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Abstract
The TableTextQA task requires finding the answer to the question from a combination of tabular and textual
data, which has been gaining increasing attention. The row-based approaches have demonstrated remarkable
effectiveness. However, they suffer from the following limitations: (1) a lack of interaction between rows; (2)
excessively long input lengths; and (3) question attention shifts in the multi-hop QA task. To this end, we propose
a novel method: Dynamic Multi-Granularity Graph Estimate Retrieval - DRAMA. Our method incorporates an
interaction mechanism among multiple rows. Specifically, we utilize a memory bank to store the features of each row,
thereby facilitating the construction of a heterogeneous graph with multi-row information. Besides, a Dynamic Graph
Attention Network (DGAT) module is engaged to gauge the attention shift in the multi-hop question and eliminate the
noise information dynamically. Empirical results on the widely used HybridQA and TabFact datasets demonstrate
that the proposed model is effective.

Keywords: TableTextQA, Structural Data Understanding, Graph Neural Network

1. Introduction

The TableTextQA task, which requires finding the
answer to the question from a combination of tabu-
lar and textual data, has been gaining increasing
attention. Each data type offers unique benefits:
tables are an exceptional tool for comparing statis-
tical data, while textual information continues to be
a cornerstone in daily communication.

Considering complex questions in real-world ap-
plications require the combination of data from mul-
tiple resources, TableTextQA tasks are burgeoning
in domains such as finance, science, and medicine
(Chen et al., 2020b, 2021; Ulmer et al., 2020; Zhu
et al., 2021; Talmor et al., 2021).

Prevailing methods for addressing TableTextQA
tasks can generally be classified into three cate-
gories. Knowledge-based methods: These meth-
ods enhance the overall understanding of data
by incorporating additional information about enti-
ties through knowledge injection (Liu et al., 2020;
Karpukhin et al., 2020). Pre-training methods: By
enhancing Pretrained Language Models (PLMs)
or designing new pre-training tasks specifically for
tables, these methods enhance the understanding
of structural data (Eisenschlos et al., 2021; Pi et al.,
2022). Lightweight local retrieval methods: These
methods conduct searches based on specific parts
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of the table content, such as row-based (Kumar
et al., 2021; Lee et al., 2023; Huang et al., 2022)
or cell-based approaches (Zhong et al., 2022).

Notably, the row-based approach, which em-
ploys a specific framework for managing data from
hybrid tabular and textual sources, has exhibited
remarkable effectiveness.

Despite their success, existing solutions suffer
from the following limitations: Firstly, the lack of
interaction between rows precludes a direct com-
parison of information across different rows in the
table; secondly, the incorporation of information
from multiple rows can lead to excessively long in-
put lengths, posing an additional challenge; thirdly,
in multi-hop question-answering tasks where ques-
tion attention spans multiple steps, static analyses
run the risk of overlooking part of the target infor-
mation.

To address these problems, we propose a
novel method: Dynamic Multi-Granularity Graph
Estimate Retrieval - DRAMA over tabular and
textual question answering. Based on the (Ku-
mar et al., 2021) framework, we incorporate an
interaction mechanism among multiple rows to
address commonly encountered comparison-type
questions. Specifically, we first utilize a mem-
ory bank to store the feature vectors of each row.
During the evidence retrieval process, we employ
these stored vectors to construct a heterogeneous
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graph, supplementing the comparative information
of other rows often missed in row-based methods.
Between each layer of the graph model, the Dy-
namic Graph Attention Network (DGAT) module is
engaged to gauge the attention shift in multi-hop
questions dynamically. Empirical results on the
widely used HybridQA dataset demonstrate that
the proposed model is effective, achieving state-of-
the-art performance.

Accordingly, our main contributions are summa-
rized as follows:

• We propose a multi-granularity retrieval archi-
tecture based on heterogeneous graphs, en-
hancing the comprehension of hybrid tabular
and textual data.

• With the momentum mechanism, we are able
to process the long input, addressing the multi-
row table retrieval issue while enhancing the
cross-row retrieval capability.

• We propose the Dynamic Graph Attention Net-
work (DGAT) module to estimate attention
shifts in the complex question, effectively elim-
inating the noise and unrelated information
introduced during multi-row retrieval.

2. Preliminary

2.1. Task Definition

Question answering over hybrid tabular and tex-
tual data requires extracting the answer from het-
erogeneous information. The problem’s input in-
cludes a question q, a table t, and linked pas-
sages P . Specifically, the cells in the ith row,
denoted as rowi, may link to a subset of refer-
ring passages {pi1, pi2, ...} ⊂ P . The table is
comprised of m rows and n columns of cells de-
noted as {cij}mi=1

n
j=1, along with a header. Each

Colj ∈ header defines the description for the cells
within that respective column. Given a triplet of
a question, a table, and several linked passages
(q, t, P ), the goal is to retrieve the answer A corre-
sponding to the question.

2.2. Basic Framework

Answering based on the entire table may seem like
a straightforward approach, but it’s not practical
for many tables on Wikipedia, which have a large
number of rows and columns. This approach re-
sults in long encoded token lengths, including huge
noise that cannot simply fit into the input length of
pre-trained language models (PLMs).

However, concatenating all the linked passages
with the table cells can result in a high calculation
complexity when processing over-long sequences

with existing language models. Additionally, as
the table size increases, the model’s scalability
decreases, making it more challenging to handle
large-scale tables.

Prevailing row-based methods adopt a two-stage
architecture that consists of a retrieval component
and a passage reader.

In the retrieval stage, constrained by the exces-
sive number of tokens contained in the full table,
retrieval utilizes partial table information as the ba-
sic unit for searching (Li et al., 2021; Kumar et al.,
2021; Lee et al., 2023). Heterogeneous data is typ-
ically encoded on the row level. Each row serves
as the smallest unit to preserve the complete struc-
tured attribute information of the table. This method
allows for the preservation of structured information
within the table while simultaneously controlling the
length of the input sequence.

Moreover, the Pretrained Language Model (PLM)
is used to extract features. A classifier is trained
to select the row that is most likely to contain re-
trieval evidence, and this evidence is subsequently
consolidated.

For the Reader stage, the evidence obtained
from the retrieval part and the target question are
used as input. A reader model is trained to analyze
and generate the final answer (Chen et al., 2022,
2020b; Kumar et al., 2021).

3. Methodology

3.1. Overview

The overall DRAMA architecture is shown in Fig-
ure 1. DRAMA consists of a pretrained language
model-based extractor for features, a Dynamic
Graph Attention Network (DGAT) module with
cross-row interaction capabilities, and a passage
reader for answer generation.

We introduce an innovative Dynamic Graph At-
tention Network (DGAT) module in the middle of
the framework. This module comprises two key el-
ements: a dynamic estimator designed to evaluate
edge correlations and a memory bank constructed
for node feature storage and retrieval. Initially, a
memory bank stores the features inferred by the
extractor. Subsequently, a heterogeneous graph
model is constructed based on the current row’s
relationship and the table’s remaining instances.
Features from non-current rows are fetched via
the memory bank. Then, the dynamic estimator
evaluates the shift of question attention between
each layer of the graph network and adjusts the
edge weights in the graph structure, which helps
to eliminate the noise connection introduced in
the multi-row retrieval. Finally, the answer is ob-
tained through a passage reader. The fundamental
framework for the retrieval and the passage reader
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[SEP]
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Figure 1: The overall DRAMA model architecture. The extractor generates the textual features, and then
DGAT refines the structural information from heterogeneous sources. Depending on the evidence scores
retrieved, the reader component generates the final answer.

stages are delineated in Section 2.2. In the fol-
lowing, we describe the DGAT module within the
DRAMA model in more detail and then explain its
learning process.

3.2. Multi-Granularity Retrieval

For multi-granularity retrieval, we incorporate the
features from different granularity units, like rows,
columns, and passages, in the graph Gt=<V, E>,
that is V={q} ∪ {t} ∪ P .

Seqi = [CLS] q︸ ︷︷ ︸
question

;

M⋃
j=1

[SEP] j column is Colj︸ ︷︷ ︸
column

;

[SEP] row i︸ ︷︷ ︸
rowi

;

M⋃
j=1

[SEP] Colj is cij︸ ︷︷ ︸
cellij

;

[SEP] pi︸ ︷︷ ︸
passage

(1)

Specifically, given the question q, the column
name, the-ith-row from the table {header, rowi} ∈
t, and passages from the link set pi ∈ P , we
concatenate them with the [SEP] and [CLS] to-
kens into an encoded sequence Seqi. We use
the hidden states from the last layer of PLM
as the node features for V = {htype}, type ∈
{question, row, column, cell, passage}. The hid-
den states of the [CLS] position encapsulate
question-related information, while other hidden

states of [SEP] positions represent the fundamen-
tal details of different granularities, like row, column,
cell, and passage.

Based on the edge ablation study in Section
4.4, we set the edge connections between differ-
ent granularities. We set multi-granularity connec-
tions as E = Eques−cell ∪ Ecell−col ∪ Ecell−passage ∪
Eques−rowother

∪ Ecell−cellother
. The sketch map for

part of the connections is shown in Figure 1. Addi-
tionally, to integrate the heterogeneous structural
information between rows, cells, and passages,
we establish their relationship using the relational
graph attention transformers (Wang et al., 2020).
Different types of edges are used to represent the
connections between various granularities.

3.3. Memory Bank

Encoding each table row with an encoder during
multi-row retrieval will lead to considerable compu-
tational and memory expenses. It may be unavail-
able due to the limitation of the input length of the
language model.

To avoid redundantly encoding the table context,
we preprocess the semantic information of each
row and each granularity level in the table and
store the semantic information of the entire table in
a memory bank. We only encode the context of the
current row during training. In contrast, the infor-
mation from other rows is sampled from a memory
bank.

However, there is instability during the training
process due to the inconsistency between the PLM
encoder and the memory bank embeddings. If a
database is simply used to store all the prepro-
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cessed row text information, the semantic space
of the new encoded vectors will gradually diverge
from the preprocessed ones during the training
process. Otherwise, updating all the vectors in the
memory bank instantly during training may also
lead to significant semantic discrepancies among
the vectors. Inspired by the momentum approach
introduced in the MoCo (He et al., 2020) paper
on computer vision, we introduce the momentum
mechanism to smooth the semantic discrepancies
between the memory bank and the rapidly updat-
ing encoder. The memory bank is updated with the
momentum mechanism:

E(i+1)
x = m · E(i)

x + (1−m) · fencoder(x) (2)

The parameter m denotes the momentum coeffi-
cient, and Ex is the representation from the mem-
ory bank.

3.4. Dynamic Retrieval Relevance
Estimator

In the HybridQA task, question-answer retrieval
often involves a multi-hop reading process. At each
retrieval step, new evidence is introduced to shift
the focus of the target question continually.

We introduce a dynamic estimator to estimate
the target evidence connection in the graph net-
work. As shown in Figure 2, we assess the directed
focus attributed to the question h

(t)
q within individual

retrieval iterations during the question-answering
process. Based on the structural information within
the table, a heterogeneous graph Gt is constructed
between different rows, columns, and granularities.
However, the original heterogeneous graph often
contains redundant nodes and edges that bring
noise information unrelated to the target question,
which can affect the acquisition of valid information.
We further introduce the dynamic estimation strat-
egy, adjusting the weights of the edges dynamically
in each layer of the graph network based on the
attention to the target question.

Specifically, due to the utilization of the entire ta-
ble cells and linked passages feature in retrieval, a
considerable amount of irrelevant text information
is introduced while providing evidence pertinent to
the question. Our method computes the relevance
score between the target task and the candidate
text based on the target question and the evidential
information aggregated within the graph network.
This, in turn, aids in diminishing the noise infor-
mation in the graph that is irrelevant to the target
question.

h(t)
q , h

(t)
t = GRU(h(t−1)

q , h
(t−1)
t )

ĥ(t)
q = h(t)

q + h(t−1)
q

c
(t)
qi = ĥ(t)

q ⊙ h
(t)
i

d
(t)
ij =

√
c
(t)
qi ⊙ c

(t)
qj

(3)

where hq is the question embedding between
each graph layer and ht is the hidden states initial-
ized from zero vector. We use a gated recurrent
unit (GRU) (Dey and Salem, 2017) to estimate
the question attention and refine the relationship
embedding into dij . ĥ

(t)
q is the aggregation of the

target question and the evidence retrieved from
the t− 1 graph layer. Finally, we obtain dij ∈ [0, 1]
for the dynamic retrieval correlation coefficient be-
tween neighbouring nodes.

e
(t)
ij =

h
(t)
i Wq(h

(t)
j Wk + rij ⊙ d

(t)
ij )

T√
dz/H

α
(t)
ij = softmax(e

(t)
ij )

h
(t+1)
i =

n∑
j=1

α
(t)
ij (h

(t)
j Wv + rij ⊙ d

(t)
ij )

(4)

By employing dynamic retrieval relevance esti-
mators, the connections between nodes with weak
relevance to the question are diminished. Simi-
larly, in the node representation aggregation step,
the connection weights of weak relevance are
weakened. That is, among the various layers of
the graph network, the weights of the connecting
edges within the graph network are dynamically
adjusted according to the attention shift towards
the question, thereby reducing the noise brought
about by irrelevant information.

3.5. Multi-granularity Training

The loss L for the retrieval part consists of cross-
entropy losses for all granularities. The labels are
determined based on whether the answer is a sub-
string of the instance.

LR = − 1

N

N∑
i=1

yRi · log(ŷRi )

LC = − 1

N

N∑
i=1

1

n

n∑
j=1

yCij · log(ŷCij)

LP = − 1

N

N∑
i=1

yPi · log(ŷPi )

(5)

where N denotes the number of training instances,
and LR, LC , and LP respectively signify the loss
functions for the current row, each column in the
row, and the linked passages. The overall loss is
the weighted sum of the losses at each granularity:
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Figure 2: Dynamic Graph Attention Network (DGAT). The basic part of the dynamic retrieval relevance
estimation strategy. Different color shades represent the various edge weights. In each layer of the graph
network, the structure is dynamically adjusted.

Lretrieval = α · LR + β · LC + γ · LP (6)

where α, β, γ are the task coefficients.
As for inference, we first calculate the proba-

bilities of each granularity. Then, we select the
row with the highest probability, as well as the two
highest-ranked granularities at both column and
passage levels, apart from the current row. These
selected pieces of evidence are then concatenated
for inference.

For the Reader section, we train a generative
model, BART, optimizing the parameters of the
Reader by taking the product of the probabilities of
the output sequences a1, a2, ..., an.

Lreader = −
n∑

i=1

log(P (ai|a<i)) (7)

4. Experiment

4.1. Experimental Setup

Setup
Datasets.

HybridQA (Chen et al., 2020b) comprises
69,611 problems, each containing a context with
a table and multiple linked textual paragraphs to
the several table cells. It is a widely used dataset
of multi-hop question-answering over tabular and
textual data. In terms of the evaluation data split,
‘In-table’ implies that the answer is retrieved directly
from a table cell value, whereas ’In-Passage’ indi-
cates that the answer is retrieved from the linked
passages.

TabFact (Chen et al., 2019) consists of 16,573
tables. It is a dataset for verifying language under-
standing on tabular data. This task aims to judge
whether a target statement is entailed or denied
based on the given table. It is used to evaluate

hybrid reasoning skills in symbols and language
on structured data.
Evaluation Metrics.

The evaluation of the datasets is based on
their respective metrics: Exact Match (EM) and
numeracy-focused F1 (Dua et al., 2019) calculated
across different data types for HybridQA and accu-
racy for TabFact.
Implementation Details.

We use the bert-large-uncased (Devlin et al.,
2018) as a pre-trained language model for the
text information encoding and evidence retrieval
stage. The Pretrained Language Model (PLM)
and Dynamic Graph Attention Network (DGAT) are
trained concurrently, with DGAT using an 8-layer
network. The task coefficiences {m,α, β, γ} is set
to {0.9, 1.0, 1.0, 1.0}. The model is trained with
AdamW optimizer (Loshchilov and Hutter), with
a learning rate of 1e-5, across 5 epochs. The
batch size is set at 24 with 3 gradient accumulation
steps. This part of the training requires 2 days on
an NVIDIA Tesla V100 GPU.

For the Reader stage, we use the bart-large-cnn
(Lewis et al., 2020) to generate answers based on
the consolidated evidence for each given question.
We utilize the AdamW optimizer with a learning
rate of 1e-5, training over 10 epochs with a batch
size of 4.

4.2. Baselines

In the experiment, we compare DRAMA with other
methods of HybridQA as follows:

• Hybrider: (Chen et al., 2020b) leverages a
two-stage model in their approach. The first
phase employs a sparse passage retriever to
identify pertinent cells and their correspond-
ing textual data. Then, the target answer is
extracted.
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In-Table In-Passage Total

Dev Test Dev Test Dev Test
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Hybrider 54.3 61.4 56.2 63.3 39.1 45.7 37.5 44.4 44.0 50.7 43.8 50.6
DocHopper - - - - - - - - 47.7 55.0 46.3 53.3
MATE 68.6 74.2 66.9 72.3 62.8 71.9 62.8 71.9 63.4 71.0 62.8 70.2
MuGER2 58.2 66.1 56.7 64.0 52.9 64.6 52.3 63.9 53.7 63.6 52.8 62.5
MITQA 68.1 73.3 68.5 74.4 66.7 75.6 64.3 73.3 65.5 72.7 64.3 71.9
MAFiD 69.4 75.2 68.5 74.9 66.5 75.5 65.7 75.3 66.2 74.1 65.4 73.6

DRAMA 71.4±0.1 77.6±0.2 69.5±0.1 76.1±0.1 67.4±0.1 76.3±0.2 66.4±0.2 76.2±0.3 67.3±0.2 75.3±0.2 66.2±0.1 74.5±0.2

Human - - - - - - - - - - 88.2 93.5

Table 1: EM and F1 results of our model and related work on the HybridQA dataset. The experimental
results are obtained by averaging the performance on the test set across three different random seeds.

• DocHopper: (Sun et al., 2021) proposes an
approach where the table, along with its hy-
perlinked passages, is encoded into an ex-
tensive document. Subsequently, elements
such as column headers, cell text, and linked
passages are concatenated to form a compre-
hensive paragraph.

• MATE: (Eisenschlos et al., 2021) applies
sparse attention to the rows and columns
within the table, a strategy aimed at curtail-
ing computational complexity. Employing the
PointR module, ’golden cells’ are selected
from which corresponding answers are subse-
quently retrieved.

• MuGER2: (Wang et al., 2022) evaluates var-
ious instances such as cells, rows, columns,
and linked passages at different granularities,
subsequently assigning respective scores.
Based on these evaluated scores, the reader
module is employed to aggregate the final an-
swer.

• MITQA: (Kumar et al., 2021) employs a multi-
instance, distance-based training approach,
designed specifically to mitigate the impact of
noise originating from examples with multiple
answer spans.

• MAFiD: (Lee et al., 2023) leverages a fusion-
in-decoder approach, which amalgamates
diverse encoding representations. Subse-
quently, a generative model is deployed to
facilitate the production of answers.

In the sentence entailment task, we further eval-
uate the DGAT on different types of pre-trained
models:

• TAPAS: (Herzig et al., 2020) proposes a table-
based BERT model, which has been pre-
trained and weakly supervised and fine-tuned
on a large amount of structured tabular data,
exhibiting better understanding and represen-
tation capabilities for structured data.

Model Method Acc

BERT-large FT 65.1±0.3

BERT-large+GAT FT 74.4±0.2

BERT-large+DGAT FT 78.1±0.4

TAPAS PT+FT 81.0±0.1

TAPAS+GAT PT+FT 81.7±0.2

TAPAS+DGAT PT+FT 82.9±0.2

Table 2: The accuracy of retrieval achieved by
DGAT on TabFact, based on different pre-trained
models.

4.3. Main Results

As summarized in Table 1, DRAMA shows the
state-of-art performance by achieving EM and F1
by 66.2 and 74.5 on the blind test set of HybridQA.
It is observed that DRAMA outperforms MATE
(Eisenschlos et al., 2021), a pre-training model
that utilizes sequential encoding for tabular data.
This suggests that effectively processing the struc-
tural information is crucial for interpreting heteroge-
neous source data and for selecting the potential
evidence accurately. Additionally, DRAMA displays
enhancements over the multi-granularity baseline.
This underscores the salience of the interconnect-
edness across data of varying granularities. Rather
than examining the features of each granularity in
isolation, integrating information across multiple
granularities is instrumental for a comprehensive
understanding of hybrid table-text data.

As shown in Table 2, we further analyze the
retrieval ability of DGAT on the TabFact dataset.
The experiment compares the static graph method
GAT with the proposed dynamic graph method
DGAT. The node features in the graph network are
based on pre-trained language models on differ-
ent data domains. A direct representation of the
structure is introduced into the graph network, con-
tributing to a 9.3% improvement in the accuracy
of the BERT-large+GAT model. Utilizing dynamic
graph estimation methods helps further enhance
the understanding capability for complex reasoning
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Model Dev
EM F1

DRAMA 67.3 75.3
w/o multi-row 64.4 71.4
w/o multi-granularity 64.9 71.9
w/o dynamic estimate 66.0 73.9
w/o momentum 66.3 74.6

Table 3: Ablation study on different modules of
DRAMA.

Edge Type Dev
EM F1

No Graph Edge 64.9 71.9
+ Ques — Cell 65.1 72.2
+ Cell — Passage & Col 65.3 72.4
+ Ques — Rowother 65.5 72.6
+ Cell — Cellother 66.0 73.9
+ Ques — Cellother 65.6 73.1
+ Rowother — Cellother 65.5 72.5

Table 4: Ablation study of graph edge construction.

tasks. Employing a pre-trained model with TAPAS
on structured data for feature representation im-
proves the understanding of tabular data. The ex-
perimental results on different PLMs demonstrate
that the introduced module possesses a certain
level of universality.

4.4. Ablation Studies

Since the test set is blind, we can’t analyze the
detailed results on it. Consequently, We conduct
ablation studies on the dev set.

Effect of multi-granularity retrieval. As shown
in Table 3, we conduct ablation studies on the mod-
ules of DRAMA. When only using the sequential
encoding (w/o multi-row), the EM score declined
by 3.9 points. However, with the introduction of
the memory bank and multi-row access (w/o multi-
granularity), there is a slight improvement in the
model’s performance. The introduction of a hetero-
geneous graph leads to a significant improvement
in model performance (w/o dynamic estimate). Be-
sides, these results underscore the ability of the
Dynamic Graph Attention Network (DGAT) to lo-
cate inferential evidence through its computation
of question attention more accurately. Further in-
corporation of the momentum (w/o momentum)
updating strategy during training leads to more
stable model training and further improvement in
performance.

Effect of graph construction. As shown in
Table 4, we conduct ablation studies on different
types of edges in the heterogeneous graph. For

m 0.0 0.5 0.9 0.99 1.0

Dev EM - 65.9 67.3 67.0 66.3

Table 5: Ablation study of momentum update.

a more intuitive comparison of the impact of struc-
tural information on evidence retrieval, we do not
incorporate dynamic estimation of question atten-
tion in these experiments. We use the sequential
encoding method as the baseline method. From
top to bottom, we incrementally add different types
of edges to the graph. The subscript of other rep-
resents the nodes of other rows from the memory
bank. It shows that the addition of all cell-to-cell
structural information in the table leads to a signifi-
cant improvement in model performance, validating
the efficacy of direct encoding of structural informa-
tion. Based on the experimental results, we select
the crucial edge combinations that play a crucial
role in this task as the final approach.

Effect of momentum vector update. As shown
in Table 5, we analyze the impact of the momen-
tum updating method for vectors on model training.
Here, m represents the momentum parameter in
equation 2. When m = 0, indicating real-time up-
dating of vectors in the memory bank, it introduces
a substantial computational overhead, which is im-
practical in the experimental setting. Conversely,
when m = 1, meaning the vectors in the memory
bank are not updated and inference is performed
on all vectors only at the onset of training, the
EM score decreases by 1.0. We ultimately select
m = 0.9 as the optimal momentum coefficient.

4.5. Case Studies

As shown in Figure 3, we analyze the performance
of the DRAMA and Hybrider in several cases.

In case (a), the question involves comparisons
between multiple rows in the given table. The Hy-
brider baseline, which only considers single-row
information retrieval, does not have a sufficient in-
ferential basis to answer the question. However,
in the DRAMA model, we introduce features of
multiple rows, allowing the model to compare the
ages of the current governors in different rows.
Concurrently, the heterogeneous graph integrates
information from different modalities, allowing the
model to evaluate cell information in the table while
comparing linked passages. The model correctly
determines that the answer originates from the
row corresponding to term limited in the Seat Up
column.

In case (b), the question involves multi-hop re-
trieval of the table and linked text information, and
the large amount of repetitive information in the
table can introduce noise. With the phrase spent
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②

Song Album … Release Date

Fixing a Hole Sgt . Pepper 's Lonely
Hearts Club Band … November 17 , 2009

She's Leaving Home Sgt . Pepper 's Lonely
Hearts Club Band … November 17 , 2009

… … … …

Abbey Road Medley Abbey Road … October 20 , 2009

(b) Question: Who arranged a small string orchestra for a song on the album that
spent 27 weeks at number one on the UK Albums Chart ?

... it spent 27 weeks at number one on the UK
Albums Chart and 15 weeks at number one on the
Billboard Top LPs chart in the US...

Abbey Road is the eleventh studio album by English
rock band the Beatles , released on 26 September
1969 by Apple Records...

... The song 's instrumental background was
performed entirely by a small string orchestra
arranged by Mike Leander...

Answer: Mike Leander

Current Governor … State Seat Up

David Ige … Tom Hagen 2023(term limited)

John Bel Edwards … Louisiana 2023(term limited)

… … … …

Andy Beshear … Kentucky 2023

Fixing a Hole is a song by the English rock band the
Beatles that was released on their 1967 album...

DRAMA: Mike LeanderHybrider: Sgt . Pepper 's Lonely Hearts Club Band

(a) Question: Who is the youngest state leader with a limited term ?

John Bel Edwards ( born September 16 , 1966 ) is an
American politician and attorney serving as the 56th
governor of Louisiana since 2016...

Andrew Graham Beshear (born November 29 , 1977)
is an American attorney and politician who is serving
as the 63rd Governor of Kentucky since 2019...

David Yutaka Ige (born January 15 , 1957) is an
American politician serving as the eighth governor of
Hawaii...

Answer: John Bel Edwards DRAMA: John Bel EdwardsHybrider: Andy Beshear

①
③

④

Figure 3: Case studies of Hybrider and DRAMA on the HybridQA dataset.

27 weeks at number one in the question, all the
models precisely locate the Album: Sgt. Pepper’s
Lonely Hearts Club Band. The DGAT module in
DRAMA targets the question by dynamically esti-
mating the attention of the question, thus eliminat-
ing noisy connections and correctly identifying the
pertinent row. However, Hybrider, being affected
by fields that repeatedly appear in the table and are
somewhat relevant to the question, fails to locate
the ultimate target of the question.

5. Related Work

In recent years, traditional question-answering
tasks focused solely on textual or tabular data
have been systematically researched (Herzig et al.,
2020; Sun et al., 2019; Zhou et al., 2022). Each
type of data has its own characteristics; textual
data can be obtained in large quantities from var-
ious sources, while tabular data is beneficial for
presenting comparative information between simi-
larly structured data. There has been an increasing
trend in practical applications towards integrating
unstructured text information with structured table
information, a technique known as Hybrid Ques-
tion Answering (HQA) (Nakamura et al., 2022). To
bridge this gap, (Chen et al., 2020b) proposed the
HybridQA dataset, which has been widely used
to study heterogeneous QA tasks. Each ques-
tion in the HybridQA dataset includes a WiKiTable

and its corresponding linked Wikipedia passages
as sources of evidence for answer retrieval. Fur-
thermore, (Chen et al., 2020a) proposed an open-
domain hybrid question-answering dataset (OTT-
QA) based on the Wikipedia dataset. More specif-
ically, (Zhu et al., 2021) and (Chen et al., 2021)
proposed TAT-QA and FinQA for numerical calcu-
lation question-answering on hybrid data in the
financial domain.

In terms of heterogeneous data representation,
traditional methods transform structured tables into
sequential text forms through specific encoding
strategies. Hybrider (Chen et al., 2020b) pro-
poses a two-stage framework that divides tables
into cells and concatenates them with linked text.
The method then utilizes a reading comprehension
(RC) model to extract answers. DocHopper (Sun
et al., 2021) uses an end-to-end method to retrieve
and locate passage sentences or cells as infer-
ence evidence. However, converting both types of
data into sequential encoding directly can result
in excessively long encoding lengths. MITQA (Ku-
mar et al., 2021) conducts retrieval based on rows
as units. MATE (Eisenschlos et al., 2021) modi-
fies the attention layer of the transformer network
into sparse attention, reducing the computational
complexity and thus supporting longer sequence
inputs.
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6. Conclusion

In this paper, we propose a Dynamic Multi-
granularity Graph Estimate Retrieval method,
DRAMA, to address multi-hop TableTextQA prob-
lems. When answering questions from given struc-
tured tables and unstructured passages, DRAMA
employs a heterogeneous graph to create various
types of nodes and edges, representing data from
diverse sources and their associated interconnec-
tions. This approach effectively mitigates the prob-
lem of structural information loss when combining
heterogeneous data. Due to the large volume of
text input, a memory bank is used to store some
of the feature information from the table, and a mo-
mentum update method is used during the training
process to smooth out differences in the feature
space within the memory bank. To enhance the
capability to evaluate the question attention shift
in multi-hop QA problems, we design a Dynamic
Graph Attention Network, which dynamically esti-
mates question attention between each layer of the
graph network and recalculates the correlation be-
tween evidence and the question to eliminate the
noise. DRAMA has demonstrated state-of-the-art
performance on the widely used HybridQA bench-
mark.

7. Limitations

Since the TableTextQA task has only one publicly
available dataset, HybridQA, for heterogeneous
data, on which we conduct our experiments exclu-
sively. This may result in a certain lack of gener-
alizability of our model. To further verify the effec-
tiveness of our proposed DGAT module, we also
conduct experimental validation on the purely struc-
tured dataset TabFact. However, this dataset may
not reflect the retrieval capability at the passage
level.

For count-based statistical questions, the target
answer cannot be directly extracted from the evi-
dence. Therefore, the method of obtaining answers
varies between these types of questions. However,
such questions are less frequent and are not the
primary focus of our model. Since the dataset does
not explicitly provide the type for each question, we
may consider classifying questions using methods
such as rule matching in the future.
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