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Abstract
Current approaches to question answering rely on pre-trained language models (PLMs) like RoBERTa. This work
challenges the existing question-answer encoding convention and explores finer representations. We begin with
testing various pooling methods compared to using the begin-of-sentence token as a question representation for
better quality. Next, we explore opportunities to simultaneously embed all answer candidates with the question. This
enables cross-reference between answer choices and improves inference throughput via reduced memory usage.
Despite their simplicity and effectiveness, these methods have yet to be widely studied in current frameworks. We
experiment with different PLMs, and with and without the integration of knowledge graphs. Results prove that the
memory efficacy of the proposed techniques with little sacrifice in performance. Practically, our work enhances
38–100% throughput with 26–65% speedups on consumer-grade GPUs by allowing for considerably larger batch
sizes. Our work sends a message to the community with promising directions in both representation quality and
efficiency for the question-answering task in natural language processing.
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1. Introduction

Knowledge base question answering (KBQA) per-
forms question answering (QA) using a knowledge
base (KB) as its primary source of information (Mi-
haylov et al., 2018; Talmor et al., 2019; Lan et al.,
2021). Popular KBQA approaches use a text en-
coder and a graph neural network (GNN) to derive
representations for question-answer pairs and a
knowledge base, followed by joint reasoning over
their representations (Wang et al., 2022; Zhang
et al., 2022; Sun et al., 2022; Hao et al., 2022;
Yasunaga et al., 2021).

Our motivation arises from two limitations in
these works: (1) inference efficiency: the ma-
jority of QA models frame answer predictions as
scoring to which degree a candidate answer can
satisfactorily respond to a given question. Conse-
quently, for each question, a model must perform
inference as many times as there are candidates.
We suggest an alternative approach that encodes
all candidates alongside the question and trains
the model to discern the most probable answer.
This formalism enhances inference efficiency too
since the QA model considers all candidates simul-
taneously in one go. (2) semantic modelling for
QA: the PLM begin-of-sentence token, i.e. CLS, is
commonly used as the representation for an input
question-answer pair for QA prediction or KG inter-
action; however, it has long been argued that this
representation is suboptimal in capturing the input
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Figure 1: A pilot experiment of appending random an-
swers to the question before performing QA. Tested on
CommonsenseQA (5 candidates) and OpenBookQA (4
candidates) with GreaseLM.

semantics (Reimers and Gurevych, 2019).
In this work, we first demonstrate that it is non-

trivial for the QA model to infer a question with mul-
tiple candidates in a single pass. To address this
challenge, we revisit the representation for input
QA pairs and show that by simply pooling we can
improve models’ performance by a considerable
margin. We then propose to delay the question-
answer concatenation step to after a single-pass
PLM encoding of the question and all answer candi-
dates for improved memory efficiency. Experiments
show that max pooling brings in substantial gains,
even exceeding the current state-of-the-art KBQA
models. On top of this, our proposed structure
maintains a similar performance to the baseline
while incurring less computation thus improving
throughput. Our code is publicly available.1

1https://github.com/Thomasyyj/EEEQA

https://github.com/Thomasyyj/EEEQA
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2. From One to Multiple Answers

Intuitively, having all answer candidates together
with the question in a single read may help models
capture the nuances between them so as to make
a better choice. Illustratively, it would be easier to
cope with 2) than 1) below:

1) Seeing “What do you do if you’re late for an
appointment? Cancel the appointment.” and
separately seeing “What do you do if you’re late
for an appointment? Apologize and explain.”

2) Answering “What do you do if you’re late for
an appointment? Cancel the appointment, or
Apologize and explain.”

However, most KBQA works focus on modelling
a score for each QA pair without inter-answer con-
siderations. This also leads to larger memory us-
age when a system is deployed, as the question
needs to be repeatedly encoded with each choice.
A straightforward way to let the model access the
information from all other answer candidates is to
add all answer candidates to the question at the
encoding stage. We perform a pilot test by incre-
mentally and randomly appending answers from
the candidate set to the end of a question and then
use GreaseLM (Zhang et al., 2022) to perform QA
in the conventional style. We leave the technical
description to Section 3.3. As Figure 1 shows,
with more answer choices added to the question,
the system performance decreases monotonically.
This reflects that naively dealing with multiple an-
swers at the same time for KBQA will undermine
the judgment of a system. We are therefore moti-
vated to search for more feasible solutions.

3. Methodology

3.1. Preliminaries
With a question in discrete tokens Q =
[x1, x2, ..., x|Q|] and a set of n answer choices
A = {A1, A2, ..., An}, current methods use a
PLM f() to encode the question and each Ai

as a pair (Q,Ai)Ai∈A into representations H =
[H<s>, Hx1 , ...,Hx|Q| , H</s>1

, H</s>2
, HAi , H</s>3

] =
f([<s>, Q,</s>1,</s>2, Ai,</s>3]), where <s> and
</s> denote begin-of-sentence (or CLS) and
end-of-sentence (or SEP) tokens respectively.
This is carried out separately for each Ai for
a total of n times. A multi-layer perception g()
then computes a score using the concatenation
of the question CLS token and the answer
embedding Si = g(H<s>,i ⊕ HAi

) for each
(Q,Ai) pair. The final answer Ai is selected by
i = argmax(S1, S2, ..., Sn). In this way, the PLM
encodes the question with each answer candidate
in n passes, which we refer to as 1AnP encoding.

3.2. Improved question representations
In previous QA works, the question representation
is used for the interaction with a KG (if included) and
for score prediction, but the resulting H<s> from the
conventional CLS pooling cannot capture the full se-
mantics of the input (Reimers and Gurevych, 2019).
To seek a more meaningful representation, we pro-
pose a pooling operation pool() over all question to-
ken embeddings. Having the same QA representa-
tions H, the score for (Q,Ai) can then be computed
as Si = g(pool(H<s>, Hx1

, ...,Hx|Q| , H</s>1
)⊕HAi

)
instead. Our work investigates four different pooling
operations:

• Max pooling selects the maximum element in
each dimension from all embeddings.

• Mean pooling averages all embeddings.
• Attentive pooling sums up all embeddings,

weighted by a learnable attention vector.
• Layerwise CLS pooling adds up all the begin-

of-sentence embeddings from each PLM layer,
weighted by a learnable attention vector (Ten-
ney et al., 2019).

3.3. Single-pass encoding
The conventional question-answer encoding is
memory inefficient because the often long question
needs to be encoded multiple times with different
answers. We propose a one-pass technique,
termed nA1P, where a PLM encodes a question
and all candidate answers simultaneously to
reduce memory usage. This also resembles
how a human tackles a multiple-choice question:
answers are compared to each other before a
decision is made. We append all candidates to
the question and embed with f() in one pass:
[<s>, Q,</s>1,</s>2, A1,</s>3, A2..., An,</s>n+2].

To alleviate the potential interference between an-
swers when they are being encoded altogether as
illustrated in Section 2, we propose two levels of se-
mantic integration by comparing and fusing the an-
swer representations and then merging them with
the question. For the answer comparison, inspired
by prior research which runs a gate mechanism
over answers in multiple encoding passes (Zhang
et al., 2020; Hao et al., 2022), we propose a gated
interaction adapted to our single-pass scheme.

Specifically, we first perform the aforemen-
tioned pooling on the entire span of each
answer token as its representation HAi

=
pool(H</s>i+1

, HAi
, H</s>i+2

). For HAi
and all

other answers HAj
,j ̸=i, we then compute a multi-

head attention (MHA) score αji of HAj queried by
HAi after pooling. Intuitively, this allows the explicit
comparison between answer Ai and each other an-
swer Aj . We derive the final answer representation
ĤAi by applying a gate mechanism to balance the
information from answers HAi and HAj using the
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attention score αij computed as:

αji = MHA(query=HAi
, key=HAj

, value=HAj
)

ĤAi
= γHAi

+ (1− γ)(
∑

j αjiHAj
)

where γ = σ(W1HAi
+W2(

∑
j αjiHAj

) + bias) is
a weight to balance the information from a par-
ticular answer and other answers, σ() is a sig-
moid function, and W1,W2 are trainable matri-
ces. Question-answer scoring remains similar
to Section 3.2; we concatenate the pooling out-
come of the question and each answer’s gated
representation to score each (Q,Ai) pair: Si =
g(pool(H<s>, Hx1 , ...,Hx|Q| , H</s>1

)⊕ ĤAi).
In addition, we formally define our setting in Sec-

tion 2 as nAnP, which affixes all multiple can-
didates to the original question to form an ex-
tended question, and then encodes the modi-
fied question with each candidate Ai as a pair
([Q,A1, ..., An], Ai)Ai∈A into representations H for
n times separately for each Ai. The scoring cri-
terion to select the final answer is similar to Sec-
tion 3.2. This nAnP technique bridges the conven-
tional approach and our single-pass scheme, and
creates a fair comparison between 1AnP and nA1P
with controlled variations.

4. Experiments and Discussions

4.1. Data and evaluation
We evaluate our approaches on two QA datasets.
First, CommonsenseQA (Talmor et al., 2019) con-
tains 12,102 questions, each paired with five an-
swer candidates; the questions demand common-
sense knowledge. We follow the in-house data split
by Lin et al. (2019) because the official test is not
public. Next, OpenBookQA (Mihaylov et al., 2018)
comprises 5,957 4-way multiple-choice questions
related to elementary scientific knowledge. For this
dataset, we follow the official data splits. Accuracy
(%) is used as the metric.

4.2. Experimental setup
Pooling We first explore the best pooling strategy
based on GreaseLM (Zhang et al., 2022) since it
uses the CLS token for both KG interaction and
QA scoring, but we consider this suboptimal. To
position our pooling results in current research, we
include several prior works for comparison.

Efficient inference We compare our proposed
methods: single-pass inference nA1P, and the
vanilla scheme nAnP from Section 3.3 with the con-
ventional 1AnP. We extensively test them in three
scenarios: PLM-only (RoBERTa-Large, Liu et al.,
2019b), PLM with KG (PLM+KG, Yasunaga et al.,

System Accuracy (std.)
RoBERTa-Large (Liu et al., 2019b) 68.69 (±0.56)
QA-GNN (Yasunaga et al., 2021) 73.41 (±0.92)
JointLK (Sun et al., 2022) 74.43 (±0.83)
ACENet (Hao et al., 2022) 74.72 (±0.70)
GreaseLM (Zhang et al., 2022) 74.20 (±0.40)
GreaseLM (Ye et al. (2023)’s re-run) 73.60 (unknown)
GreaseLM (our re-run) 73.57 (±0.08)
+ mean pooling 73.73 (±0.29)
+ max pooling 75.42 (±0.52)†
+ attentive pooling 73.97 (±0.51)
+ layerwise CLS pooling 73.97 (±0.16)

Table 1: Performance (%, accuracy from 3 runs) of pool-
ing techniques compared with previous works on Com-
monsenseQA. †Significantly better than GreaseLM and
other pooling methods with p-values < 0.05 in pairwise
t-tests.

2021), as well as PLM with KG and an interaction
node (PLM+KG+Int, Zhang et al., 2022).

Hyperparameters Our PLM backbone is
RoBERTa (Liu et al., 2019b). In experiments
involving a KG, we use ConceptNet (Xu et al.,
2021). GNN node embeddings are initialized with
entity embeddings from Feng et al. (2020). For
each QA pair, we retrieve the top 200 nodes and
their adjacent edges based on node relevance
scores following Xu et al. (2021). We use a
dimension of 200 and 5 GNN layers, with a 0.2
dropout probability. We use batch sizes 64 and
128 for CommonsenseQA and OpenBookQA
correspondingly. We train all models with the
RAdam optimizer (Liu et al., 2019a) on a single
Nvidia RTX A5000. Learning rates for the PLM
parameters and non-PLM modules are 1e-5
and 1e-3 separately. We determined these
hyperparameters using the development set. We
note that we use a slightly different but necessary
implementation in the PLM+KG+Int experiments
with our nA1P framework since the information
interaction requires an additional special token for
each answer.

4.3. Pooling results

We first report the performance of our proposed
pooling methods in Table 1. We see improvements
in most pooling methods on the GreaseLM archi-
tecture, showing the usefulness of a finer represen-
tation. Among all, max pooling demonstrates an
incredible gain, even outperforming current SOTA
models. This highlights that a simple but effective
representation has long been neglected in the com-
munity. We therefore stick to max pooling as op-
posed to CLS pooling for subsequent experiments.
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System Pooling CommonsenseQA OpenBookQA
PLM + KG + KG + Int PLM + KG + KG + Int

1AnP
(previous)

CLS 70.02 72.82 73.97 80.20 81.80 81.60
Max 70.51 73.41 75.42 82.40 82.40 82.60

nAnP
(contrastive)

CLS 67.12 69.62 68.82 79.40 78.40 81.80
Max 67.12 68.90 69.14 79.40 82.60 82.20

nA1P
(ours)

CLS 67.77 69.30 69.38 78.80 79.40 80.20
Max 68.25 68.65 70.91 79.00 80.60 80.40
Max + Gate 69.62 71.88 70.91 79.60 80.60 81.40

Table 2: Performance (accuracy, %) of our systems on CommonsenseQA and OpenBookQA.

GPU
Model

Mem.
(GB)

Batch size (↑) Inference time (↓)
1AnP nA1P (∆%) 1AnP nA1P (∆%)

RTX A5000 24 100 160 (+60%) 4.61s 3.31s (-28%)
RTX 3090 24 100 160 (+60%) 2.45s 1.82s (-26%)
RTX 2080 Ti 11 30 45 (+50%) 1.13s 0.76s (-33%)
GTX 1080 Ti 11 30 45 (+50%) 2.64s 1.27s (-52%)
Titan X Pascal 12 40 55 (+38%) 3.56s 1.55s (-56%)
GTX 1080 8 10 20 (+100%) 2.21s 0.77s (-65%)

Table 3: Comparison in efficiency between 1AnP and our nA1P: usable batch size and total inference time when
solving 1000 QA instances on a single GPU.

4.4. From multiple to one pass
The results from our memory-efficient experiments
across two datasets are presented in Table 2.

Pooling For both CommonSenseQA and Open-
BookQA, we observe a better performance with
max pooling compared to CLS pooling in most of
the settings, indicating the effectiveness and gener-
alizability of pooling in QA representation. We note
that max pooling is slightly behind when multiple an-
swers are encoded simultaneously and when a KG
is used. We conjecture that this is because, with
many answers, it is difficult for the information in
LMs to align with the corresponding KG sub-graphs.

Efficient inference For our proposed nA1P en-
coding, results indicate that when seeking improved
memory efficiency, the baseline CLS pooling ac-
curacies on both CommonsenseQA and Open-
BookQA are sacrificed to a slight degree. However,
this can be mitigated through our proposed tech-
niques: max pooling as well as the gated answer
representation mechanism. We observe on par
if not higher performance when these are added,
highlighting the effectiveness of our explicit inter-
answer interaction.

Transferability Additionally, we switch the PLM
from RoBERTa to BERT (Devlin et al., 2019) in
order to investigate whether our nA1P framework
is compatible with other PLM resources. We find

that the test accuracies are 50.68% for our nA1P
approach and 49.80% for the traditional 1AnP. The
pattern is the same as we have observed on Com-
monsenseQA. Nonetheless, the results with BERT
as the PLM are significantly lower than RoBERTa.

4.5. Throughput and inference time
To study the practicality of memory efficiency, we
run GreaseLM with both 1AnP and our nA1P us-
ing the same configurations to solve 1000 QA in-
stances. Table 3 reports the maximum usable
batch size and total inference time on a single
consumer-grade GPU. To eliminate variable fac-
tors like input lengths, we duplicate a single data
instance to fill up a batch.

Compared with the baseline 1AnP, while the in-
corporation of the gated mechanism to our nA1P
approach could introduce extra processing time
and memory, we highlight both an increase in max-
imum batch size and a decline in inference time
with our method. This framework enables the uti-
lization of larger batch sizes across multiple GPU
models which markedly increases throughput. This
is particularly advantageous when conducting QA
tasks at a large scale.

4.6. Ablation study
For our proposed nA1P approach, we systemati-
cally analyze each its component’s impact on the
performance on the CommonsenseQA in-house
test. We eliminate a single module at a time as
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System Accuracy
Max Pool + Q⊕A + Gate 71.88
Max Pool + Q⊕A 69.54
Max Pool 68.65

Table 4: Performance of our nA1P with ablations on
CommonsenseQA.

shown in Table 4. Introducing the QA concatena-
tion yields a 0.89% improvement, demonstrating
the value of considering both questions and answer
contexts for enhanced interaction and reasoning.
Notably, having the gate layer module leads to a
significant performance boost of 2.34%, emphasiz-
ing the crucial role of diverse choice interactions
during the message-passing process.

5. Related Work

Knowledge-base Question Answering necessitates
models to jointly reason over both external knowl-
edge graphs and parametric knowledge from lan-
guage models (Talmor et al., 2019; Mihaylov et al.,
2018). However, grounding knowledge from both
textual and structured modalities presents a non-
trivial challenge (Yasunaga et al., 2021; Sun et al.,
2022; Zhang et al., 2022). Furthermore, existing
works predominantly adhere to the 1AnP setting,
which needs multiple inferences to answer a ques-
tion (Liu et al., 2019b; Hao et al., 2022; Yasunaga
et al., 2022).

The only exception is a recent work using
decoder-only large language models, where a ques-
tion and all possible answers can be framed as
a natural language input (Robinson and Wingate,
2023). We highlight that our multi-pass encoder
models, with similar performance, are significantly
more affordable in practice. Finally, Section 2
shows that vanilla nA1P notably lags behind 1AnP,
which motivates us to revisit the representation
scheme in current models.

6. Conclusion and Outlook

This paper presents our efforts in searching for an
effective and memory-efficient representation for
question-answering. Experimental results show
that a simple max pooling mechanism consistently
outperforms CLS pooling which has been widely
used in this field. We then propose and test a
gated single-pass inference approach to encourage
answer interactions and improve efficiency. It is
seen that the approach reduces memory usage
with a tiny sacrifice in performance. Our paper
calls for future work to shift to max pooling and
encourages further exploration of efficiency-aware
QA representations.

Our investigation focused on the PLM side of
question answering, but the KG side remains un-
optimized. In our experiments, sub-KGs are con-
structed for each QA pair, without adjusting for a
single-pass encoding scheme where all answers
are encoded simultaneously. Thus, although we
could encode a question with all answers in our
proposed nA1P inference approach, processing
separate sub-KGs would slow down the inference.
The challenge exists in combining all answer candi-
dates’ information into one knowledge graph which
can be looked at by future research.
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