@inproceedings{huang-etal-2024-dp,
title = "{DP}-{CRE}: Continual Relation Extraction via Decoupled Contrastive Learning and Memory Structure Preservation",
author = "Huang, Mengyi and
Xiao, Meng and
Wang, Ludi and
Du, Yi",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.475",
pages = "5338--5349",
abstract = "Continuous Relation Extraction (CRE) aims to incrementally learn relation knowledge from a non-stationary stream of data. Since the introduction of new relational tasks can overshadow previously learned information, catastrophic forgetting becomes a significant challenge in this domain. Current replay-based training paradigms prioritize all data uniformly and train memory samples through multiple rounds, which would result in overfitting old tasks and pronounced bias towards new tasks because of the imbalances of the replay set. To handle the problem, we introduce the DecouPled CRE (DP-CRE) framework that decouples the process of prior information preservation and new knowledge acquisition. This framework examines alterations in the embedding space as new relation classes emerge, distinctly managing the preservation and acquisition of knowledge. Extensive experiments show that DP-CRE significantly outperforms other CRE baselines across two datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2024-dp">
<titleInfo>
<title>DP-CRE: Continual Relation Extraction via Decoupled Contrastive Learning and Memory Structure Preservation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengyi</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ludi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Continuous Relation Extraction (CRE) aims to incrementally learn relation knowledge from a non-stationary stream of data. Since the introduction of new relational tasks can overshadow previously learned information, catastrophic forgetting becomes a significant challenge in this domain. Current replay-based training paradigms prioritize all data uniformly and train memory samples through multiple rounds, which would result in overfitting old tasks and pronounced bias towards new tasks because of the imbalances of the replay set. To handle the problem, we introduce the DecouPled CRE (DP-CRE) framework that decouples the process of prior information preservation and new knowledge acquisition. This framework examines alterations in the embedding space as new relation classes emerge, distinctly managing the preservation and acquisition of knowledge. Extensive experiments show that DP-CRE significantly outperforms other CRE baselines across two datasets.</abstract>
<identifier type="citekey">huang-etal-2024-dp</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.475</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>5338</start>
<end>5349</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DP-CRE: Continual Relation Extraction via Decoupled Contrastive Learning and Memory Structure Preservation
%A Huang, Mengyi
%A Xiao, Meng
%A Wang, Ludi
%A Du, Yi
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F huang-etal-2024-dp
%X Continuous Relation Extraction (CRE) aims to incrementally learn relation knowledge from a non-stationary stream of data. Since the introduction of new relational tasks can overshadow previously learned information, catastrophic forgetting becomes a significant challenge in this domain. Current replay-based training paradigms prioritize all data uniformly and train memory samples through multiple rounds, which would result in overfitting old tasks and pronounced bias towards new tasks because of the imbalances of the replay set. To handle the problem, we introduce the DecouPled CRE (DP-CRE) framework that decouples the process of prior information preservation and new knowledge acquisition. This framework examines alterations in the embedding space as new relation classes emerge, distinctly managing the preservation and acquisition of knowledge. Extensive experiments show that DP-CRE significantly outperforms other CRE baselines across two datasets.
%U https://aclanthology.org/2024.lrec-main.475
%P 5338-5349
Markdown (Informal)
[DP-CRE: Continual Relation Extraction via Decoupled Contrastive Learning and Memory Structure Preservation](https://aclanthology.org/2024.lrec-main.475) (Huang et al., LREC-COLING 2024)
ACL