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Abstract
While compositional interpretation is the core of language understanding, humans also derive meaning via inference.
For example, while the phrase “the blue hat” introduces a blue hat into the discourse via the direct composition of
“blue” and “hat,” the same discourse entity is introduced by the phrase “the blue color of this hat” despite the absence
of any local composition between “blue” and “hat.” Instead, we infer that if the color is blue and it belongs to the
hat, the hat must be blue. We tested the performance of neural language models and humans on such inferentially
driven conceptual compositions, eliciting probability estimates for a noun in a syntactically composing phrase, "This
blue hat", following contexts that had introduced the conceptual combinations of those nouns and adjectives either
syntactically or inferentially. Surprisingly, our findings reveal significant disparities between the performance of neural
language models and human judgments. Among the eight models evaluated, RoBERTa, BERT-large, and GPT-2
exhibited the closest resemblance to human responses, while other models faced challenges in accurately identifying
compositions in the provided contexts. Our study reveals that language models and humans may rely on different
approaches to represent and compose lexical items across sentence structure. All data and code are accessible at
https://github.com/wangshaonan/BlueHat.

Keywords: Neural Language Models, Composition, Inference, Dataset Construction

1. Introduction

Language comprehension involves combining word
meanings according to the structure of a sentence
and yet, it also encompasses a wide range of in-
ferential processing. Neuroscience research has
revealed a uniform brain basis for conceptual com-
binations that align with syntax and those that result
through inference (Parrish et al., 2022). Building
on this finding, we tested human and language
model performance on inferentially vs. syntactically
arising conceptual combinations. Can neural lan-
guage models, proficient in diverse language tasks
(Han et al., 2021) and mirroring patterns of human
brain activity (Sun et al., 2019; Wang et al., 2020;
Caucheteux and King, 2022) create combined con-
cepts even when the combinations are not obvious
from the syntax? To investigate this phenomenon
in neural language models, we introduce a novel
dataset introducing pairs of sentences matched in
syntactic structure but which vary in whether they
introduce a conceptual combination of an adjective
and noun or not.

1. The blue color of this hat is lovely. This blue
hat ..

2. The blue lamp near this hat is lovely. This blue
hat ..

Despite maintaining the same syntactic distance
between "blue" and "hat" in both context sentences,
humans only obtain a "blue hat" interpretation in

the first case. Therefore, only in the first case is a
subsequent reference to a blue hat natural. This
study tests whether the same information is avail-
able for language models: can they represent com-
bined concepts even when the two elements do not
syntactically merge and the combination arises via
inference?

Previous research has explored neural language
models’ syntactic and semantic capabilities, investi-
gating elements like filler-gap relationships (Wilcox
et al., 2018; Linzen and Baroni, 2021), subject-
verb agreements (Linzen et al., 2016; Jawahar
et al., 2019), anaphor binding (Hu et al., 2020),
non-syntactic factors like politeness effects (Lee
and Wang, 2023), semantic prowess like quality
of phrase representations (Yu and Ettinger, 2020;
Garcia et al., 2021), and the capacity to recognize
semantic roles and possess event knowledge (Et-
tinger, 2020; Pavlick, 2022; Kauf et al., 2022). The
current study adds to this body of work by asking
whether humans and language models diverge in
their ability to combine concepts in the absence of
a local syntactic relationship.

2. Methodology

In our study, we provided a context sentence us-
ing color and object descriptors, for example, “The
blue color of this hat is lovely.” This was followed
by a probe expression like “This blue hat...” When
the initial sentence combined the concepts of color
and object as in the probe, the term ‘hat’ is a natu-
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ral and predictable continuation after ‘blue’ in the
probe sentence. In contrast, after a context sen-
tence such as “The blue lamp near this hat is lovely,”
which does not introduce the combined concept
of the probe expression, the predictability of the
noun “hat” is effectively zero after blue. Thus, hu-
man participants who effortlessly discern the long-
distance semantic relationship between ‘blue’ and
‘hat’ in the context sentence are expected to assign
a higher score to the naturalness of ‘hat’ as the next
word after ‘blue’ in the probe when the context sen-
tence introduced the combined concept of a blue
hat via inference. Similarly, a language model that
can effectively capture the long-distance seman-
tic connections in our context sentence will assign
probabilities based on whether or not the context
introduces the combined concept of a blue hat.

Altogether, our context sentences introduced
eight distinct compositional contexts for the probe
expression, as shown in Section 3.1. Human judg-
ments were log-transformed naturalness ratings
of the noun in the probe expression. To assess
whether the language model inferred a ‘blue hat’
from each preceding context, we evaluate sur-
prisal (Hale, 2016) as the log-transform of out-
put probabilities at the word ‘hat’ in our probe ex-
pression. Additionally, since our context manipu-
lation also may affect how predictable the deter-
miner ‘This’ is at the beginning of the probe, we
subtracted the probability of ‘This’ from the proba-
bility of ‘hat’ in our analysis. This adjustment helps
us account for how each context influences the
interpretation of the probe phrase. We then con-
trasted surprisal across minimal pairs of combina-
tory and non-combinatory contexts within matched
target items and syntactic distance. We used a
binary measure to categorize language model per-
formance across these minimal pairs, correctly de-
termining ‘hat’ in the probe as less surprising when
the context introduced a blue hat, than when the
context did not. We used this binary measure to cal-
culate percent accuracy across each condition of
combinatory and non-combinatory pairs as shown
in Table 1.

To further investigate how language models rep-
resented and used these semantic relationships
over linear and syntactic distances, we also ex-
amined the information retention of the target
adjective on the noun (or noun on the adjective,
depending on word order) within our context sen-
tences. We computed the cosine similarity between
the adjective and noun at each word position within
the context sentence, with the assumption that fea-
tures relevant for composition would be maintained
across syntactic distance. The results for our best
performing model, GPT-2, are displayed in Figure
2., with the rest of the language models results in
Figure 3.

3. Experimental Setting and Dataset

3.1. BlueHat dataset
We followed established psycholinguistic methods
to minimize the effects of word frequency and sen-
tence structure variations using a controlled vo-
cabulary of five color adjectives and five nouns
sorted into sentence templates. We included sets
of prepositions, verbs, adverbs, intensifiers, and
color descriptors to avoid the repetitive use of a
small vocabulary. The frequencies of these ele-
ments were balanced within each template item.
This method produced 100 sentence pairs across
eight distinct conditions (800 context sentences
and corresponding probes).

1. Local(ADJ)
The color of the blue hats is lovely.
(combinatory)
The lamps are blue, hats red, and socks
gray. (non-combinatory)

2. Local(NOUN)
You’ll see that the hat is blue in color.
(combinatory)
You will see a hat, a blue lamp and socks.
(non-combinatory)

3. Non-local(ADJ)
The blue color of this hat is lovely.
(combinatory)
The blue lamp near this hat is lovely.
(non-combinatory)

4. Non-local(NOUN)
The hat is surely a lovely blue color.
(combinatory)
The hat is near a lovely blue lamp.
(non-combinatory)

In these examples, Non-local refers to the inferen-
tial, long-distance context the target adjective and
noun appear in, while Local indicates local contexts
of syntactic composition. We use (ADJ) or (NOUN)
to indicate which of the target words, the adjective
or noun, appears first within the sentence. Com-
bination, either combinatory or non-combinatory
refers to whether the target adjective and noun can
be composed within the sentence.

3.2. Human behavioral experiment
We conducted a behavioral experiment involving
40 participants recruited from Prolific (Palan and
Schitter, 2018). These participants were tasked
with evaluating the naturalness of 120 sentences,
comprising 15 pairs of context sentences and cor-
responding probes randomly selected from a pool
of 100 sentence pairs. Participants utilized a 5-
point scale, ranging from 1 (Very Unnatural) to 5
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Model Overall Local (ADJ) Local (NOUN) Non-local (ADJ) Non-local (NOUN)
Humans 94.3 95.4 97.1 89.8 95.0
GPT 48.25 66.0 44.0 41.3 50.7
GPT-2 71.75 96.0 100.0 86.0 40.0
GPT-2-large 22.0 72.0 1.67 16.0 19.3
BERT 43.75 20.0 16.0 68.7 36.0
BERT-large 58.5 68.0 60.0 44.0 62.7
DistilBERT 34.75 62.0 30.0 20.7 41.3
RoBERTa 58.0 100.0 94.0 19.3 70.7
XLNet 26.75 10.0 2.0 36.0 39.3

Table 1: Human and Language Model Accuracy across Word Order and Distance.

(Very Natural), to rate the degree to which the probe
expression felt like a natural continuation of the
context sentence. The task required participants
to assess the coherence of these sentence pairs.
The entire experiment lasted 25 minutes, and par-
ticipants were compensated with $12 per hour for
their time. To ensure the quality of responses and
maintain participant engagement, we incorporated
response checkpoints. Participants who scored be-
low 80% accuracy on these response checks were
excluded from the subsequent analyses.

3.3. Language models
The present study aims to identify strategies neu-
ral language models 1 use to represent and com-
pose meaning in adjective-noun phrases. We
tested three distinct model groups: 1) BERT Fam-
ily: We utilized BERT, BERT-large, distillBERT, and
RoBERTa that employ bidirectional learning. No-
tably, RoBERTa’s singular objective function sets
it apart from other BERT variants. 2) GPT Family:
This group includes autoregressive training mod-
els like GPT, GPT-2, and GPT-2-large, valuable for
sequential text generation tasks requiring creativity.
3)XLNet: Positioned at the crossroads of BERT
and GPT families, XLNet combines bidirectional
architecture and autoregressive training methods.
GPT-2 and RoBERTa exhibit surprisal that most
closely resembles human naturalness ratings col-
lected in our experiment. Their performance sug-
gests they may hold more flexible representations
to extend the meaning of a sentence to a novel com-
bination. The other models we evaluated scored
below chance accuracy comparing combinatory
and noncombinatory sentence minimal pairs. 1.

4. Results

Table 1 reveals a striking disparity: all language
models underperform in comparison to human judg-

1All models used in this study are sourced from
OpenAI’s pre-trained models in the Transformers li-
brary https://huggingface.co/transformers/
v3.3.1/pretrained_models.html
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Figure 1: Mean human naturalness judgments (top-
left) and language model surprisal to the probe sen-
tence for combinatory (blue) and non-combinatory
(red) contexts.

https://huggingface.co/transformers/v3.3.1/pretrained_models.html
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Figure 2: (GPT-2) Cosine similarity of target words across sentence (left) and target words across sentence
at each hidden layer (right) for combinatory (blue) and non-combinatory (red) contexts.

ments. The overall accuracy for human participants
was 94.3%, with higher accuracies obtained on the
Local contexts than Non-local. This indicates par-
ticipants’ ability to reliably identify when sentences
were forming the intended adjective-noun structure
but reflects a decrease in the naturalness of the
probe’s minimal construction when the items com-
posed through inference.

Among the language models, GPT-2 exhibited
the highest overall accuracy at 72%. RoBERTa
performed well in our Local control contexts and
showed above-chance performance on the Non-
local (NOUN) condition. However, it struggled with
an accuracy of only 19.3% across the Non-local
(ADJ) sentences, indicating difficulty in extracting
the concept of a blue hat from the phrase “blue color
of this hat." Additionally, while other tested models
demonstrated above-chance accuracy on minimal
pairs of sentences, their low accuracy across our
Local control conditions suggests a failure to rec-
ognize compositional structure, even when words
occurred in linear order. This disparity highlights a
key difference between human understanding and
current language models’ capabilities in compre-
hending complex linguistic structures.

Figure 1 displays naturalness ratings for humans
and surprisal for the language models we tested.
Humans consistently identify the probe in non-
combinatory contexts as less natural than in com-
binatory contexts across distances and order. For
instance, ‘the blue hat’ in a non-combinatory con-
text might follow a sentence like ‘the blue lamp near
this hat is lovely,’ making it unexpected to directly
mention a ‘blue hat.’ However, the models’ behav-
ior differed from that of humans. GPT-2 assigned
higher surprisal to combinatory conditions in Lo-
cal(ADJ) and more similar surprisal values for the
Non-local(NOUN) conditions. Surprisal results for

the other models revealed that BERT, GPT, and
GPT-2-large failed to correctly assign higher proba-
bilities to our combinatory, Local control sentences,
indicating that they were unable to detect when
composition was available. While mean surprisal
indicates XLNet performed better on these tasks
overall, its accuracy indicates poor performance
between minimal pairs of sentences.

For GPT-2, an autoregressive model, this diffi-
culty in Non-local conditions indicates that it may
have difficulty in maintaining long-range dependen-
cies across the input, leading to challenges in accu-
rately identifying and understanding compositional
structures that span multiple words or phrases.
RoBERTa, a transformer-based model, may have
faced challenges in effectively using contextual in-
formation from distant parts of the input sequence
to accurately identify compositional structures in
Non-local contexts and extend them to novel com-
binations.

5. Information Retention

Information retention across context sentence
An additional analysis was designed to investigate
how language models build complex representa-
tions of their text input. If a word’s representation is
used later on in a sentence, such as when a word
conceptually combines with another word across
our Non-local contexts, that representation should
be maintained or accessed at later points in the sen-
tence. We measured the cosine similarity between
the target noun and target adjective in the context
sentence at every word between them. Figure 2
(left) shows cosine similarity scores from GPT-2
across our context sentences. The cosine similar-
ity score between the target noun and the target
adjective at each point in the context sentence indi-
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Figure 3: Language model results. Cosine similarity of target words across sentence for combinatory
(blue) and non-combinatory (red) contexts.

cates how closely related the current word is to the
representation of the context’s noun. If the cosine
similarity is high, it suggests that information rele-
vant for the representation of the composing items,
is being maintained or used at the current word.
This analysis explains the decrease in accuracy
within the Non-local conditions. The convergence
of cosine similarities for GPT-2 as the sentence
progresses suggests a difficulty in maintaining rep-
resentations relevant for conceptual combination
across extended spans of text, potentially contribut-
ing to its challenges in associating adjective-noun
pairs in the probe sentence. Despite this, it still
correctly has a higher cosine similarity between
the two target items when they can compose. This
shows an understanding of the context sentence,
even if the model has difficulty evaluating the probe.

Information retention across hidden layers
For GPT-2, we were also interested in understand-
ing how the model maintained and used composi-
tional information in our experiment. To do this, we
took the same cosine similarity measure, between
the adjective and noun at each word position, but
output these results at each hidden layer. This al-
lows us to identify when the model distinguishes be-
tween composing and non-composing sentences,
even if that information is lost as the model’s repre-
sentations become more complex. Figure 2 (right)
shows the cosine similarity between the representa-
tions of the word "hat" from the probe and the word
"blue" from the context across different sentence
structures (denoted by distances 1 to 5) and across
the 13 layers of GPT-2. For both local and non-local
conditions, the combinatory context generally re-
sults in higher cosine similarity, suggesting GPT-2

is able to discern when "hat" is a predictable contin-
uation of "blue". The increase in cosine similarity in
higher layers suggests that as the network’s deeper
layers build more complex representations of their
input, the distinction between word-level items is
lost. This suggests that using the middle or earlier
layers may be helpful in further investigations of the
conceptual capabilities of neural language models.

6. Conclusion

This paper contributes to the ongoing efforts to
deepen our understanding of the intricate linguistic
capabilities exhibited by neural language models.
We introduced a novel test that examines whether
language models can understand conceptual com-
binations even when they arise via inference. Our
findings show that language models generally did
not perform similarly to humans but found that GPT-
2 was the most accurate out of the language models
we tested. GPT-2’s correct assignment of higher co-
sine similarity across sentence structure, but higher
surprisal for combinatory contexts reveals that it
has the ability to identify when conceptual combi-
nations are introduced, but it lacks the ability to
maintain that information in our long-distance con-
ditions. Each language models’ performance high-
lights areas where further improvements in model
architecture and training strategies may be needed.



5314

7. References

Charlotte Caucheteux and Jean-Rémi King. 2022.
Brains and algorithms partially converge in natu-
ral language processing. Communications biol-
ogy, 5(1):134.

Allyson Ettinger. 2020. What bert is not: Lessons
from a new suite of psycholinguistic diagnostics
for language models. Transactions of the Asso-
ciation for Computational Linguistics, 8:34–48.

Marcos Garcia, Tiago Kramer Vieira, Carolina Scar-
ton, Marco Idiart, and Aline Villavicencio. 2021.
Assessing the representations of idiomaticity in
vector models with a noun compound dataset
labeled at type and token levels. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 2730–
2741.

John Hale. 2016. Information-theoretical complex-
ity metrics. Language and Linguistics Compass,
10(9):397–412.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu,
Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao,
Ao Zhang, Liang Zhang, et al. 2021. Pre-trained
models: Past, present and future. AI Open,
2:225–250.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan
Wilcox, and Roger Levy. 2020. A systematic
assessment of syntactic generalization in neural
language models. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1725–1744.

Ganesh Jawahar, Benoît Sagot, and Djamé Sed-
dah. 2019. What does bert learn about the struc-
ture of language? In ACL 2019-57th Annual
Meeting of the Association for Computational Lin-
guistics.

Carina Kauf, Anna A Ivanova, Giulia Rambelli,
Emmanuele Chersoni, Jingyuan S She, Zawad
Chowdhury, Evelina Fedorenko, and Alessandro
Lenci. 2022. Event knowledge in large language
models: the gap between the impossible and the
unlikely. arXiv preprint arXiv:2212.01488.

Soo-Hwan Lee and Shaonan Wang. 2023. Do lan-
guage models know how to be polite? Proceed-
ings of the Society for Computation in Linguistics,
6(1):375–378.

Tal Linzen and Marco Baroni. 2021. Syntactic struc-
ture from deep learning. Annual Review of Lin-
guistics, 7:195–212.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn
syntax-sensitive dependencies. Transactions of
the Association for Computational Linguistics,
4:521–535.

Stefan Palan and Christian Schitter. 2018. Pro-
lific. ac—a subject pool for online experiments.
Journal of Behavioral and Experimental Finance,
17:22–27.

Alicia Parrish, Amilleah Rodriguez, and Liina
Pylkkänen. 2022. Non-local conceptual com-
bination. bioRxiv.

Ellie Pavlick. 2022. Semantic structure in deep
learning. Annual Review of Linguistics, 8:447–
471.

Jingyuan Sun, Shaonan Wang, Jiajun Zhang, and
Chengqing Zong. 2019. Towards sentence-level
brain decoding with distributed representations.
In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pages 7047–7054.

Shaonan Wang, Jiajun Zhang, Haiyan Wang, Nan
Lin, and Chengqing Zong. 2020. Fine-grained
neural decoding with distributed word represen-
tations. Information Sciences, 507:256–272.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do rnn language
models learn about filler–gap dependencies?
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 211–221.

Lang Yu and Allyson Ettinger. 2020. Assessing
phrasal representation and composition in trans-
formers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 4896–4907.

https://doi.org/10.1101/2022.12.11.519989
https://doi.org/10.1101/2022.12.11.519989

	Introduction
	Methodology
	Experimental Setting and Dataset
	BlueHat dataset
	Human behavioral experiment
	Language models

	Results
	Information Retention
	Conclusion
	References

