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Abstract
Situated conversations, which refer to visual information as visual question answering (VQA), often contain
ambiguities caused by reliance on directive information. This problem is exacerbated because some languages,
such as Japanese, often omit subjective or objective terms. Such ambiguities in questions are often clarified by the
contexts in conversational situations, such as joint attention with a user or user gaze information. In this study, we
propose the Gaze-grounded VQA dataset (GazeVQA) that clarifies ambiguous questions using gaze information
by focusing on a clarification process complemented by gaze information. We also propose a method that utilizes
gaze target estimation results to improve the accuracy of GazeVQA tasks. Our experimental results showed that
the proposed method improved the performance in some cases of a VQA system on GazeVQA and identified some
typical problems of GazeVQA tasks that need to be improved.
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1. Introduction

The development of interactive systems that can
collaborate with humans by taking into account
real-world information is one ultimate goal of
vision-and-language research. Such systems
should understand the given visual information to
respond users based on their results. Visual ques-
tion answering (VQA) (Antol et al., 2015; Goyal
et al., 2017; Shimizu et al., 2018) and visual dia-
log (Das et al., 2017; Agarwal et al., 2020) have
been proposed to achieve this goal.

VQA tasks generally assume a situation where
the intention of questions is clear in visual contexts,
and systems can uniquely answer them. However,
in actual interaction with humans, human utter-
ances contain various ambiguities (Taniguchi et al.,
2019; Sugiyama et al., 2007). A typical problem is
exemplified by directives. To properly understand
questions that contain directives, the directive’s
destination must be grounded in the real world.
For example, ”Could you pass it to me?” might
have numerous interpretations because of the di-
rective, “it.” Some languages, such as Japanese,
feature the ellipsis of such topical terms as subject
and object in addition to the occurrence of indica-
tive words (Seki et al., 2002; Sasano et al., 2008).
Referring to real-world information is one key idea
to resolve the ambiguity caused by directives and
ellipses. For example, speaker’s gaze (Emery,
2000), speaker’s pointing (Nakamura et al., 2023),
and joint attention (Rocca et al., 2018) are impor-
tant cues for clarifying the target of ellipses and
directives.

A1 : 水色 / Light blue
A2 : 金色 / Gold

Q1 : [彼が] 着ているシャツは何色ですか?
Q2 : 少年の髪は何色ですか?

Q’1: What color shirt is [he] wearing ?
Q’2: What color is the boy's hair ?

Q3 : [お椀の] 中では何が灯っていますか ?
Q4 : その上には何が置かれていますか ?

Q’3: What is lit up [in the bowl] ?
Q’4: What is placed on top of it?

A3 : ろうそく / candle
A4 : お椀 / bowl

Figure 1: Examples of questions and answers
for GazeVQA proposed in this research: Square
brackets denote omitted gaze target names. Mul-
tiple target points are assigned that correspond to
source points.

In this research, we address the problem of
ambiguity in human questions, especially when
it refers to gaze information. We propose a
Gaze-grounded VQA dataset (GazeVQA) that in-
cludes Japanese questions and gaze information1.
GazeVQA assumes a situation where a speaker in

1Our dataset is publicly available at https://
github.com/riken-grp/GazeVQA.

https://github.com/riken-grp/GazeVQA
https://github.com/riken-grp/GazeVQA
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an image asks to a system an ambiguous ques-
tion that may contain directives or abbreviations,
and a system answers it taking into account the
speaker’s gaze information. For example, since
there are two boys in the upper image in Figure 1,
the following question from the girl is ambiguous:
”What color is the boy’s hair?” However, if the sys-
tem knows the girl’s gaze information, it can clar-
ify the ambiguity of the question and answer the
question. We collected questions and answers by
focusing on speaker’s gaze targets by crowdsourc-
ing on the MS-COCO (COCO) subset derived ob-
ject recognition image dataset (Lin et al., 2014)
in Gazefollow (Recasens et al., 2015). We col-
lected questions that are difficult to answer with-
out information about speaker’s gaze targets and
required that the workers not mention the names
of the gaze target objects when they created their
questions. As a result, GazeVQA contains 17,276
QA pairs for 10,760 images, of which 1,680 were
used as the test-set. To ensure diverse answers,
we assigned ten answers to each question in the
GazeVQA test-set. Our primary contribution is the
construction of GazeVQA.

In addition, we propose a model that accurately
answers ambiguous questions using gaze infor-
mation. Existing vision-and-language models can
take a target image and a question about it as in-
put and generate an answer (Cho et al., 2021;
Mokady et al., 2021). In this research, we inves-
tigate whether models can improve QA accuracy
using areas highlighted by gaze information. A
study on segmentation using text and images as
prompts (Lüddecke and Ecker, 2022) is related
to our idea. Inspired by this work, we added an
adapter consisting of linear layers (Dumoulin et al.,
2018) to a baseline (Mokady et al., 2021) consist-
ing of a pre-trained image encoder (Radford et al.,
2021) and a text decoder (Radford et al., 2019).
We proposed a method for integrating a regions of
interest (RoI) that represent gaze targets into the
whole image with adapters. We used an existing
gaze target estimation model for the estimated a
RoI (Chong et al., 2020).

In experiments, we pre-trained a baseline and
the proposed models with a Japanese caption
dataset (Yoshikawa et al., 2017) and a Japanese
VQA dataset (Shimizu et al., 2018) and fine-tuned
them on our GazeVQA dataset. In the experimen-
tal conditions, we compared the results with and
without gaze information in the adapter (ground-
truth RoI and estimated RoI). Our experimental re-
sults found that using gaze information improved
the GazeVQA’s performance in some cases. Our
second contribution is a proposal of a model that
integrates gaze information.

2. Related Work

2.1. Visual Question Answering with
Contextual Information

Visual Question Answering (VQA) is a task where
the system derives answers to questions about im-
ages (Antol et al., 2015; Goyal et al., 2017; Shimizu
et al., 2018). Since this study targets questions
that are ambiguous without gaze information, we
intentionally collected questions that did not in-
clude the names of gaze objects.

Previous works proposed VQA datasets that
contain a variety of contextual information in addi-
tion to images and questions. A visual dialog pro-
vides accurate answers to ambiguous questions
that arise during dialogues (Das et al., 2017; Agar-
wal et al., 2020). To answer questions, the previ-
ous dialog history is used as a supplement. VQA-
HAT (Das et al., 2016) and VQA-MHUG (Sood
et al., 2021) improved the accuracy of VQA tasks
using a saliency map. By incorporating the an-
swerer’s subjective gaze information generated
while solving the question with the VQA model,
both works grounded fine-grained visual and lin-
guistic representations. Point and Ask (Mani et al.,
2020) employed pointing information to answer
ambiguous questions that contain directives. They
used paintings to ground directives in questions
and the objects in images. In our study, we exploit
gaze information to answer ambiguous questions.

There are two differences between these previ-
ous works and our work on the GazeVQA. First, we
use the questioner’s gaze information from the im-
ages as additional contextual information. Second,
GazeVQA questions contain not only directives but
also Japanese subject and object ellipsis.

Some research that uses gaze information is
based on the gazing information of a user look-
ing at an image (Ilaslan et al., 2023). In this re-
search, we assume applications such as robots
that need to understand the situation from a third
person view by extracting the questioner from the
image.

2.2. Gaze Target Estimation
Gaze target estimation predicts a person’s gaze
target from a head image. Gazefollow (Recasens
et al., 2015) is a gaze target estimation dataset
that is annotated with the sources and target points
as gaze information. Gazefollow covers people
collected from various image datasets, including
COCO (Lin et al., 2014). Another work maps gaze
information to objects for images taken in retail en-
vironments (Tomas et al., 2021). In this research,
we constructed GazeVQA based on Gazefollow
since no special environments are assumed. Here
the gaze destinations in Gazefollow do not nec-
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Q: What color is the man's shirt ?
A: Light blue

Q: What is it ? 
A: It’s light blue shirt.

Collected 17,276 QAs 
from 219 workers

What color is the man's shirt ?

What color is the man
wearing white helmet shirt ?

Light blue Blue

✕7 ✕2

Added 9 answers
(A total of 10 answers)

Added clarified questions

Step4: Prepare for the test-setStep 2 and 3: Collecting & ScreeningStep 1: Pre-process

Selected 14,000 
images & gaze annotations

Figure 2: Data collection process of our Gaze-grounded VQA dataset

essarily refer to gaze targets; nor do they spec-
ify their names. Therefore, we collected questions
and answers about gaze objects based on the ob-
ject annotations in the COCO subset of Gazefol-
low. For the actual gaze target estimation, we
used the head image of the person associated with
the gaze source (Chong et al., 2018).

3. Gaze-grounded VQA Dataset

In this section, we describe our proposed Gaze-
grounded VQA dataset (GazeVQA). As in the case
of VQA, GazeVQA’s task is to answer questions
about the given image. However, the questions in
GazeVQA contain ambiguities and require consid-
eration of the gaze information from the person in
the image. We first describe GazeVQA’s task set-
tings and then explain the data collection process.
We also describe GazeVQA’s statistics.

3.1. Task Setting
We consider a case where questions without con-
textual information are given by a speaker from
the system’s first-person view. Models must clarify
any ambiguity using the estimated region of inter-
est (RoI) that represents gaze target. The main
task is defined as follows:

GazeVQA task: Given question q, correspond-
ing image I, and a RoI Is, the task outputs answer
y.

Our data also contain the ground-truth RoI,
which is the COCO bounding box; however, we as-
sume that this RoI is not given in a real task. In this
case, the system also needs to solve the following
gaze target estimation task, which is defined as
follows to obtain Is:

Gaze target estimation task: Given image I
and speaker’s head image Ih, the task outputs Is.

3.2. Data Collection
Figure 2 shows the process of constructing
GazeVQA. We collected questions and answers

for images by crowdsourcing2. We used images
in the COCO subset of Gazefollow to acquire gold
labels of the gaze sources and destinations. The
specific procedure is described below.

Step 1: Selection of images and gaze infor-
mation: We selected 14,000 pairs of image and
gaze information and excluded the following cases:
those in which the gaze destinations do not point
to objects and those in which the gaze destinations
point outside of the image. We used COCO’s ob-
ject segmentation for judgments. If the gaze des-
tinations do not point to object segmentation, this
gaze information is removed.

Step 2: Collecting questions and answers:
We collected 26,296 questions and answers
through crowdsourcing. Workers wrote questions
and answers about gaze targets based on images
with gaze information and object labels in COCO.
However, if the gaze targets could not be con-
firmed due to image blur, we asked them not to
create questions and answers for such targets.

The workers were given the following instruc-
tions:
• Make the questions at least ten Japanese char-

acters long.
• Do not include the names of the gaze target ob-

jects in the questions.
• Create questions that can be answered using

only the image.
We designed the first and second instructions

to create a variety of ambiguous questions that re-
quire gaze information. We designed the third in-
struction to exclude from GazeVQA any questions
that are ambiguous outside of the image content.
For example, such a question as “What will he do
after this?” is not covered in this research because
it requires some inference.

Step 3: Screening of questions and answers:
Since the raw crowdsourcing results are noisy, we

2https://crowdworks.jp/

https://crowdworks.jp/
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Figure 3: Examples of GazeVQA test-set: AQ and answers in bold denote ambiguous questions and
answers obtained through Step 3. CQ denotes questions clarified by annotator’s work. The original
questions and answers are given in Japanese. We put English translation in the bottom. Words denoted
by square brackets are supplements in translations; the terms are omitted in the original Japanese ques-
tions.

need to screen them. In the process of entering
questions in Step 2, we placed and used a bonus
question: “Do not enter any text in this field.” As
a post-processing step, we manually checked the
unnaturalness of the questions for workers who
answered the bonus question. We excluded the
annotation of 27 workers (from the original 246)
whose annotated questions were repetitive or too
vague. We selected 17,276 questions and an-
swers to exclude unnatural questions. We call this
question set ambiguous questions (AQs).

Step 4: Preparation for test-set: GazeVQA
questions are associated with one or more of
the 80 types of gaze objects. We divided the
GazeVQA train/valid/test-set into 13,785/1,811/
1,860 (0.8 : 0.1 : 0.1).

We expanded the test-set to ensure a variety
of answer sets and assigned ten answers to the
test-set questions, following a previous work (An-
tol et al., 2015; Goyal et al., 2017). Nine workers
created additional answers for each question in the
test-set. Each worker was given only gaze sources
and ambiguous questions and answered without
gaze destinations and names of the gaze target
objects.

We also added a question to clarify each test-
set, which contains the names or characteristics
of the gaze targets from a single annotator. The
annotator referred to the questions, the answers,
and the gaze information. We called these clarified
questions (CQs).

3.3. Example
Figure 3 shows a few examples included in the
GazeVQA test-set. These questions suffer from
ambiguities due to both directives (Fig. 3 (a)) and

ellipsis peculiar to Japanese (Fig. 3 (b)). The ques-
tions are determined as answers based on the con-
tent of the questions, even if the gaze targets con-
sist of more than two candidate objects (Fig. 3 (c)).
However, some questions are too vague, where
the answers are inconsistent with gaze information
(Fig. 3 (d)).

3.4. Statistics and Analysis

We compared the statistics of GazeVQA and the
Japanese VQA dataset (VQA-ja) (Shimizu et al.,
2018) to highlight the former’s characteristics.

Table 1 shows the statistics of these dataset.
The percentage of unique questions in GazeVQA
(46.46%) exceeds that in VQA-ja (45.21%), and its
average length of questions is also slightly longer.
The percentage of unique answers in GazeVQA
(33.87%) is larger than that in the Japanese VQA
(17.10%), and its average length of answers is
also slightly longer. This is because the GazeVQA
questions assumed supplemental information ac-
quired by gaze information in addition to the ques-
tion itself.

Table 2 shows the typology of question types
included in GazeVQA. The percentage of “what”
types is 81.85%, which is about 10% higher than
the percentage of the VQA-ja (Shimizu et al.,
2018). GazeVQA includes many questions that
ask about the attributes of the gaze target ob-
ject, such as color and shape, because the gaze
target was the question’s subject. The percent-
age of “where” types about the location of objects
and “how” types about the number of objects was
12.04% in total. GazeVQA also contains other
types of questions, including “when” types that ask
about time and “who” types that ask about a per-
son.
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Table 1: Statistics on GazeVQA and Japanese
VQA (VQA-ja) (Shimizu et al., 2018)

GazeVQA VQA-ja
Images 10,760 99,208
Question and answers 17,276 793,664
Unique questions 8,628 358,844
Unique answers 5,853 135,743
Avg. question length 15.37 14.82
Avg. answer length 4.92 4.56

Table 2: Typology of question types for GazeVQA
Types (Keywords in Japanese) #Counts
What (nani, dono, donna) 14,141

is/are/do/does 7,215
color 3,626
condition 1,240
kind 903
shape 703
others 454

Where (doko) 1,085
How (dore, ikutsu) 996
Which (dochira) 295
Others (itsu, dare, naze) 875

Table 3 shows the frequency of arguments in
the predicate-argument structure3 in the GazeVQA
test-set. Ambiguous questions in the GazeVQA
test-set often result in the ellipsis of nominative
and accusative cases, related to subjects and ob-
jects in questions, compared with clarified ques-
tions. This result suggests that GazeVQA contains
questions in which the nominative and accusative
cases are omitted, which is often in Japanese. For
example, Fig. 3(b) is a typical example of the ellip-
sis of the nominative case.

4. Methodology

In this section, we first describe ClipCap (Mokady
et al., 2021), which is our baseline for the
GazeVQA task, and next describe our pro-
posed model, “ClipCap + Adapter,” which adds
adapters (Dumoulin et al., 2018) to ClipCap. Fi-
nally, we explain the procedure for obtaining the
region of interest (RoI) of the gaze targets in the
gaze target estimation task.

4.1. Baseline Model: ClipCap
ClipCap is a vision-and-language model consist-
ing of an image encoder and a text decoder. We
used ClipCap as the baseline for the GazeVQA

3We calculated this frequency through an integrated
Japanese text analyzer (Ueda et al., 2023).

Table 3: Frequency of predicate term relation-
ships in test-set of GazeVQA questions: Note that
“nom.”, “acc.” and “dat.” denote numbers of nom-
inative, accusative and dative cases, AQ and CQ
refer to caption of Fig. 3.

Types ga (nom.) wo (acc.) ni (dat.)
AQ 2,044 1,028 440
CQ 2,912 1,584 569

task because there is no representative VQA
model pre-trained in Japanese.

Image encoder: Given a RGB image I ∈
RW×H×3, the baseline image encoder outputs im-
age series r = {r1, . . . , rn} that can be input to the
text decoder. Here n is the length of the image se-
ries, and element ri in r has the same dimensions
as the token embedding in question q.

Given image I, CLIP image encoder (Radford
et al., 2021) outputs image series p = {p1, . . . , pn}
using a single linear layer f :

{p1, . . . , pn} = f(CLIP (I)). (1)

Given image series p, the multi-layer transformer
blocks (Vaswani et al., 2017) the F output r:

{r1, . . . , rn} = F ({p1, . . . , pn}). (2)

We call these transformer blocks a mapping net-
work, following the previous work (Mokady et al.,
2021).

Text decoder: Given question tokens q =
q1, . . . , qm and image series r, the autoregressive
text decoder generates answer tokens y. The fol-
lowing is the input series of the text decoder:

{r1, . . . , rn, [SEP1], q1, . . . , qm, [SEP2]}, (3)

where [SEP1] and [SEP2] are “Question:” and
“Answer:” and represent the decoder prompts.

4.2. Proposed Model: ClipCap + Adapter
Figure 4 shows the structure of our proposed
model. We added adapters to a mapping net-
work (Dumoulin et al., 2018), inspired by work
on object segmentation using text and objects as
queries (Lüddecke and Ecker, 2022). Adapters
merge image I and RoI Is, and the mapping net-
work outputs an image series that takes into ac-
count a gaze target. Each mapping network’s
transformer block has an adapter (Fig. 4, right).
The CLIP image encoder constructs two image se-
ries: one for image p and another for the RoI of the
gaze target s = {s1, . . . , sn} from I and Is, similar
to the baseline image encoder. Given p and s, the
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Autoregressive
Text Decoder

Image
Encoder

Q: What color is the 
boy's hair?

A: Gold

CLIP

LayerNorm

Self-Attention

LayerNorm

FFN

Adapter

r :  Image Series

q : Question Tokens

y : Answer Tokens

Linear

Linear

Affine
Transformation

Mapping Network
(✕8 Transformer Blocks)

I : Image Is : RoI

s

p’l

p’l＋1

Figure 4: Left: Overview of proposed system Right: Details of Image Encoder architecture

adapter computes the element-wise affine transfor-
mation and outputs a mixture of features p′ from I
and Is:

p′
l+1 = g(s)⊙ p′

l ⊕ h(s), (4)

where g and h denote a linear layer and p′
l denotes

the input of the transformer block of the mapping
network in the l-th layer. Note that the input of the
first transformer block is p′

l = p.

4.3. Process of Gaze Target Estimation

We obtain RoI Is, which is an input to the adapter,
from a head image of gaze source Ih. Given im-
age I and head image Ih, the gaze target esti-
mation model (Chong et al., 2020) outputs a gaze
heatmap H. We binarize a threshold value of 0
for H and obtain Is, which is a bounding box cor-
responding to the gaze target (Ardizzone et al.,
2013). We consider I to be Is since it is difficult
to get Is from H if every element of H is 0.

5. Experiments

5.1. Experimental Setup

Dataset: We used 123,287 images and 616,435
captions from the Japanese image caption
dataset (Yoshikawa et al., 2017) (STAIR) and
99,208 images and 793,664 question-answer
pairs from the Japanese VQA dataset (Shimizu
et al., 2018) (VQA-ja) as pre-training for the
models. We fine-tuned them using the GazeVQA
train-set.

Implementation details: We used a ResNet-
based RN × 4 (Tan and Le, 2019) as the CLIP
image encoder and processed images I and re-
gions of interest Is in a manner that resembles
CLIP normalization4. The input of the CLIP image
encoder is a resized image with 224 dimensions
(height and width); the output is a 640-dimensional
vector. We composed a mapping network of eight
layers of transformer blocks and set length n of the
image series (p, s, and r) to 10. We used GPT-2
as our text decoder (Radford et al., 2021), which
was pre-trained on a Japanese corpus5.

For a batch size of 32, we trained 10 epochs
for STAIR, VQA-ja, and GazeVQA. The optimizer
was AdamW (Loshchilov and Hutter, 2019), with
a learning rate of 2e-5 in pre-training and 1e-4 in
fine-tuning. We used a beam search with beam
width of 10 for the GazeVQA evaluation.

Training target: We next describe the results of
training the parameters of the mapping network
and the text decoder due to the limited data avail-
able in Japanese. Our model has about 426M
training parameters: 410M baseline training pa-
rameters and 16M adapter parameters. We also
report the results of training the mapping network
or only the adapters with GazeVQA to explicitly up-
date the adapter weights. There are 74M baseline
training parameters, and our model has 90M train-
ing parameters only when the mapping network is
trained.

4https://github.com/openai/CLIP
5https://huggingface.co/rinna/

japanese-gpt2-medium

https://github.com/openai/CLIP
https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/rinna/japanese-gpt2-medium
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Table 4: Evaluation results of baseline and pro-
posed models with GazeVQA test-set: |θ| is num-
ber of trainable parameters for each model.

Models |θ| Acc Bs
Fine-tuned Text Decoder & Mapping Network

ClipCap 410 36.80 81.75
ClipCap + Adapter (I) 426 34.78 81.39
ClipCap + Adapter (Is) 426 34.15 81.28
ClipCap + Adapter (GT ) 426 34.72 81.33

Fine-tuned Mapping Network
ClipCap 74 35.83 81.21
ClipCap + Adapter (I) 90 38.45 81.74
ClipCap + Adapter (Is) 90 38.11 81.71
ClipCap + Adapter (GT ) 90 38.01 81.70

Fine-tuned Adapter Only
ClipCap + Adapter (I) 16 40.06 81.91
ClipCap + Adapter (Is) 16 39.03 81.92
ClipCap + Adapter (GT ) 16 40.09 82.01

Evaluation metrics: We evaluated the model
with VQA score Acc that takes into account the
diversity of the answers in the VQA task (Antol
et al., 2015; Goyal et al., 2017). We also evalu-
ated the model using a BERT score, Bs (Zhang
et al., 2020), which takes into account the variabil-
ity of the responses. We used a multilingual BERT
sentence vector for our evaluation and calculated
the similarity of the vectors between the predicted
answer and each element in the gold answer set6.
Bs is the arithmetic mean of all these similarities.

5.2. Quantitative Evaluation
Table 4 shows the evaluation results of the pro-
posed model and the baseline. Table 5 shows the
ablation study results for the baseline inputs. Here
all the scores (Acc and Bs) are the averages of five
training and evaluation iterations of the GazeVQA.
We denote the image as I, the RoI obtained from
the gaze target estimation as Is, and the gold RoI
as GT , which is a COCO bounding box associated
with the question, with respect to the model inputs.

Our model vs. baseline: We compared our pro-
posed model (ClipCap + Adapter (Is)) with the
baseline (ClipCap) with the RoI Is input to the
adapter. Appendix A shows detailed evaluation re-
sults for each question type described according
to the classification in Table 2.

As shown in Table 4, our model underperformed
the baseline when the mapping network and the

6https://huggingface.co/
bert-base-multilingual-cased

Table 5: Ablation evaluation results of baseline: Is
and GT denote that baseline only uses a limited
region of image I pointed by their bounding boxes.

Models Acc Bs
ClipCap 36.80 81.75

w/o image series 16.10 78.48
w/o question tokens 3.66 65.93

ClipCap (Is) 34.53 81.28
ClipCap (GT ) 34.27 81.26

text decoder are trained with GazeVQA. However,
it outperformed the baseline performance when
only the mapping network and the adapters were
trained with GazeVQA. In particular, the VQA
score of our model trained only with adapters is
39.03, which is about four points higher than the
baseline trained with the mapping network and
the text decoder. Our model can generate accu-
rate answers to ambiguous questions with about
16M parameter updates, compared to the base-
line, which requires a full tuning both text decoder
and a mapping network.

Factors contributing to GazeVQA task accu-
racy: We compared our proposed model with a
baseline trained only on the mapping network. As
shown in Table 4, our model with image I as in-
put to the adapter (ClipCap+ Adapter (I)) outper-
formed the baseline, and there is no difference in
our model with RoI Is and GT as input: ClipCap+
Adapter (Is) and ClipCap+ Adapter (GT ). This re-
sult suggests that the increase in training param-
eters due to the addition of adapters is one rea-
son for the improved accuracy of the GazeVQA
task. This result also suggests that using RoI Is,
which is a model for gaze target estimation, may
reduce the accuracy when the estimation is incor-
rect. Our qualitative evaluation in Section 5.3 dis-
cusses these results.

Characteristics of our dataset: We identified
the elements needed to resolve ambiguous ques-
tions in GazeVQA through an ablation study on the
baseline. As shown in Table 5, the performance of
the baseline, which excludes question tokens or
image series from the input, is significantly wors-
ened. Models need to jointly understand the im-
ages/questions to solve GazeVQA tasks.

The performance of the baseline with regions of
interest (Is and GT ) as input to the image encoder
falls below the baseline with image I as input. This
result suggests that keeping some information out-
side the gaze targets, rather than completely re-
moving such information, improves the accuracy
of the GazeVQA task.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
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Figure 5: Outputs for baseline and proposed models: AQ, CQ, and A are respectively ambiguous ques-
tions, clarified questions, and examples of correct answers. Bolded results are models that scored best
among five attempts. GT and Is are denoted by red and green boxes.

5.3. Qualitative Evaluation
Figure 5 shows examples of the actual outputs for
the baseline and our models. We examined the im-
pact of the differences in the inputs to the adapters
on the results of our proposed model. First, our
model with the RoI GT input to the adapter tended
to provide unique answers to ambiguous ques-
tions about the attributes of the gaze targets, such
as the object’s shape and name. As shown in
Figures 5 (a) and (b), this tendency is more pro-
nounced when the RoI contains visual features
that contribute to providing an accurate answer. In
other words, our model outputs inconsistent an-
swers when the gaze target estimation model can-
not narrow down the objects at the gaze target
(Fig. 5 (c)). Finally, our model with image I input
to the adapter tends to give accurate answers to
questions that require an understanding of the im-
age (Fig. 5 (d)).

6. Discussion and Limitations

We proposed GazeVQA to achieve a system that
can understand the ambiguities in human utter-
ances using a speaker’s gaze information. The
visual features contained in GazeVQA were a sin-
gle image, and the gaze destinations and sources
were within its frame. However, since the visual
features captured by an actual system, such as
a robot, are dynamic, they contain uncertainty.
This situation makes it difficult for the system
to recognize speakers and disambiguation cues.
We believe we should fully use gaze informa-
tion and such modalities as pointing (Nakamura
et al., 2023) and the dialog context before utter-
ances (Das et al., 2017; Yu et al., 2019) to account
for visual uncertainty.

GazeVQA was designed for Japanese ques-
tions, and the availability of Japanese vision-and-
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language data is limited. For this reason, our
study investigated a good training efficiency base-
line (Mokady et al., 2021) and method (Dumoulin
et al., 2018). However, none of the models used
in this research accurately answered questions
about the shape of special objects, positional re-
lationships, number of objects, or character com-
prehension (Fig. 5 (e)-(h)). A system needs to un-
derstand the gaze information to identify what is
the object indicated by directives or ellipsis, but
the question requires information from other areas
in the image; as in the case of Figure 5 (g). We
believe a model structure must be used that al-
lows for a fine-grained understanding of the cor-
respondence between vision-and-language (Cho
et al., 2021; OpenAI, 2023) to alleviate this prob-
lem. Appendix B shows evaluation results of how
these models can handle GazeVQA ambiguous
questions and clarified questions.

7. Conclusion

We introduced a Gaze-grounded VQA dataset
(GazeVQA) to address the problem of ambigui-
ties in human utterances in real world. Answer-
ing GazeVQA questions is challenging without
the speaker’s gaze information and contains am-
biguities about directives and ellipsis peculiar to
Japanese. Furthermore, we proposed a model
that integrates the region of interest of the gaze
target as gaze information in addition to images
and questions. Quantitative results show that our
model improves the performance over a baseline
on the GazeVQA task. Qualitative results show
that our model provides accurate answers to am-
biguous questions about the attributes of gaze ob-
jects through gaze information. Our future work
will address the difficult cases in our study by ex-
ploring model architectures and methods for inte-
grating gaze information.
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A. Evaluation by Question Types

We compared our proposed model with the base-
line based on the typology of question types for
GazeVQA shown in Table 2. As shown in Figure 6,
our model performs well with “What is” questions
about object attributes, “What condition” questions
about the current state of an object, and “Which”
questions that are multiple choice questions. The
baseline with RoI GT (ClipCap(GT )) performs well
with “What color” questions that ask for an object
color.

B. Discussion on Evaluation with
Clarified Questions

Figure 6 shows comparative evaluation results of
ambiguous questions and clarified questions with
the baseline (ClipCap) and modern vision-and-
language models: VL-T5 (Cho et al., 2021; Sung
et al., 2022) and GPT-4V (OpenAI, 2023). We
used 300 samples from our GazeVQA test-set for
evaluation and did not fine-tune any models with
GazeVQA train-set.

B.1. Implementation details
VL-T5 is a vision-and-language model consisting
of an image encoder (Ren et al., 2015) and the
text encoder-decoder (Raffel et al., 2020). We con-
structed VL-T5 with the CLIP image encoder (Tan
and Le, 2019) and the Japanese T5 model 7 8,
based on the implementation of Sung et al. (2022).
We used the same conditions as in Section 5.1 for
the VL-T5 training setup.

GPT-4V is a large-scale vision-and-language
model trained on large amounts of image-text data.
We evaluated the GazeVQA test-set using GPT-
4V in the 3-shot setting; each example was con-
structed from questions and answers and gaze tar-
gets included in the GazeVQA train-set. Tables 7
and 8 show prompts given to GPT4V for inferring
an answer from either an ambiguous question and

7https://huggingface.co/retrieva-jp/
t5-small-short

8https://huggingface.co/retrieva-jp/
t5-base-short

https://huggingface.co/retrieva-jp/t5-small-short
https://huggingface.co/retrieva-jp/t5-small-short
https://huggingface.co/retrieva-jp/t5-base-short
https://huggingface.co/retrieva-jp/t5-base-short
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Figure 6: Evaluation results of baseline and proposed model by question types for GazeVQA test-set:
Square brackets denote the number of questions.

Table 6: Comparison results between ambiguous
questions (AQ) and clarified questions (CQ) using
vision-and-language models

Models Types Acc Bs
ClipCap AQ 21.55 78.19
ClipCap CQ 25.11 79.41
VL-T5 small AQ 32.66 80.20
VL-T5 small CQ 31.66 80.27
VL-T5 base AQ 32.33 80.16
VL-T5 base CQ 34.11 80.77
GPT-4V 3-shot AQ 34.11 79.99
GPT-4V 3-shot CQ 39.33 80.17

bounding boxes of gaze targets GT or a clarified
question.

B.2. Results
Figures 4 and 6 suggest that our model fine-tuned
with GazeVQA outperforms GPT4V when ambigu-
ous questions are used. On the other hand, Fig-
ure 6 shows that GPT-4V outperforms other mod-
els when clarified questions are used as input in-
stead of ambiguous questions. These results indi-
cate that large vision-and-language models such
as GPT4V are highly capable, but they are not suf-
ficient in situations such as GazeVQA task, where
the question contains ambiguity and needs to be
supplemented with contextual information.
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Table 7: Prompts used to evaluate GazeVQA ambiguous questions: gaze targets GT are denoted by red
boxes.

Instruction
Instruction: Given an ambiguous Japanese question that includes ellipsis
or directives, an image, and bounding boxes (format:[x1,y1,w,h]), you
answer the question in Japanese. Note1: Each question is answerable
if you consider the bounding boxes corresponding to the ellipsis or
directives of the question. Note2: Each answer will end with a noun.

Visual input examples

{Example1} {Example2} {Example3}

Text input example1
The question is: What color is he wearing?
The image is: {Example1}
The bounding boxes are: [194.16,69.03,194.15,524.95]
Answer the question with a single phrase in Japanese: Black

Text input example2
The question is: What is she wearing on her head?
The image is: {Example2}
The bounding boxes are: [158.2,339.42,291.96,293.39]
Answer the question with a single phrase in Japanese: Helmet

Text input example3
The question is: What is his number?
The image is: {Example3}
The bounding boxes are: [440.31,156.82,117.88,310.4]
Answer the question with a single phrase in Japanese: Number 33



571

Table 8: Prompts used to evaluate GazeVQA clarified questions.
Instruction
Instruction: Given a Japanese question and an image, you answer the
question in Japanese. Note: Each answer will end with a noun.

Visual input examples

{Example1} {Example2} {Example3}

Text input example1
The question is: What color is the man on the right with the black
umbrella wearing?
The image is: {Example1}
Answer the question with a single phrase in Japanese: Black

Text input example2
The question is: What is the woman in the blue jacket wearing on her
head?
The image is: {Example2}
Answer the question with a single phrase in Japanese: Helmet

Text input example3
The question is: What is his number of the second man from the right?
The image is: {Example3}
Answer the question with a single phrase in Japanese: Number 33
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