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Abstract
Stance detection aims to determine the attitude expressed in text towards a given target. Zero-shot stance detection
(ZSSD) has emerged to classify stances towards unseen targets during inference. Recent data augmentation
techniques for ZSSD increase transferable knowledge between targets through text or target augmentation. However,
these methods exhibit limitations. Target augmentation lacks logical connections between generated targets and
source text, while text augmentation relies solely on training data, resulting in insufficient generalization. To address
these issues, we propose an encoder-decoder data augmentation (EDDA) framework. The encoder leverages
large language models and chain-of-thought prompting to summarize texts into target-specific if-then rationales,
establishing logical relationships. The decoder generates new samples based on these expressions using a semantic
correlation word replacement strategy to increase syntactic diversity. We also analyze the generated expressions to
develop a rationale-enhanced network that fully utilizes the augmented data. Experiments on benchmark datasets
demonstrate our approach substantially improves over state-of-the-art ZSSD techniques. The proposed EDDA
framework increases semantic relevance and syntactic variety in augmented texts while enabling interpretable
rationale-based learning.

Keywords: zero-shot stance detection, data augmentation, chain-of-thought

1. Introduction

Stance detection aims to automatically determine
the attitude (i.e., favor, against, or neutral) ex-
pressed in opinionated text towards a given target
(Du et al., 2017). Conventionally, stance detection
has relied on designing target-specific classifiers to
enable predictions on a single topic. Subsequently,
cross-target stance detection has emerged as a
subclass of generic stance detection, where the
classifier is adapted from different but topically re-
lated domains (Zhang et al., 2020). In practice,
exhaustively enumerating all potential in-target or
associated cross-target entities for training is in-
feasible. Consequently, Zero-shot stance detec-
tion (ZSSD) has gained traction as a promising
approach focused on accurately classifying stance
towards unseen targets during inference (Allaway
and Mckeown, 2020).

Previous works have utilized attention-based
methods (Allaway and Mckeown, 2020), graph net-
work approaches (Liu et al., 2021), and external
background knowledge (Zhu et al., 2022) for ZSSD.
However, most of these methods can only extract
information from seen targets present in the train-
ing data. Recently, data augmentation techniques

* Corresponding author.

have gained research attention by increasing trans-
ferable knowledge between targets through aug-
mentation of the textual content or targets. These
data augmentation approaches can be categorized
into target augmentation and text augmentation
methods. Target augmentation focuses on gener-
ating or retrieving new, unseen targets from the
training corpus (Li et al., 2023). Text augmentation
leverages large pre-trained models to produce new
text-label pairs via prompt-based learning (Xu et al.,
2022; Zhang et al., 2023c).

Despite promising results, prior data augmenta-
tion approaches exhibit two key limitations when
applied to ZSSD. First, current target augmenta-
tion methods lack inherent logical and semantic
connections between the generated targets and
source text, which can yield uninterpretable and
counterintuitive predictions. For example, in sen-
tence “We believe that Hillary’s emails have signifi-
cant issues”, the original target is “Hillary”, while the
target augmentation method may introduce “email”
as a new target. However, the original text does not
semantically relate to this new target, which can
lead to confusion. Second, existing text augmen-
tation techniques rely exclusively on the training
data. As more samples are synthesized, the dis-
tribution of augmented text converges towards the
original training distribution, resulting in insufficient
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generalization. Empirically, we observe that current
text augmentation methods only provide marginal
accuracy improvements compared to conventional
techniques on this task (see TDDA and TarBK in
Table 1).

To address the aforementioned issues, we pro-
pose a simple yet effective data augmentation
method for ZSSD called the encoder-decoder data
augmentation (EDDA) framework, as shown in Fig-
ure 1. Unlike prior techniques, EDDA focuses on
increasing syntactic diversity in the augmented text
while maintaining logical and semantic relevance
between the text and the target. Specifically, the
encoder leverages a one-shot chain of thought
prompting method to let large language models
(LLMs) understand and summarize the training
texts into target-specific prediction rationales ex-
pressed in an if-then expression. If-then expres-
sion can clearly describe the logical connections be-
tween text and target. Moreover, representing pre-
dictions as rationales has been shown to improve
model comprehension and performance for ZSSD
(Jayaram and Allaway, 2021). Next, the decoder
aims to generate augmented samples based on the
if-then expression. To increase textual syntactic va-
riety, inspired by (Huang et al., 2023), we propose a
straightforward semantic correlation word replace-
ment strategy for the decoder input. This increases
the diversity of generated syntactic structures while
retaining semantic logic.

Additionally, we analyze the if-then expression
generated by EDDA and propose a rationale-
enhanced network (REN) to fully exploit the aug-
mented data. Experimental results on multiple
widely adopted benchmark datasets demonstrate
that our proposed approach substantially outper-
forms current state-of-the-art methods.

The main contributions of our work can be sum-
marized as follows:

• We propose a novel EDDA framework1 that
maintains semantic relevance between the
augmented text and target while increasing
syntactic diversity. This substantially improves
ZSSD performance.

• We introduce a novel if-then expression rep-
resentation derived from LLMs via chain-of-
thought prompting. This effectively encodes
the stance prediction process in an inter-
pretable manner. Moreover, this representa-
tion is model-agnostic. Through simple integra-
tion, it can augment existing stance detection
models by incorporating prior knowledge.

• We conduct extensive experiments on several
widely used benchmarks to verify the effective-
ness of our model for ZSSD. The experimental

1https://github.com/Szu-Ddj/EDDA

results show that our model consistently out-
performs the compared methods.

2. Related Work

2.1. Zero-shot Stance Detection
ZSSD is to recognize the attitude towards unseen
targets by leveraging stance features learned from
known targets. Earlier works have primarily fo-
cused on model architecture, including attention
mechanisms, graph convolutional networks, and
contrastive learning frameworks. For instance, All-
away and Mckeown (2020) constructed a large-
scale dataset called VAST for ZSSD encompass-
ing diverse topics in domains such as politics and
education. Liu et al. (2021) proposed an attention-
based model to better capture relational patterns
between texts and topics. Liang et al. (2022a,b)
introduced a contrastive learning approach that re-
lates target-invariant and target-specific represen-
tations. Luo et al. (2022); Zhu et al. (2022); He
et al. (2022); Zhang et al. (2023a) incorporated
background knowledge to better generalizing what
they learned about known topics to new unseen
topics.

Since these prior works have focused solely on
seen targets, data augmentation methods for ZSSD
have recently gained significant research atten-
tion. Earlier data augmentation studies primarily
followed traditional text augmentation techniques
to increase transferable knowledge between topics
(Liang et al., 2022a). With the advent of LLMs such
as the GPT series, recent works have proposed
prompt-based or instruction-based data augmen-
tation approaches for ZSSD. These methods ef-
fectively leverage the data generation and weak
supervision capabilities of large models, yielding
substantial performance gains on ZSSD. These
augmentation techniques can be categorized into
target augmentation and text augmentation. Li et al.
(2023) focused on enhancing target diversity dur-
ing training, allowing models trained on more in-
formative targets to improve generalization to un-
seen targets. For text augmentation, Zhang et al.
(2023c) proposed augmenting target-relevant text
segments, while Xu et al. (2022) further augmented
text samples based on prompt learning. Addition-
ally, following (Dai et al., 2023), we replace GPT-3
in Xu et al. (2022) with GPT-3.5 and construct text-
driven data augmentation (TDDA) method.

2.2. Text Data Augmentation
Traditional Text Data Augmentation Zhang et al.
(2015) replaced local words with their synonyms
in external semantic lexicons. Wei and Zou (2019)
presented EDA that consists of four operations
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Figure 1: The architecture of our proposed encoder-decoder data augmentation (EDDA) framework.

(e.g., random deletion or insertion), which boost the
performance on text classification tasks. For stance
detection, Li and Caragea (2021) constructed aux-
iliary sentences that contain target and label infor-
mation to generate target-aware sentences.

Data Augmentation with LLM With the devel-
opment of LLM, parameter-free prompt-based data
augmentation methods that have rapidly advanced
across natural language processing. For example,
Edwards et al. (2021) proposed a prompt-based
approach that generates the training texts based on
human-selected seed samples. Wang et al. (2022)
further extended this by automating seed selection,
achieving improved performance. Yoo et al. (2021);
Dai et al. (2023) proposed an iterative data gener-
ation method, mixing training samples with newly
generated samples at each step.

2.3. Chain-of-Thought model (CoT)
Recent works have explored enhancing chain-of-
thought (CoT) prompting to elicit impressive multi-
hop reasoning from LLMs (Wei et al.; Zhou et al.,
2022; Zhang et al., 2022). For example, Cai et al.
(2023) proposed a human-in-the-loop system aug-
mented with CoT prompting, investigating how man-
ual correction of sub-logic in rationales can refine
LLMs reasoning. Fei et al. (2023) introduced a
multi-step CoT approach that decomposes down-
stream tasks into multiple stages to improve pre-
diction effectiveness. Ling et al. (2023) presented
a new CoT technique, which iteratively infers tasks
via deductive reasoning and verification.Ding et al.
(2024) utilized multi-step CoT to acquire the posi-
tional perspective of targets and applied it to stance
detection.

Inspired by multi-step CoT techniques, we pro-

pose a novel encoder-decoder CoT framework that
effectively generates prediction rationales in if-then
format.

3. Methodology

3.1. Task Description

We use Dtrain = {xtrain
i , ptraini }Ntrain

i=1 to denote
the collection of labeled data, where x and p de-
note the input text and the corresponding target,
respectively. Each (x, p) pair in Dtrain has a stance
label y. Given an input sentence xu and a corre-
sponding target pu as a test set (unseen target),
this study aims to predict a stance label ŷ for the
input sentence xu towards the given target pu.

3.2. EDDA

Encoder. The encoder aims to leverage the rea-
soning capabilities of LLMs to transform input text
data into if-then representations encapsulating pre-
dictive logic. Inspired by prompt-based instruction
learning methods, we conduct a one-shot prompt
for LLMs to enable comprehension of input text
and generation of if-then expression. Specifically,
we define the one-shot prompt P ′1 to the LLMs to
acquire the if-then expression. Based on the P’1
template, the LLMs can effectively transform the
given input into if-then expressions, as exemplified
by the generation results presented in Figure 2.



5487

Figure 2: An example of the entire EDDA process.

P’1: Your task is to add calls to a question-
answering API to a piece of text. The questions
should help you get information required to com-
plete the text. You can call the API by writing
“[RULE: If (A) then (B)]” where “A” is the reason
why “B”. Here are some examples of API calls:
Input: What’s the attitude of the sentence “[given
text]” to the target “[given target]”? Select an an-
swer from (favor, against, neutral).
Output: If (reason) then (attitude is [stance la-
bel]).

Decoder. The aim of the decoder is to enable the
LLMs to automatically generate augmented data
based on the if-then expressions. Notably, inspired
by Huang et al. (2023), we propose an additional
step of randomly replacing words, termed as ran-
dom replacement strategy (RRS), in the if-then ex-
pressions before feeding them into the model. This
word replacement prevents the model from gen-
erating samples with similar syntax from identical
if-then expressions, thereby mitigating the problem
of producing overly homogeneous data. Specifi-
cally, we utilize the SenticNet (Cambria et al., 2022)
semantic dictionary to randomly substitute emotion
words in the “reason” component of the if-then ex-
pressions with a fixed probability. Since there is
a logical relationship between the reason and de-
cision components in the if-then expressions, ran-
domly replacing semantically associated emotion
words preserves this relationship while avoiding
overly consistent input samples.

Next, we design a three-step prompting method
to generate augmented data. First, potential tar-
gets are generated based on if-then expressions
following prompt template P’2. Second, text data
satisfying the if-then logic and conditioned on the
given targets is generated adhering to prompt tem-
plate P’3. Third, pseudo-labels are produced based
on the generated text-target pairs with prompt P’4.

P’2: What topics do you think the following infer-
ences [given if-then] are most likely to involve?
Please answer with one to three topics.

P’3: Please generate two tweets expressing at-
titude with the following requirements: Tweet
expresses attitude to the [given target] with the
following reason: [given if-then]

P’4: What is the attitude of the sentence: [given
text] to the [given target] select from “favor,
against or neutral”.

3.3. Rationale-Enhanced Network
In the data augmentation process for stance de-
tection, we introduce additional if-then expressions.
Inspired by Jayaram and Allaway (2021), which
shows that prediction rationales can effectively im-
prove stance detection performance, we construct
an effective transformer-based stance detection
network for ZSSD, termed the REN.

REN comprises a text representation layer and
a rational-guided attention layer. The text repre-
sentation layer utilizes BERT as the backbone to
generate a contextualized representation for each
token in the input sample. The rational-guided at-
tention layer learns sentence representations via
attention mechanisms.

Text representation layer. First, the text and
target are treated as a sentence pair, following the
format: [CLS] text [SEP] target [SEP]. This input
is then fed into BERT to obtain the hidden state
representations hx = BERT ([CLS] text [SEP] tar-
get [SEP]). Additionally, the if-then expressions are
encoded into hidden states hr in a similar manner.

Rational-guided attention layer. After acquir-
ing hx and hr, we feed them into the attention mech-
anism to obtain rational-text relation representation:

Att = softmax(
[Wqhx][Wkhr]

T

√
dk

)[Wvhr], (1)
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where Wq, Wk and Wv are trainable parameters.
Subsequently, we integrate these rationale-text re-
lation representations with the text representation
vectors, enabling the rationale knowledge to effec-
tively augment the final text representations, as
follows:

ŷ = softmax(Wo(λAtt+ hx)). (2)

where Wo denotes trainable parameters.
Finally, we utilize the cross-entropy between the

predicted stance ŷ and the ground-truth stance y
as our loss function for stance detection:

L = −
N∑
i=1

C∑
j=1

yij log ŷij , (3)

where N represents the number of instances in
the training set. C denotes the number of possible
stance categories.

4. Experimentation Setup

4.1. Experimental Data
To evaluate the effectiveness of our method, we
conduct extensive experiments on SemEval-2016
Task 6 (SEM16) (Mohammad et al., 2016) and
VAST (Allaway and Mckeown, 2020). SEM16 con-
tains 6 pre-defined targets across multiple domains,
including Donald Trump (DT), Hillary Clinton (HC),
Feminist Movement (FM), Legalization of Abortion
(LA), Atheism (A), and Climate Change (CC). Each
instance could be classified as “Favor”, “Against”
or “Neutral”. Following Wei and Mao (2019), we
remove targets A and CC due to data quality issues,
and regard one target as the zero-shot testing tar-
get while training on the other five. randomly select
15% of the training set as the development data
to tune hyperparameters. VAST contains a large
number of diverse targets. Each data instance is
comprised of a sentence, a target, and a stance po-
larity towards the target, which can be “Pro”, “Con”,
or “Neutral”. Following Li et al. (2023), we evaluate
our model’s performance on zero-shot topics with
100% and 10% training sizes, respectively.

4.2. Experimental Implementation
Training Settings. In this paper, we conduct ex-
periments with gpt-3.5-turbo (GPT) and LLaMA2-
70B (LLaMA) as LLMs. We utilize Bert-base (De-
vlin et al., 2019) as the backbone of the rational-
enhanced model. The AdamW optimizer is applied
to train the model, with a mini-batch size of 16,
dropout of 0.3 and a learning rate set to 5e−6. Fol-
lowing Li et al. (2023), we run the method four times
and report the average score for our method.

Evaluation Metric. For the SEM16 dataset, fol-
lowing Liang et al. (2022a), we utilize Macro-avg,

the average F1 score on the Favor and Against
classes, as the evaluation metric. For the VAST
dataset, following Li et al. (2023), we employ the
Macro F1 score, defined as the average F1 score
across all labels, to assess model stability. To de-
tect text similarity in the generated content, we uti-
lize SimCSE (Gao et al., 2021) to evaluate semantic
similarity, ROUGE (Lin, 2004) to measure content
similarity, and the Levenshtein distance (Miller et al.,
2009) to quantify structural similarity.

4.3. Compared Baseline Methods
To evaluate the effectiveness of our proposed
EDDA framework, we compare EDDA with a series
of strong baselines, including statistics-based meth-
ods: BiLSTM & Bicond (Augenstein et al., 2016),
CrossNet (Xu et al., 2018), SEKT (Zhang et al.,
2020), TPDG (Liang et al., 2021) and TOAD (All-
away et al., 2021). Fine-tuning based methods:
Bert-Joint (Devlin et al., 2019), JointCL (Liang et al.,
2022b) and Bert-GCN (Liu et al., 2021). Prompt-
tuning based methods: MPT (Hu et al., 2022) and
KEPrompt (Huang et al., 2023). Knowledge-based
method: TarBK (Zhu et al., 2022). Data augmenta-
tion methods: PT-HCL (Liang et al., 2022a), SDAgu
(Zhang et al., 2023c), TTS (Li et al., 2023) and
OpenStance (Xu et al., 2022). For LLMs, we com-
pare LLMs-EDDA with LLMs, the latter employing
a zero-shot prompt for ZSSD (Zhang et al., 2023b).

Statistics-based methods. BiLSTM utilized a
bidirectional-LSTM to encode the underlying sen-
tence and the corresponding target. Bicond (Au-
genstein et al., 2016) utilized two BiLSTM models
to separately encode the underlying sentences and
their corresponding targets. CrossNet (Xu et al.,
2018) is a variant of BiCond, which leverages a self-
attention layer to capture informative words. TPDG
(Liang et al., 2021) proposed a target-adaptive
graph convolutional network. TOAD (Allaway et al.,
2021) conducted adversarial learning to generalize
across topics.

Fine-tuning based methods. Bert-Joint (De-
vlin et al., 2019) employed Bert for encoding both
text and topics, followed by two successive fully
connected layers. JointCL (Liang et al., 2022b) pro-
posed a contrastive learning method to leverage
the stance features of known targets. Bert-GCN
(Liu et al., 2021) utilized node information aggrega-
tion to create Graph Convolutional Networks (GCN)
and incorporated it into the model. TarBK (Zhu
et al., 2022) incorporated the targeted background
knowledge from Wikipedia into the model for stance
detection. SEKT (Zhang et al., 2020) introduced
semantic knowledge as the transferable knowledge
between domains.

Prompt-tuning based methods. MPT (Hu et al.,
2022) utilized a prompt-tuning method for stance
detection, which employs a verbalizer defined by
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Model SEM16 VAST (100%) VAST (10%)
HC FM LA DT Pro Con All Pro Con All

Sta.

BiLSTM 31.6 40.3 33.6 30.8 43.7 43.6 37.5 39.2 24.6 32.9
Bicond 32.7‡ 40.6‡ 34.4‡ 30.5‡ 44.6‡ 47.4‡ 42.8‡ 29.8♢ 40.1♢ 34.8♢

CrossNet 38.3‡ 41.7‡ 38.5‡ 35.6‡ 46.2‡ 43.4‡ 43.4‡ 37.3♢ 32.9♢ 36.2♢

SEKT 50.1 44.2 44.6 46.8 50.4‡ 44.2‡ 41.8‡ - - -
TPDG 50.9‡ 53.6‡ 46.5‡ 47.3‡ 53.7‡ 49.6‡ 51.9‡ - - -
TOAD 51.2‡ 54.1‡ 46.2‡ 49.5‡ 42.6‡ 36.7‡ 41.0‡ - - -

Bert

TGA Net 49.3‡ 46.6‡ 45.2‡ 40.7‡ 53.7 62.0 67.4 47.6♢ 58.2♢ 64.1♢

Bert-Joint 50.1 42.1 44.8 41.0 56.8 67.6 71.0 50.7 56.3 64.9
Bert-GCN 50.0‡ 44.3‡ 44.2‡ 42.3‡ 58.3‡ 60.6‡ 68.6‡ - - -
JointCL 54.4 54.0 50.0 50.5 64.9 63.2 71.2 53.8♢ 57.1♢ 65.5♢

TarBK 55.1ℵ 53.8ℵ 48.7ℵ 50.8ℵ 65.7ℵ 63.9ℵ 73.6ℵ - - -
PT-HCL 54.5‡ 54.6‡ 50.9‡ 50.1‡ 61.7‡ 63.5‡ 71.6‡ - - -
SDAgu - - - - 60.1 65.2 71.3 - - -
Openstance∗ - - - - 63.1 66.4 73.1 61.4 60.1 70.2
TTS∗ - - - - 59.5 65.2 71.4 55.8 65.5 70.3
TDDA-GPT 53.3 54.5 54.2 51.5 61.8 68.7 73.4 56.5 66.0 70.3
TDDA-LLaMA - - - - 63.4 67.5 73.4 61.0 63.9 70.4
EDDA-GPT 77.4† 69.7† 62.7† 69.8† 66.9† 68.2† 75.1† 62.6† 66.9† 72.7†

EDDA-LLaMA - - - - 68.3† 70.7† 76.3† 61.7† 67.8† 73.2†

LLMs

GPT 78.9 68.3 62.3 68.6 63.8 56.8 65.1 63.8 56.8 65.1
GPT-EDDA 80.1 69.2 62.4 69.5 65.3 64.2 68.5 65.3 64.2 68.5
LLaMA - - - - 66.8 63.4 69.0 66.8 63.4 69.0
LLaMA-EDDA - - - - 67.7 63.1 70.3 67.7 63.1 70.3

Table 1: Experimental results on two zero-shot stance detection (ZSSD) datasets. The results with ‡, ♢

and ℵ are retrieved from Liang et al. (2022a), Li et al. (2023) and Zhang et al. (2023c), respectively. The ∗

mark indicates that we utilize Bert as the backbone classifier for a fair comparison. The † mark refers to
a p-value < 0.05. The best scores are in bold. Due to policy restrictions, LLaMA cannot be applied to
controversial targets, so experiments with LLaMA are limited to the non-controversial VAST dataset.

human experts. KEPrompt (Huang et al., 2023)
introduced external lexicons to define the verbalizer
for the prompt framework.

Data Augmentation methods. PT-HCL (Liang
et al., 2022a) developed a novel approach to cross-
target and zero-shot stance detection using con-
trastive learning. SDAgu (Zhang et al., 2023c) pro-
posed a self-supervised data augment approach
based on coreference resolution. TTS (Li et al.,
2023) proposed to augment the training set with
different diverse targets. TDDA is our proposed
text-based data augmentation technique. It entails
the random extraction of seven instances from the
original dataset, with the substitution of three in-
stances at every third iteration.

Models F→L L→F H→D D→H

Sta.

BiCond 45.0 41.6 29.7 35.8
CrossNet 45.4 43.3 43.1 36.2
SEKT 53.6 51.3 47.7 42.0
TPDG 58.3 54.1 50.4 52.9

Bert

Bert-Joint 48.2 34.4 45.9 42.7
MPT 42.1 47.6 47.1 58.7
KEPROMPT 49.1 54.2 54.6 60.9
JointCL 58.8 54.5 52.8 54.3
PT-HCL 59.3 54.6 53.7 55.3
TarBK 59.1 54.6 53.1 54.2
EDDA-GPT 61.7† 65.4† 64.5† 76.2†

Table 2: Performance comparison of cross-target
stance detection.

5. Experimentatal Results

5.1. Result

The main experimental results of ZSSD on two
benchmark datasets are reported in Table 1. We
observe that our method consistently outperforms
all baselines on all datasets, which verifies the ef-
fectiveness of our proposed approach in ZSSD.
Furthermore, compared to previous models, our
method shows statistically significant improve-
ments (p-value < 0.05) in most evaluation metrics,
validating the effectiveness of our proposed ap-
proach in ZSSD.

Specifically, we first observe that most neural-
network based methods (statistics-based and fine-
tuning based methods) perform poorly under zero-
shot settings, owing to their reliance on seen targets
and samples. Second, contrastive learning meth-
ods achieve moderate performance gains com-
pared to traditional neural-network based meth-
ods. This is attributed to their ability to learn
target-related and target-agnostic features sepa-
rately, thereby improving model performance. Fur-
thermore, data augmentation methods significantly
outperform other contrastive approaches, espe-
cially with limited training data (VAST 10%). This
demonstrates that data augmentation enhances
the model’s generalization to unseen targets by
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TDDA EDDA

I think it’s important to focus on investing in renewable energy
sources, but we also can’t abandon gas and oil completely right away.
We need to transition thoughtfully.

The alarming consequences of relying on fossil fuels are staring us in
the face. From air pollution to climate change, it’s clear that we need
to shift gears towards sustainable energy options. Let’s leave the
fossil fuel era behind and embrace a greener tomorrow.

I strongly believe in the power of art and culture to unite
communities and promote understanding.

Absolutely love how studying language helps unravel the intricate
layers of culture! It’s like a key that unlocks a whole new world of
understanding.

I believe that the minimum wage should be raised to provide workers
with fair compensation for their labor and to decrease income inequality.

The federal minimum wage is a joke. How can anyone survive on such a
meager income? And let’s not forget the tipped employees who are being
exploited with a subminimum wage. This needs to change NOW!

Table 3: Examples of text generated by TDDA and EEDA.

expanding the data.
The proposed EDDA method yields superior per-

formance over all baselines in most tasks. For
example, our method improves 2.7% on VAST and
2.8% on VAST (10%) over the best competitors. No-
tably, our model shows substantial improvements
compared to target augmentation methods like TTS
and SDAug. This indicates that solely applying data
augmentation techniques tailored for seen targets
does not generalize well to unseen targets. Further-
more, our generative strategy considerably outper-
forms TDDA, owing to TDDA’s reliance on training
text. This over-dependence causes TDDA’s gen-
erated samples to exhibit increasingly consistent
syntactic patterns as the sample size grows, result-
ing in limited diversity. By contrast, our proposed
strategy encourages greater syntactic variety by
incorporating if-then augmentation. We posit this
promotes the model’s ability to generalize across
diverse unseen targets.

The results indicate that the EDDA chain of
thought enhances the performance of LLMs. This
enhancement can be attributed to the ability of if-
then prompts to better align stance explanation and
stance classification, thereby strengthening the rea-
soning capabilities of LLMs. Additionally, models
fine-tuned using EDDA demonstrate an enhanced
comprehension of stance knowledge through task-
specific supervision, thereby bolstering stance de-
tection performance built upon the foundation of
LLMs. To evaluate the generalizability of our EDDA
framework, we also evaluate EDDA in the cross-
target condition on SEM16. From the experimental
results shown in Table 2, we can see that EDDA per-
forms overall better than all the comparison meth-
ods under the cross-target condition. This verifies
the effectiveness and generalizability of EDDA in
dealing with stance detection.

5.2. Analysis
Analysis of Data Distributions To qualitatively
demonstrate how the proposed EDDA generative
framework improves predictive performance, we
present t-SNE (Van der Maaten and Hinton, 2008)
visualizations of the intermediate vectors learned
by TTS, OpenStance, TDDA and EDDA on the Vast

(a) TTS (b) OpenStance

(c) TDDA (d) EDDA

Figure 3: Visualization of intermediate vectors in
Bert, where red represents the original training set
and blue represents the augmented dataset.

dataset. The results are shown in Figure 3. Specif-
ically, comparing EDDA (Figure 3.d) with TTS (Fig-
ure 3.a) reveals that the data augmented by the
target augmentation method highly overlaps with
the training samples, making it difficult to effectively
generalize to an unseen domain. Second, com-
pared to the text augmentation methods of Open-
Stance (Figure 3.b) and TDDA (Figure 3.c), the
data distribution generated by the EDDA method
differs substantially more from the original training
samples. This implies that by summarizing from
if-then expressions, EDDA can produce more gen-
eralized data, thereby better extending to unseen
targets and enhancing ZSSD performance.

SimCSEaug ↓ SimCSEtest ↑ ROUGE ↓ Levenshtein ↑
TDDA 0.466 0.403 0.195 190.6
EDDA 0.443 0.432 0.152 245.1

Table 4: Text similarity comparison. aug denotes
the similarity between the augmented texts, test in-
dicates the similarity between the augmented texts
and the actual test samples.

Analysis of Textual Features To further under-
stand the specific differences between TDDA and
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EDDA, we provide example texts generated by both
methods in Table 3. Despite prompts to increase
diversity, TDDA produced simple texts with limited
linguistic variance, making them less realistic. In
contrast, the texts from EDDA contain rich sen-
timents, discuss relevant issues, and use more
sentence structure. Consequently, EDDA leads to
more significant performance gains.

Quantitative analysis further revealed the advan-
tages of EDDA over TDDA. The results are pre-
sented in Table 4. Here, the smaller the SimCSEaug

and ROUGE, the better performance a model de-
livers. We add the downward arrow symbol “↓” to
indicate this. EDDA texts exhibited greater diversity,
as evidenced by lower similarity scores. Specif-
ically, we utilized SIMCSE, ROUGE and Leven-
shtein metrics to compute similarity scores. From
the dataset, 300 instances were randomly sampled,
and each metric was calculated over 10 iterations
to obtain average values. From the results, EDDA
also demonstrated better generalization and cov-
ered wider content with richer syntactic variations.
In summary, both qualitative and quantitative analy-
ses indicate EDDA’s superiority in producing varied,
naturalistic texts compared to TDDA.

Figure 4: The experimental results with respect to
varying augmentation data size.

Analysis of Sample Size To analyze how in-
creasing the number of text samples affects model
performance, we conduct experiments using the
VAST dataset with 100% and 10% training data.
Figure 4 shows the performance changes after
augmenting the samples. With the full training set,

accuracy improved steadily as more augmented
data was added, peaking at around 6000 samples.
It then declined and stabilized. Compared to the
baseline data generation methods, EDDA consis-
tently improves accuracy. Moreover, under the 10%
sample setting, EDDA leads to even larger gains.
This demonstrates the efficacy of our proposed
method, especially when training data is scarce.

5.3. ZSSD Baselines with EDDA
We evaluated whether our proposed EDDA method
could improve other existing ZSSD models, includ-
ing BiLSTM, CrossNet, TGA-Net, Bert-Joint and
JointCL. Table 5 shows the results, where “+EDDA”
signifies the integration of our enhanced data, and
“+ L” denotes the incorporation of our generative if-
then expressions. The results demonstrate that our
approach can effectively improve the performance
of other baseline models for ZSSD. This indicates
that our approach is not limited to a specific model
but presents a generalizable solution for this task.

Figure 5: Comparison of EDDA with data augmen-
tation baselines for previous ZSSD task.

5.4. Comparison with Data
Augmentation Baselines

To further demonstrate the effectiveness of EDDA,
following Li et al. (2023), we compare EDDA with
other data augmentation baselines. We use the
same base model(Bart) for all comparisons and
conduct experiments on the VAST dataset. The re-
sults are shown in Figure 5, where TDDA exhibited
only a slight improvement, while EDDA significantly
outperformed other data augmentation methods.
The red dashed line represents the base model.

First, our experiments demonstrate that tradi-
tional data augmentation techniques (e.g. +BT,
EDA, +CBert and +ASDA) are ineffective for the
ZSSD task and can even degrade performance.
A potential explanation is that word-level pertur-
bations may disrupt the semantic structure of the
text. Second, we find that target-based augmen-
tation methods relying on the LLMs are underper-
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formed by text-based techniques. The inferior re-
sults could arise because extracting target words
directly from text can cause logical and semantic
inconsistencies between texts and targets, limiting
improvements. Third, EDDA and TDDA show sig-
nificant improvements over the baseline, indicating
the effectiveness of our proposed encoder-decoder
augmentation as a novel augmentation for ZSSD.

Model Pro Con All
BiLSTM 43.7 43.6 37.5
BiLSTM + L 60.0 64.4 65.3
BiLSTM + EDDA 47.2 45.8 41.7
BiLSTM + EDDA + L 61.0 62.6 68.1
CrossNet 40.5 44.4 42.9
CrossNet + L 53.3 61.8 66.3
CrossNet + EDDA 46.0 39.0 43.5
CrossNet + EDDA + L 58.7 62.6 68.2
TGA-Net 53.7 62.0 67.4
TGA-Net + L 55.6 62.5 68.9
TGA-Net + EDDA 58.7 62.9 69.6
TGA-Net + EDDA + L 60.9 62.5 70.2
Bert-Joint 56.8 67.6 71.0
Bert-Joint + L 58.3 68.9 72.1
Bert-Joint + EDDA 62.8 67.8 73.8
Bert-Joint + EDDA + L 64.9 66.8 74.3
JointCL 64.9 63.2 71.2
JointCL + L 62.8 66.2 72.5
JointCL + EDDA 62.3 70.1 73.9
JointCL + EDDA + L 65.2 69.5 74.4
Ours 61.5 64.2 70.8
Ours + L 62.5 67.4 73.1
Ours + EDDA 62.9 69.8 73.9
Ours + EDDA + L 68.3 70.7 76.3

Table 5: Performance of our EDDA applied to other
zero-shot baselines.

6. Conclusion

ZSSD determines the text’s attitude towards an
unseen target. Recent data augmentation tech-
niques exhibit limitations due to insufficient gener-
alization. To address this, we propose an encoder-
decoder data augmentation framework (EDDA).
The Encoder generates target-specific if-then ra-
tionales using LLMs, establishing logical relation-
ships. The Decoder increases syntactic diversity
of new samples based on these expressions using
word replacement. We also develop a rationale-
enhanced network to fully utilize augmented data.
Experiments show EDDA substantially outperforms
state-of-the-art by increasing semantic relevance
and syntactic variety while enabling interpretable
rationale-based learning. In future work, we intend
to establish a filtering framework to eliminate low-
quality or erroneous generated instances. Addition-
ally, we aim to integrate the results from multiple
large language models to construct a high-quality
augmented dataset.
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