional machine learning techniques across do-
mains, particularly in deception detection. (Ceron
et al., 2020) distinguished fake news using topic
models, marking a departure from earlier super-
vised ML methods, which were then the norm for
phishing detection. The emergence of deep learn-
ing models, such as RCNN (Fang et al., 2019) and

2To the best of our knowledge, this design has not
been proposed in the literature.

those that harness the embeddings of BERT (De-
vlin et al., 2019) and Sentence-BERT (Reimers
and Gurevych, 2019; Shahriar et al., 2022b), have
established new benchmarks. Furthermore, lin-
guistic transfer and representation learning have
enabled groundbreaking advances (Ren and Ji,
2017; Zhang et al., 2018; Hamid et al., 2020).

2.3. Cross-Domain Deception Detection

Researchers like (Rill-García et al., 2018; Sánchez-
Junquera et al., 2020; Hernández-Castañeda et al.,
2017) have been at the forefront of exploring cross-
domain deception detection. Although the allure of
a universally applicable solution to deception chal-
lenges is undeniable, its feasibility hinges on the ex-
istence and transferability of domain-independent
linguistic markers of deception. However, this no-
tion is still debated, with some studies, like (Grön-
dahl and Asokan, 2019), positing the absence of
universal stylistic deception markers.

However, recent evaluations contradict this belief.
For example, when adequately finetuned, (Zeng
et al., 2022) demonstrated that BERT could effi-
ciently detect deception across multiple domains.
Concurrent studies also revealed the utility of psy-
chological attributes in phishing detection (Shahriar
et al., 2022b) and showed that specific sources
related to deception significantly improve perfor-
mance (Shahriar et al., 2022a). Such findings sug-
gest the existence of some transferable domain-
independent traits.

2.4. Data Selection and Transfer
Learning

The intricacies of choosing the right source do-
main for deception detection aren’t unique to
the field. Effective data selection for adaptation
is crucial in multitask learning, as documented
by (Ruder and Plank, 2017). The emergence of
large language models (LLMs) such as (Peters
et al., 2018; Radford et al., 2018) enabled remark-
able results with minimal domain-specific labeled
data. Furthermore, domain adaptation (DA) strate-
gies, such as in-domain pretraining, have shown
promise (Howard and Ruder, 2018). When ap-
plied across multiple domains, it is known as con-
tinued pretraining (Ring, 1997). Unfortunately, this
promising approach can lead to catastrophic forget-
ting (McCloskey and Cohen, 1989; Ratcliff, 1990).

Adapting large transformer models to domain-
specific vocabularies has been successful (Yao
et al., 2021; Zhang et al., 2020). Recent work (Bha-
tia et al., 2023) has shifted focus from improving
representations to fortifying the reasoning capa-
bilities of transformers. Despite initial skepticism
about the adaptability of transformers (Wright and
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Augenstein, 2020), adapters have emerged as cost-
effective solutions, strengthening the adaptability of
these models (Pfeiffer et al., 2020a; Houlsby et al.,
2019). Recent work has used adapters in domain,
task, and language transfer (Pfeiffer et al., 2020b).

2.5. Training LLMs

This subsection provides a comprehensive
overview of the foundational methodologies em-
ployed in language model training and inference
processes, all of which will be evaluated for
applicability in multidomain deception detection
tasks. These methodologies can be grouped into
six distinct techniques:

Linear Probing (LP): Linear Probing trains lin-
ear classification models without dependency on
their foundational embeddings being finetuned: a
base LLM encodes text into embeddings that serve
as input for the linear model. (Conneau and Kiela,
2018; Yu et al., 2022).

Finetuning: This technique adapts the layers of
the pretrained language model to a specific task
using labeled data from the target domain. Al-
though commonly associated with BERT (Devlin
et al., 2019), the essence of this method precedes
it. ULMFit finetuned an LSTM classifier over a pre-
trained LSTM dedicated to language modeling a
few years earlier, for example, as did ELMo. (Rad-
ford et al., 2018; Howard and Ruder, 2018; Pe-
ters et al., 2019). The key difference is that with
BERT and most later models, finetuning typically
involves all or most layers and is often called Full
Finetuning. In contrast, Partial finetuning is done
on some of the last layers of an otherwise frozen
model. This technique was popular in low-data
scenarios that precluded the model from learning
to generalize well when fully finetuned. Still, it is
rarely used by virtue of having been superseded
by PEFT Adapters. Consequently, this method is
often referred to simply as “finetuning”.

Continued Pretraining (with Full Finetuning):
The model initially undergoes self-supervised train-
ing on available unlabeled data to familiarize itself
with the domain, followed by full finetuning on la-
beled data (Howard and Ruder, 2018). There is
an inconsistency in the nomenclature used by dif-
ferent researchers, most likely caused by the re-
cent practice of using “finetuning” to describe “full
finetuning”. Consequently, the term often means
“continued pretraining followed by full finetuning”.
For the sake of clarity, we will use “finetuning” to de-
scribe “full finetuning”, while “pretraining” will refer
to “continued pretraining with full finetuning”.

Adapter: Also termed Parameter-Efficient Lan-
guage model Tuning (PELT) or PEFT, adapters are
compact learned layers seamlessly integrated into

Figure 1: Label distribution across domains

a pretrained model’s architecture. Their initial de-
sign added a low-rank matrix to the native matrix to
expand its capabilities (Houlsby et al., 2019; Pfeif-
fer et al., 2020a). Modern adapters offer a wide
variety of enhancements (He et al., 2022), such as
improved efficiency (Rücklé et al., 2021; Hu et al.,
2022) predictive prowess (Chen et al., 2023; Li and
Liang, 2021), efficient knowledge transfer (Pfeiffer
et al., 2021), linguistic adaptation (Pfeiffer et al.,
2020b), and dynamic architectural modifications
suitable for various tasks (Mao et al., 2022).

In-Context Learning (ICL): ICL introduces mul-
tiple contextual examples into the model using
transformer adaptability before making predictions.
Choosing learned prompts over standardized ones
results in prompt-tuning (Li and Liang, 2021). ICL
has been found to depend on linear models that
are implicitly learned (Akyürek et al., 2022). The
primary distinction between finetuning and prompt-
tuning is the objective: while finetuning enhances
the model for a task, prompt-tuning uses additional
contextual information to influence output genera-
tion.

Task-Agnostic Reasoning and Transfer
(TART): TART functions independently of specific
tasks, domains, or LLMs. Boasting superior
accuracy and scalability over in-context learning,
TART can be used with any generative LM (Bhatia
et al., 2023). The aim is to maximize the potential
of LLM by introducing a task-agnostic reasoning
module trained on synthetic Gaussians that were
used as inputs for binary logistic regression
challenges. The LM processes the data and
context into the reasoning module for the final
predictions.

3. Datasets

DIFrauD: The Domain-Independent Fraud Detec-
tion corpus is the first significant contribution from
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this work. It is a labeled collection of 95, 854 text doc-
uments that contain harmless and misleading com-
munications from seven domains. The DIFrauD cor-
pus builds on the Generalized Deception Dataset
(GDD) (Zeng et al., 2022) by adding two datasets
from distinct disciplines, including more than 1, 000
additional internally labeled phishing email and
SMS, while correcting more than 20, 000 misla-
beled examples. The corpus encompasses 95, 854
entries in seven domains: "Fake News," "Politi-
cal Statements," "Job Scams," "Product Reviews,"
"Emails," "SMS Spam," and "Twitter Rumors," with
37, 282 instances being deceptive and 58, 572 gen-
uine. Figure 1 and Table 4 shows the size and
dataset label distribution of each domain.

3.1. Data Preparation
After initially gathering a vast collection of corpora,
we focused only on those with potential for cross-
domain transfer. For our selection process, we
used a set of transferability metrics3 proven ef-
fective for the selection of transfer learning sam-
ples (Ruder and Plank, 2017). The metrics are
detailed in Table 1.

Similarity Divergence
Jensen-Shannon Term-Type Count
Renyi Divergence Token-Type Ratio
Cosine Similarity Entropy
Euclidean Distance Simpsons Index
Variational Distance Renyi Entropy

Table 1: Transferability estimators

Instead of individual sequence selection, we com-
pared entire datasets. We computed pairwise dis-
tance matrices between datasets using simple bag-
of-words (BOW) embeddings and similarity met-
rics. The results were standardized and averaged
to produce a single number ssrc,tgt ∈ [−1.0, 1.0]
that represents the similarity between two datasets.
Divergence metrics illustrated in Figure 4 are inter-
domain and measure how diverse a dataset is in
and out of itself.

Cleaning, Preprocessing, and Labeling We
identified and rectified 20, 000 problems with ex-
isting data using the Cleanlab tool (Kuan and
Mueller, 2022). This involved labeling unlabeled
data, adding the data we collected, finding and cor-
recting datasets with flipped (Job Scams) and par-
tially flipped (Political Statements) labels, manually
correcting mislabeled examples, resolving contra-
dictory labeled duplicates, purging noisy entries

3https://github.com/sebastianruder/
learn-to-select-data

caused by crawler/parser errors and removing non-
English, null, or poorly encoded content. Two anno-
tators manually verified all modifications; the third
one stepped in when they disagreed. Datasets
were shuffled and split 80/10/10 into three sets for
training, validation, and testing, stratified according
to the target label y.

3.2. Domains

Fake News Incorporating 72, 134 news articles
from four datasets (Kaggle, McIntire, Reuters,
and BuzzFeed Political), the dataset (Verma
et al., 2021) was purged of data leaks such as
"[claim] (Reuters)." Duplicate and outlier detection
identified many irrelevant samples. The refined
Fake News dataset includes 20, 456 articles, with
8, 832 deceptive and 11, 624 genuine.

Political Statements Constructed from the Liar
dataset (Wang, 2017), political statements made
by US speakers received a truthfulness grade from
PolitiFact. Following (Upadhayay and Behzadan,
2020; Shahriar et al., 2022a), the categories
"pants on fire," "false," "barely true," and "half
true" were labeled deceptive or 1, while "mostly
true" and "true" were labeled non-deceptive or 0.
Outlier detection revealed numerous anomalous
statements reminiscent of the headers of political
articles without context, for example, "on the[sic]
Iran nuclear deal" or "on sequestration." Lacking
sufficient context, these were discarded. This
subset now has 12, 497 statements. Of these,
8, 042 are deceptive, and 4, 455 are not.

Job Scams The Employment Scam
Aegean (Vidros et al., 2017) dataset, here-
after termed the Job Scams dataset, originally
featured 17, 880 human-annotated job listings.
HTML tags, empty content, and duplicates were re-
moved during cleaning. The dataset is imbalanced
because it consists of 14, 295 entries, of which only
599 are deceptive.

Product Reviews Originating from the English
Amazon Reviews 4, entries labeled real or fake
were labeled as non-deceptive and deceptive, re-
spectively. Despite the initial non-English filtration,
outlier detection revealed lingering non-English
reviews. Problematic label detection suggested
6, 713 of them were potentially mislabeled. When
examining the top 1% (67 entries, most appeared
incorrectly labeled, prompting a lengthy evaluation
process. The resulting subset is balanced, with
10, 492 deceptive and 10, 479 non-deceptive entries,

4https://www.kaggle.com/datasets/
lievgarcia/amazon-reviews

https://github.com/sebastianruder/learn-to-select-data
https://github.com/sebastianruder/learn-to-select-data
https://www.kaggle.com/datasets/lievgarcia/amazon-reviews
https://www.kaggle.com/datasets/lievgarcia/amazon-reviews
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totaling 20, 971.

Phishing The Email Benchmarking
dataset (Zeng et al., 2020) encompasses
21, 000 emails: 10, 500 phishing and 10, 500
genuine. It contains additional data compared to
GDD. Using only the email body, phishing emails
were marked as deceptive, and genuine emails
as non-deceptive. Most originate from existing
datasets, but just over 1, 000 have been collected
and labeled internally. We removed entries with
more than 1, 000, 000 tokens in the email body
due to tokenization issues, and entries with HTML
tags, metadata, duplicates, and non-English
entries. Ultimately, 6, 074 deceptive and 9, 198
non-deceptive emails remained.

Twitter Rumors The Twitter Rumors dataset
was formed using the PHEME dataset (Kochkina
et al., 2018), spanned several years and six topics.
Only origin tweets (new tweets instead of replies to
existing ones) were used and labeled. Selecting
only posts with verifiable claims yielded 1, 969
deceptive tweets and 3, 820 non-deceptive ones.

SMS Sourced from the SMS Spam Collection
v.1 (Almeida et al., 2011) and the SMS Phishing
Dataset for Machine Learning and Pattern Recogni-
tion (Mishra and Soni, 2023), both datasets overlap
and contain contradictory and missing labels. Af-
ter deduplication, the resulting dataset consists of
6, 574 SMS messages. Of these, 199 SMS mes-
sages were incorrectly labeled or lacked any label.
With these issues addressed, the collection has
1, 274 deceptive SMS messages and 5, 300 gen-
uine ones.

3.3. Limitations and Biases

A few limitations and biases are inherent in our
dataset and may be addressed in future work:

1. Deceptive Political Statements: Most of these
contain deceptive labels. This bias can uninten-
tionally cause F1 score to plateau, which may
not accurately represent the actual performance
of the model.

2. Job Scams Imbalance: This data subset has a
notable class imbalance. We opted not to modify
the data primarily because we believe that the
decision to adjust should be at the discretion of
individual researchers working with the dataset.

3. Lack of Certain Data Types: DIFrauD does not
include explicitly unlabeled training data or la-
beled out-of-domain test data.

4. Methodology

4.1. Metrics
Each subtask is a binary classification problem.
For all but one subtask, the label of interest is
in a significant minority. Following established
DD practices, we use the binary F1 score as
our primary metric to gauge the performance of
the model. The F1 score is a harmonic mean of
precision and recall, expressed as:

F1 = 2 ∗ Precision × Recall
Precision + Recall =

2 ∗ TP
2 ∗ TP + FP + FN

When performing binary classification tasks, it is
necessary to properly designate a positive class to
calculate the binary F1 score. For our scenario, the
positive class is "deceptive," and the negative class
is "not deceptive." This is a critical specification with
far-reaching consequences: the binary F1 score
does not account for True Negatives (TN); instead,
it emphasizes the model’s ability to detect and ac-
curately identify members of the positive class as
the most important for the task. Also of note is the
fact that an incorrect designation could lead to the
exclusion of true positives from the computations.
Although this metric is optimal for detecting harmful
samples within a large population, it may exhibit
instability when the data distribution strongly favors
the positive class, mainly because the loss func-
tion remains oblivious to the binary F1 score. It is
essential to remember that the binary version of
the F1 score has different limitations and serves a
different purpose than the macro F1 score, which
computes the combined F1 score of all classes tak-
ing their unweighted average, thus treating them
equally regardless of their practical importance to
the task at hand.

In line with (Ceron et al., 2020; Bethu et al., 2019),
we adopt robust statistical methodologies. We en-
sure significance with an independent test sample
where N >> 100. Furthermore, non-deterministic
operations are consistently initialized to guarantee
reproducibility with a random seed value of 42.

4.2. PreXIA
Inspired by the flexibility of adapter modules, we
introduce PreXIA: domain and task adapter. Our
design is not specific to deception, binary classifi-
cation, or BERT alone, even though we use them
for evaluation for consistency’s sake. PreXIA is
compatible with any Transformer architecture that
uses typical self-attention via being incorporated
into any layer with a Transformer block.

PreXIA’s adaptability is distinctively design-
driven. This choice comes from the occasional
absence of certain task parameters and domain
specifics essential for optimal design decisions,
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Method Data Pols News Jobs Prod Phish Twitter SMS Mean
lp+pooled tgt 0.7658 0.9043 0.1230 0.6809 0.9527 0.7018 0.9922 0.7315
lp+cls tgt 0.7611 0.9265 0.4000 0.6792 0.9560 0.7050 0.9961 0.7748
finetune tgt 0.7640 0.9773 0.6729 0.6968 0.9859 0.7944 0.9883 0.8399
finetune all 0.7315 0.9731 0.5636 0.6975 0.9705 0.8030 0.9732 0.8161
finetune bal 0.7516 0.9744 0.7350 0.7215 0.9810 0.7719 0.9845 0.8457
pt+ft all+tgt 0.7649 0.9774 0.6867 0.6955 0.9891 0.8130 0.9807 0.8439
pt+ft all+all 0.7287 0.9743 0.5741 0.6883 0.9685 0.8000 0.9730 0.8153
pt+ft all+bal 0.7719 0.9795 0.7667 0.7159 0.9867 0.7942 0.9883 0.8576
Pfeiffer tgt 0.7773 0.9853 0.6458 0.6882 0.9734 0.7469 0.9677 0.8264
UniPELT tgt 0.7794 0.9819 0.7368 0.7137 0.9843 0.8206 0.9766 0.8562
MAM tgt 0.7841 0.9789 0.7455 0.7110 0.9867 0.8333 0.9760 0.8594
PreXIA tgt 0.7881 0.9881 0.7350 0.7206 0.9896 0.8511 0.9723 0.8635
pt+PreXIA all+tgt 0.7756 0.9759 0.6981 0.7095 0.9814 0.8358 0.9594 0.8480

Table 2: Binary F1−scores achieved by bert− base− uncased using various adaptation strategies with
a single target and six sources. Methods: lp=linear probing, ft=finetune, pt=pretrain; Data trained on:
all=combined training data from all domains; tgt=target domain itself; bal=balanced sample drawn from
each domain. PreXIA is the novel adapter proposed in this paper. The best result for each domain is
depicted in the bold font.

Method Base Embed Pols News Jobs Prod Phish Twitter SMS Mean
ICL GPT-125M base 0.5792 0.6094 0.5263 0.4681 0.5555 0.6038 0.5714 0.5591
TART GPT-125M base 0.5002 0.6749 0.1246 0.5638 0.8194 0.5350 0.7727 0.5701
TART GPT-125M stream 0.6542 0.8876 0.1879 0.5835 0.9333 0.7160 0.9904 0.7076
TART GPT-125M loo 0.6272 0.8937 0.1441 0.5846 0.9377 0.6608 0.9828 0.6901
TART Pythia-14M stream 0.6549 0.7195 0.1218 0.5818 0.8131 0.6112 0.8066 0.6156

Table 3: Performance metrics showcasing binary F1−scores achieved by TART and ICL methods with
various models and embedding options. The best result for each domain is depicted in the bold font.

because they emerge only during training. A dy-
namic and reconfigurable design offered a natural
remedy to this problem. We considered several
strategies: i) combining multiple components for
increased versatility over a singular static adapter
in a Mix-And-Match (MAM) adapter style (He et al.,
2022); ii) manipulating data flow through stacked
components, a method shown to excel in cross-
lingual transfer (Pfeiffer et al., 2020b); iii) dynam-
ically updating modules by toggling components
during training (Mao et al., 2022); iv) merging com-
ponents across tasks or domains (Pfeiffer et al.,
2021).

PreXIA’s design features three main components
that run parallel to the attention layer and give the
adapter its name:

• Prefix-tuning (Pre): A re-parametrized bottleneck
MLP for prefix tuning (Li and Liang, 2021).

• Parallel (X): A parallel-scaled bottleneck adapter,
as detailed in (He et al., 2022).

• (IA)3: An adapter that inhibits and amplifies inner
activations (Liu et al., 2022).

Figure 2 shows the high-level design of the

proposed adapter. Within this diagram, the
symbols Gp, Gi, and Gx represent the XOR gate
G, which chooses between the Parallel Adapter,
(IA)3, and the Prefix-tuner. (IA)3 encompasses
the learned layers Lk, Lv, and Lff , while the
Prefix-tuner’s MLP produces the reparametrized
outputs Pk and Pv. The module incorporates
"Pre-X-IA" with a gate, as shown in Equation 1.

G = (IA)3|Prefix− tuned|Parallel (1)

This gate is implemented through a two-layer per-
ception (MPN) (Singhal and Wu, 1988) that learns
to activate the blocks most appropriate for the cur-
rent data or task. As the adapter produces ben-
eficial output, the MPN learns to route the gate
input to the output, amplifying the influence of the
appropriate components.

5. Experiments

5.1. Baselines
LP (Linear Probing): For BERT, we derived the
embeddings in two distinct ways: by extracting the
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Figure 2: Illustration of the PreXIA adapter with
trained components highlighted in magenta.

[CLS] token from the last layer and by channeling
the final hidden representations through a dense
tanh layer. Using a logistic regression classifier,
linear probing can be used to benchmark the base
LLM’s capacity to generate quality representations.

ICL (In-Context Learning): We used the Base
embedding scheme with the GPT-Neo-125M (Black
et al., 2022) model and made ICL identical to TART
in all but the reasoning head to make the compari-
son relevant.

5.2. Training Setup
Our approach mainly relied on established hyperpa-
rameter recommendations. We adhered to the liter-
ature guidelines or default model settings, only devi-
ating when our preliminary hyperparameter search
revealed notable performance discrepancies on a
given dataset.

Finetuning: As our foundational transformer,
we apply BERT-base-uncased (Devlin et al., 2019)
universally, except for ICL scenarios. Abiding by
the original publication’s hyperparameters, we
conducted a concise hyperparameter search on the
dataset to affirm the efficacy of the default values.
The parameters included AdamW optimizer, learn-
ing rate lr = 5e − 2, dropout rate dropout = 0.1,
warmup_steps = 10, weight_decay = True, and
batch size of bs = 64. The maximum sequence

length was capped at 512 tokens. We fine-tuned
for 5 epochs, saving the best model. This method
denoted as ft in Table 2.

Pretraining: Our pretraining approach de-
noted as pt in Table 2 largely mirrored the
finetuning setup, except for a lower learning rate
(lr = 5e − 6). Instead of truncating the texts,
they were merged and divided into chunks of
max_sequence_len = 512, where only the last
chunk required padding. This strategy prevented
the loss of potentially useful data and provided the
model with an improved context source. The sole
training objective was MLM (Masked Language
Modeling). After eight training epochs, the model
that exhibited the lowest perplexity was retained.

TART (Task-Agnostic Reasoning and Trans-
fer): For most of our experiments, we used
GPT-Neo-125M (Black et al., 2022) as our
foundational model, adhering to the TART hy-
perparameters and training instructions provided
in (Bhatia et al., 2023). The synthetic reasoning
module is based on GPT-2 (Radford et al., 2019),
which underwent training on various artificial
logistic regression tasks. In specific experiments,
we substitute GPT-Neo-125M with Pythia-14M (Bi-
derman et al., 2023) to assess the impact of the
reasoning component and gauge the impact of the
lower capacity representations.

Adapters: We combined each adapter with
BERT-base-uncased for comparability. Guided
by (Pfeiffer et al., 2020a), we found that adapters
produced optimal performance at a learning rate of
lr = 1e−4. Our investigations led us to set the opti-
mal sequence length at max_sequence_len = 128,
contrasting the complete model, which performed
best with a maximum sequence length of 512. Af-
ter 15 training epochs, the performance of each
adapter on the validation set was used to select the
model to be evaluated on the test data.

5.3. Training Set Considerations
We performed the experiments with the established
train, test, and validation sets described in Ta-
ble 5 in the supplementary material.

5.3.1. Learning Sequence Classification

The intuitive strategy is to train a model directly on
the target dataset’s Ttrain set. This approach is
denoted as tgt in the data column of Table 2.

Another straightforward strategy is to train a
model on all available data without domain-specific
adjustments, effectively treating it as originating
from a singular domain. Thanks to LLM’s represen-
tational capacity, this approach will work for some
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Figure 3: Effect of the number of training examples
on different models. Binary F1−scores are aver-
aged across domains.

time, but naive retraining as new domains appear
is not a cost-effective solution, and bound to suffer
from catastrophic forgetting sooner rather than later.
This strategy is marked all in Table 2.

A balanced approach that draws training data
from all sources equally can be instrumental in
crafting a versatile model that does not exhibit bias
toward any particular domain. The results of it are
tagged bal in the data column of Table 2.

5.3.2. Low Availability Resources

We studied the impact of the size of the training set
on the best-performing models by systematically
varying the composition of the training set for each
domain in five steps: three balanced sets of 20, 50
and 100 samples, followed by two splits that contain
10% and 80% of the domain. Splits were randomly
sampled and stratified according to the target label
y. The average F1 score calculated in all domains
for five sizes of training sets is shown in Figure 3.

5.3.3. In-Context Training Data

TART and ICL must be task-agnostic to be used
in practice, so we did not finetune their base mod-
els. The inputs were converted to prompts and
paired into training pairs (x, y) as determined by
the embedding scheme specified in the embedding
column of Table 3. For TART and ICL, the embed-
ding schemes used are as follows:

• LOO (Leave-one-out): Aims to maximize data
variation by balancing the resampling of the train
dataset. Data is condensed to 16 dimensions us-
ing PCA and added to the input training sample.

• Stream (One-by-one): A strategy where k sam-
ples are drawn sequentially from the training set
and integrated into the embedding. These em-
beddings are fed into the reasoning head. The

values of k = [18, 32, 48, 64, 96, 128] are used
in (Bhatia et al., 2023).

• Base (Vanilla): A straightforward approach in
which the foundational model is directly used to
derive the embedding.

A limitation driven by the width of the reasoning
head caps the maximum number of context exam-
ples for all embedding schemes except stream at 64
to 256 examples, depending on context length (as-
suming the default maximum sample length of 100
characters). This is expected as in-context learners
are constrained by context length to some degree.
TART adopts a subsampling approach from the
training set to collect training data, ensuring a bal-
anced representation of classes.

6. Results and Discussion

Across the board, PreXIA emerges as the top per-
former with an average binary F1 score of 0.8635
in seven domains. It remains a top-tier contender
when the data available for training is limited. The
other PELT models follow it closely. Tables 2 and 3
provide a comprehensive empirical assessment
of baseline evaluations, while the few-shot perfor-
mance of the model is shown in Figure 3. Inter-
estingly, models with a binary classification layer
trained on prior data generally outshine encoders
in many domains, except for SMS. Here, LP, TART,
and ICL take the lead. Potential overfitting by other
models might explain this discrepancy.

Finetuning and In-domain pretraining with fine-
tuning achieve binary F1 scores of 0.8457 and
0.8576, respectively. However, each method uses
approximately 100 times more parameters for in-
ference, and pretraining in each domain took an
average of 58 minutes and 21 seconds using a T4
GPU with 16GB of RAM. Meanwhile, adapter train-
ing from scratch took less than a minute for each
domain. Our results show that adapters may be
better suited for most practical tasks.

6.1. Handling Imbalanced Datasets
TART and LP exhibit vulnerability to imbalanced
datasets, where ICL significantly outperforms both
with the same base model as TART. LP and TART
use static embeddings with probabilistic logistic
regression, and we hypothesize that this combi-
nation has a flaw in the ability to reason about
imbalanced data that is not present in ICL. The
consequence of using less expressive representa-
tions is further underscored by the noticeably lower
scores of Pythia-14M compared to GPT-Neo-125M
(Table 3). Consequently, TART may require a larger
LM or finetuning to perform on imbalanced data,
negating its primary advantage.
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6.2. Low-Resource Learning
As shown in Figure 3, ICL and especially TART
stand out in such scenarios. It faces stiff compe-
tition from PreXIA, which reaffirms its resilience
by significantly outclassing fully finetuned models
when training data comprise fewer than 100 labeled
examples. With only 20 labeled examples, TART
achieves an average binary F1 score of 0.6647, with
PreXIA delivering an impressive 0.6575. Finetuning
with this sample size results in a score of 0.3906.
The consistent superior binary F1 scores of TART
and its task-agnostic nature make it the natural
choice in this context; however, while other mod-
els see a progressive increase in their binary F1

scores with more training data, TART peaks at ap-
proximately 1, 000 training samples for the stream
embeddings and 256 samples for the LOO and
Base schemes. Because we kept the base mod-
els, the embedding scheme and the initial setup
for TART and ICL identical for some of the experi-
ments, it is possible to use Table 3 to approximate
the impact of the reasoning head. We simply sub-
tract the mean binary F1 score achieved by ICL
from that of TART with base embeddings and ob-
serve that the binary F1 score of TART, 0.5701, is
only marginally higher than the 0.5591 achieved by
ICL. It is not unreasonable to hypothesize that the
reasoning module is responsible only for 0.0110
increase in the F1 score, which is underwhelming
compared to 0.1375 obtained by switching the em-
bedding scheme. More importantly, this finding
contradicts the conclusions made in (Bhatia et al.,
2023) and warrants further investigation. At the
moment, we can only hypothesize that the answer
in the debate regarding the importance of represen-
tations’ quality vs. the LLM’s ability to reason about
the information embedded in the representations it
is given may not be in favor of either, but depend on
factors like data distribution, task, domain, model
used, and a host of other possible factors.

6.3. Error Analysis
Product Review As shown in Table 2, the low-
est F1 score (0.7215) was attained on the Amazon
product review dataset (He and McAuley, 2016)
making it the hardest and most challenging decep-
tion domain in the DIFrauD deception dataset. The
difficulty in this particular domain stems from the
fact that the product review dataset was generated
by Mechanical Turkers, who combined authentic
data with fake generated reviews. We suspect that
the model may struggle to identify reviews authored
by Mechanical Turkers as deceptive, as these re-
views often appear genuinely written. For instance,
statements like “Ive been an xbox fan for a long
time, and I love new tech. I love this console and I
hope Microsoft keeps on banging out great hard-

ware for decades. WOO!", labeled as "deceptive"
in the dataset due to their synthetic origin from
MTurkers, despite their authentic tone. Another
factor contributing to the complexity of this dataset
is exemplified by a fake product review where the
review was deemed fake because it discussed a TV
product when the actual item was not a TV. Without
metadata indicating the type of product or its man-
ufacturer, it becomes challenging to discern the
authenticity of a review solely based on its content.

SMS Spams As shown in Table 2 and Table 3,
SMS domain exhibited the highest performance
meaning the easiest to detect in terms of decep-
tion. We investigate further and find that shorter
SPAM messages are easy to spot compared to
genuine SMS due to their generic content filled
with unsolicited offers and promotions. In contrast,
non-deceptive SMS messages reflect a personal
relationship or conversation with the recipient.

7. Conclusion

This study significantly advances the field of de-
ception detection by introducing a benchmark data
set, introducing a novel PEFT adapter, facilitating
comparative analysis of deception detection algo-
rithms, and exploring universal linguistic deception
indicators. In this work, we thoroughly assess do-
main adaptation and classification methods that
utilize transformer-based LLMs for deception de-
tection. The proposed adapter surpasses similar
approaches and adaptation strategies, increasing
the significance of our contributions. Furthermore,
the evaluation showed that our design is not only
model-agnostic but also task-adaptive and, to some
extent, task-agnostic, extending its applicability and
value across the field. Most importantly, our find-
ings contradict research concluding that a model’s
reasoning ability generally is of far greater signifi-
cance than the quality and richness of representa-
tions (Bhatia et al., 2023), leading us to hypothesize
that the answer to this question may be quite com-
plex and depend on many factors.

Our future endeavors include assessing PreXIA’s
efficacy on generic benchmarks, such as Super-
GLUE (Wang et al., 2019), using DIFrauD to study
linguistic cues for deception across domains and
as a standard benchmark for deception detection in
text data. We are also interested in gaining further
insight into the relative contribution of represen-
tation quality and reasoning ability to the model
prediction and understanding what role, if any, vari-
ous factors such as data distribution and domain
have to play in this equation. Finally, we will provide
other researchers and the general public with any
necessary updates and support for the adapter and
the dataset introduced in this paper upon request.
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8. Ethical Considerations

We perform due diligence to remove private and
financial information from the data, including links,
emails, social security numbers, bank account num-
bers, full names, and other uniquely identifiable
information. Although this process does not guar-
antee anonymity or the preservation of confidential
information, it removes and obscures much of it.
We also do our best to ensure the lack of bias and
neutrality of the trained and published models. To
the best of our knowledge, this work follows all ap-
plicable patent laws, respects the copyrights of any
resources used, and does not violate any prior li-
censing present in tools and resources used in its
creation.

9. Data and Code Availability

Language resources and contributions to the cor-
pora are available on the ReDAS (Reasoning and
Data Analytics for Security) Laboratory Hugging-
face account ReDASers 5.
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A. Supplementary Material

A.1. DIFrauD Data Diversity
In Figure 4, we notice a strong resemblance be-
tween phishing and fake news domains, as they
both employ deceptive tactics through fake offers
as a means to manipulate and sway users’ into
taking immediate action.

On the other hand, the domains associated with
job scams exhibit the lowest similarity with SMS
spam domains. In the case of SMS spam, there’s
a tendency for shorter, deceptive messages that

often prioritize rewards and payments over job
scams.

Considering that DIFrauD comprises solely de-
ceptive domains, we observe a closely correlated
heatmap with a consistent color palette. This in-
dicates a degree of similarity among the domains,
albeit not excessively so, thereby DIFrauD com-
bines a diverse array of deceptive domains into
one cohesive dataset.

A.2. DIFrauD Dataset Distribution

DIFrauD Deception Dataset
Domain # Deceptive # Non-Deceptive

Pols 8, 042 4, 455

News 8, 832 11, 624

Jobs 599 13, 696

Prod 10, 492 10, 479

Phish 6, 074 9, 198

Twitter 1, 969 3, 820

SMS 1, 274 5, 300

Table 4: Class Distribution of the DIFrauD dataset
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Figure 4: Diversity of DIFrauD Dataset Domains

Dataset Split Configuration

Domain Training Validation Testing
# Deceptive # Non-Deceptive # Deceptive # Non-Deceptive # Deceptive # Non-Deceptive

Pols 6, 433 3, 564 804 446 805 445

News 7, 065 9, 299 884 1, 162 883 1, 163

Jobs 479 10, 957 60 1, 369 60 1, 370

Prod 8, 393 8, 383 1, 049 1, 048 1, 050 1, 048

Phish 4, 859 7, 358 607 920 608 920

Twitter 1, 575 3, 056 197 382 197 382

SMS 1, 019 4, 240 127 530 128 530

Table 5: DIFrauD Dataset Splitting
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