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Abstract
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural
language processing tasks. However, their enormous parameter size and extremely high requirements for compute
power pose challenges for their practical deployment. Recent research has revealed that specific capabilities
of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation. Some studies
explore the potential of leveraging LLMs to perform table-based reasoning. However, there has been no prior work
focusing on table reasoning skills in smaller models specifically tailored for scientific table-to-text generation tasks.
In this paper, we propose a novel table-based reasoning distillation approach, with the aim of distilling LLMs into
tailored smaller models. Our experimental results have shown that a 220 million parameter model (Flan-T5-base)
fine-tuned using distilled data, not only achieves a significant improvement compared to traditionally fine-tuned
baselines, but also surpasses specific LLMs on a scientific table-to-text generation dataset. Our code is available
at https://github.com/Bernard-Yang/DistillTableCoT.
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1. Introduction

Tables, as a ubiquitous and pivotal means of
knowledge storage, have been receiving increas-
ing attention in contemporary research. Tabular
data, when combined with textual data, provides
a valuable and complementary source of informa-
tion. The intersection of tabular and textual in-
formation constitutes a well-established problem
within the domain of Natural Language Process-
ing (NLP), with impacts spanning a diverse spec-
trum of downstream tasks, including table ques-
tion answering (Pasupat and Liang, 2015; Cho
et al., 2019; Nan et al., 2022), and table fact check-
ing (Chen et al., 2020c; Gupta et al., 2020; Aly
et al., 2021; Lu et al., 2023).
Conventional approaches to table-based rea-

soning (Pasupat and Liang, 2015; Zhong et al.,
2017; Yu et al., 2018) have predominantly relied
on the synthesis of executable languages such
as SQL or SPARQL to facilitate information re-
trieval from tables. However, these symbolic lan-
guages often entail rigid assumptions regarding ta-
ble structures, rendering them incapable of cap-
turing the semantics embedded in textual seg-
ments within the table. A holistic comprehension
of web tables necessitates the understanding of
structured reasoning alongside textual reasoning.
To this end, the emergence of table-based pre-
trainedmodels (Herzig et al., 2020; Liu et al., 2021;

Jiang et al., 2022; Cai et al., 2022) has under-
scored the efficacy of pre-training models on both
textual and tabular data for augmenting reason-
ing capabilities. This improvement stems from
the extensive knowledge obtained from the large-
scale crawling or synthesising of tabular and tex-
tual data.

In recent years, the advent of Large Language
Models (LLMs) (Brown et al., 2020; Chowdhery
et al., 2022; Touvron et al., 2023) has revolu-
tionised the landscape of NLP, ushering in a
new era marked by their remarkable performance
demonstrated across a multitude of controllable
text generation tasks (Tang et al., 2022; Yang
et al., 2023; Zhao et al., 2023a; Tang et al.,
2023b). Large Language Models (LLMs) implic-
itly capture the intricate interrelationships among
tokens within input sequences, enabling them to
adeptly comprehend the heterogeneous features
present, regardless of their structural format, such
as graph representations, tabular data, or sequen-
tial patterns(Huang et al., 2022; Goldsack et al.,
2023; Tang et al., 2023a). These models leverage
vast corpora of textual data and undergo extensive
pre-training, exhibiting an exceptional capacity to
tackle intricate mathematical and commonsense
reasoning tasks, often within the context of few-
shot and zero-shot learning scenarios (Wei et al.,
2022; Wang et al., 2022; Drozdov et al., 2022;
Loakman et al., 2023; Zhou et al., 2023).

https://github.com/Bernard-Yang/DistillTableCoT
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Dataset BERT
(dev)

BERT
(test)

BioBERT
(test)

BioBERT
(test)

MedNLI 79.56 77.49 82.15 79.04

MNLI (M) 83.52 - 81.23 -

SNLI (S) 90.39 - 89.10 -

M → MedNLI 80.14 78.62 82.72 80.80

S → MedNLI 80.28 78.19 83.29 81.29

M → S → MedNLI 80.43 78.12 83.29 80.30

S → M → MedNLI 81.72 77.98 83.51 82.63

MedNLI 79.13 77.07 83.87 79.95

S → M → MedNLI
(expanded)

82.15 79.95 83.08 81.85

Distilled Reasoning:
Looking at the "S → M → MedNLI" row, we can see that the performance of S → 
M → MedNLI is higher on BioBERT compared to BERT.
Distilled Description:
"BioBERT performs better than BERT on the S → M → MedNLI task.“

T5-CoT: 
BioBERT on S M MedNLI has a higher score than that of BERT.

T5-traditional: 
We can see that biobert outperforms bert by a large margin on all the 
datasets 

Input  Table:

Tables

Descriptions

LLM

Reasoning

Pipeline

Teach

Figure 1: The overview of the distillation pipeline
and example data. The pipeline includes using
LLMs to generate table-based reasoning and de-
scriptions given the input table.

Drawing inspiration from these groundbreaking
developments, a range of studies (Chen, 2023;
Ye et al., 2023; Cheng et al., 2023; Gemmell and
Dalton, 2023; Lu et al., 2023) have emerged to
highlight the competitive performance of LLMs in
comparison to state-of-the-art fine-tuned models
in the domain of table reasoning tasks (e.g., ta-
ble question answering and table fact-checking).
For instance, Zhao et al. (2023b) delved into
the potential of employing LLMs augmented with
Chain-of-Thought (CoT) techniques in the Logic-
NLG dataset (Chen et al., 2020c) for table-to-text
generation tasks. Despite significant advance-
ments, prior research has not focused on the chal-
lenging domain of more complex reasoning-aware
scientific table-to-text generation task using LLMs.
Moreover, the substantial parameter count and de-
manding computational requirements present ob-
stacles to their feasible implementation. There-
fore, distilling LLMs’ intrinsic table-based reason-
ing capabilities into more lightweight alternatives
is a more efficient and resource-friendly approach.
In this paper, we investigate the capabilities

of LLMs in the task of reasoning-aware scientific
table-to-text generation, and propose a two-step
distillation approach to transfer the table-based
reasoning ability of LLMs into smaller models. The
nature of the complex scientific table-to-text gener-
ation task requires the LLMs to comprehensively
grasp the provided tables and engage in arith-
metic reasoning encompassing both tabular and
textual data, rather than merely converting table
contents into superficial descriptions. Our dis-
tillation pipeline is shown in Figure 1, which in-
cludes using LLMs to generate table-based rea-

soning content and descriptions given the input
table. We conduct our experiments on the Sci-
Gen dataset (Moosavi et al., 2021b), the first sci-
entific table-to-text dataset and is more challeng-
ing than other standard table-to-text benchmarks,
such asWiseman et al. (2017), Parikh et al. (2020),
and Chen et al. (2020a), as it contains more nu-
merical reasoning. We also provide an example
in Figure 1, in which the description generated by
T5-CoT is better than that of T5-traditional, as T5-
CoT is fine-tune with the reasoning and descrip-
tions distilled from LLMs. This is because the ex-
ample reasoning describes the “S → M → Med”
row, which enables the model to focus on that spe-
cific row of the table in further fine-tuning the stu-
dent models.
Our contributions can be summarised as fol-

lows:

• We explore the potential of tackling the task of
reasoning-aware scientific table-to-text gener-
ation using LLMs.

• We propose a two-stage distillation frame-
work containing data generation and fine-
tuning stages. In the data generation stage,
we utilise LLMs to generate table-based rea-
soning and factually consistent statements,
which could describe the table correctly based
on the input table, employing a one-shot
Chain-of-Thought (CoT) methodology. Sub-
sequently, in the fine-tuning phase, we em-
ploy the distilled CoT data generated by LLMs
to imbue smaller models with table reasoning
proficiency.

• We present a range of experimental results
that underscore that fine-tuning smaller mod-
els with table-based reasoning data distilled
from LLMs leads to significant performance
enhancements compared to baseline models
in the context of scientific table-to-text gener-
ation tasks.

• We demonstrate that, distillation empowers
student models with as few as 220 mil-
lion parameters (e.g., only 0.1% the size of
teacher model) to outperform the 175 billion-
parameter teacher model in certain metrics.

2. Related Work

2.1. Table-based Reasoning
Table-based reasoning tasks require the ability
to reason over both natural language and struc-
tured tables. Traditional table-based reasoning
involves employing semantic parsing to execute
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commands on tables, with benchmarks including
WikiTableQuestions (Pasupat and Liang, 2015),
WikiSQL (Zhong et al., 2017), and Spider (Yu et al.,
2018). These models are designed to produce
SQL for interacting with tables. However, these
languages impose strict criteria on tables and
make it so that these methods cannot understand
the semantics of text segments. Some works pro-
posed to learn joint representations by pre-training
on table and text data (Herzig et al., 2020; Liu et al.,
2021; Zhao et al., 2022). Through pre-training the
model on extensive synthetic data, they are able
to achieve desirable performance on table related
tasks. Recent works (Chen, 2023; Ye et al., 2023;
Nan et al., 2023) have shown the ability of LLMs in
table reasoning tasks through in-context learning.
Lu et al. (2023) use LLMs to perform reasoning in
the task of scientific table fact-checking. This task
requires compositional reasoning using scientific
tables as evidence. BINDER (Cheng et al., 2023)
uses Codex to synthesise SQL queries to execute
logical forms against tables in a question answer-
ing task.

2.2. Chain-of-thought Reasoning
Chain of thought (CoT) prompting encourages
LLMs to break down a reasoning task into a series
of intermediate steps, therefore enhancing reason-
ing abilities across various tasks (Wei et al., 2022;
Shao et al., 2024). With a few CoT reasoning
examples, LLMs can achieve state-of-the-art per-
formance on complex arithmetic reasoning tasks.
Self-consistency CoT (Wang et al., 2023) involves
sampling multiple CoTs and selecting the most
consistent one by beam searching. Kojima et al.
(2022) propose zero-shot CoT by first generating
CoT templates and producing the final answer with
LLMs in a zero-shot setting.

2.3. Knowledge Distillation
Distillation has demonstrated its effectiveness in
transferring valuable capabilities from a larger
model to a smaller one (Hinton et al., 2015; Sanh
et al., 2019; Zeng et al., 2022). Recent works
have shown that synthetic data generated by the
teacher model can effectively transfer the spe-
cialised abilities, such as numerical reasoning, to
the student model. Chung et al. (2022) use man-
ually generated CoT data to fine-tune a FLAN-
based version of PaLM (Chowdhery et al., 2022).
Fu et al. (2023) employ enriched chain-of-thought
data to specialise a smaller model. Ho et al. (2023)
proposes diverse CoT approach by sampling dif-
ferent reasoning outputs from a large model to
then fine-tune a smaller model. Magister et al.
(2023) use a two-step pipeline for transferring the
reasoning capabilities of large models to smaller

models. Hsieh et al. (2023) extract rationales
from LLMs and integrated such data in the smaller
model instruction tuning framework. Zhu et al.
(2023) use LLMs to distill the programs, injecting
reasoning ability into small models. We extend the
above ideas into the table-based reasoning task,
specifically in the scientific table-to-text generation
domain, in which the generated CoT data leads to
improved table reasoning performance.

3. Methodology

Our proposed framework is illustrated in Figure 2,
which consists of two steps: synthesising data
from LLMs and fine-tuning student models with
the distilled data. The primary purpose of the first
stage is to generate table-based reasoning and de-
scriptions with LLMs given the input tables through
CoT. In the second stage, the table-based reason-
ing ability is transferred into smaller models by fine-
tuning with the distilled data from the LLMs.

3.1. Task Definition
We define the task as follows: The input serialised
tabular data is denoted as T . In addition, the table-
based reasoning data distilled from LLMs is de-
noted as R = r1, r2, ..., rn, where ri is the token
of reasoning. The primary goal of this task is to
generate a description Y = y1, y2, ..., ym, where
yi is the token of the description and the model
functions by simulating the conditional probability
distribution P (Y |T,R). The generated description
should be factually consistent with the given table,
and contain reasoning over the table.

3.2. Table-based Reasoning Generation
The data synthesis process of our proposed
method is illustrated in the upper part of the right-
hand side of Figure 2, which is based on in-context
learning (Brown et al., 2020), an emergent ability
of LLMs (Wei et al., 2022). Different from tradi-
tional fine-tuning, in-context learning enables the
LLMs to make predictions based on the input con-
text where only a few examples are demonstrated,
without the need for parameter updating.
We utilise a large teacher LLM,

gpt-3.5-turbo, to generate table-based
reasoning through CoT. We formulate the data
generation process as follows: given a input
serialised table T , we prompt the LLMs with the
one-shot CoT demonstration example to generate
a reasoning R and a description Y which is fac-
tually consistent with the input table. Specifically,
the demonstration examples C = (T,R, Y ) is a
table, reasoning, and description triplet, where
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Figure 2: The overview of our framework. For synthesising data from LLMs, we provide table exam-
ples to LLMs, and use it to generate reasonings and descriptions. Then, the generated descriptions are
verified by LLMs and the false reasoning and description pairs are removed. For fine-tuning smaller
models, we fine-tune small models with generated reasoning and description, which inject the reasoning
ability into smaller models.

the R and Y are hand-crafted. Finally, we can
generate data as follows:

Ri, Yi =LLMs(C, Ti) (1)

where we prepend the demonstrated example C
as the prefix to the input table Ti. Then the LLM
will follow the instruction and learn the pattern from
the example to generate corresponding reasoning
Ri and description Yi.
Diverse Reasoning. The table-to-text task en-
ables the model to produce varied descriptions
by focusing on different table regions or perform-
ing various reasoning operations, provided that
the generated descriptions are factually consistent
with the table (Zhao et al., 2023b). To maximise
the reasoning ability distilled from LLMs, we em-
ploy the diverse reasoning approach (Ho et al.,
2023; Zhu et al., 2023; Zhao et al., 2023b) to gener-
ate two different reasoning examples and descrip-
tions for a given scientific table. We do not gener-
ate more reasoning-description pairs for each ta-
ble because the maximal context limit of the LLMs
and the average length of the tables and descrip-
tions in the SciGen dataset is larger than in other
table-to-text datasets. Specifically, the data gener-
ation process is shown as follows: given a context
C and table Ti, the LLMs are required to generate
two pairs of reasoning and description.

{(R1, Y1), (R2, Y2)} =LLMs(C, Ti) (2)

Data Filtering. The synthesised table-based CoT
data may contain incorrect samples due to the
hallucination problem of generative models (Zhu
et al., 2023). Therefore, we need to filter the
wrongly generated CoT data. For filtering, we fol-
low Madaan et al. (2023) and employ the Self-
Refine method. To be specific, when generating

a new set of data (Ri, Yi) given Ti, we ask the
LLMs to verify whether the generated description
Yi is consistent with the input table Ti. We can
filter out incorrect samples to refine our generated
CoT data. The verification and filtering is crucial as
the high quality training data should improve per-
formance. Finally, we get 16,858 validated exam-
ples as the training data.

3.3. Fine-tuning Small Models
Once we obtain the generated table-based reason-
ing data, we use them to fine-tune smaller models
and inject the reasoning ability into them. As for
the choice of smaller models, we select T5 (Raf-
fel et al., 2019) and Flan-T5 (Chung et al., 2022).
This is because recent works (Fu et al., 2023; Zhu
et al., 2023; Magister et al., 2023) have revealed
that these models can attain a remarkable numer-
ical reasoning ability when trained with CoT data
in the task of complex mathematical problem solv-
ing. We fine-tune the smaller model with the gener-
ated table-based reasoning data. Specifically, we
concatenate the table T with table-based reason-
ing R, which are split by an added special token
“<CoT>”. The resulting input sequence takes the
following form: “T <CoT> R”. We provide an ex-
ample in Figure 3. Therefore, the description Y is
generated based on both the input serialised table
T and table-based reasoning R with the following
loss function:

L = − 1

N

N∑
n=1

logP (Y | T,R) (3)

where N denotes the size of the training data, and
L is the cross entropy loss.
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4. Experiments

4.1. Dataset

We conduct scientific table-to-text generation on
the SciGen dataset (Moosavi et al., 2021a). The
statistics of the data are shown in Table 1. It con-
sists of three different settings: few-shot, medium
and large. The train/val/test sets of medium set-
ting are split into sizes of 13,607/3,452/1,038. The
large setting is split into 39,969/12,129/1,038. We
choose the medium and large settings to conduct
the experiments. This is because the few-shot set-
ting only contains 200 examples of training data
and is insufficient for fine-tuning.

4.2. Baselines

We follow Moosavi et al. (2021a) and select
T5 (Raffel et al., 2019) and BART (Lewis et al.,
2020) as the student model baselines. For
the BART baseline, we use BART-large with
0.40B parameters. For the T5 model, we
use T5-base and T5-large with 0.22B, and
0.77B parameters, respectively. For the teacher
models, we choose text-davinci-002 and
gpt-3.5-turbo as the baseline. For the
one-shot prompt setting, we follow previous
works (Chen, 2023; Zhao et al., 2023b), which
prepend one demonstration example to the input
table. We compare with two variants of the teacher
models, called 1-shot direct and 1-shot CoT. For
the prompt formulation of 1-shot direct, we follow
the setting of Moosavi et al. (2021a) to linearise
the table and concatenate it with the gold descrip-
tion as a demonstration. As for the prompt of 1-
shot CoT, we prepend the input table to two hand-
crafted table-based reasonings and descriptions.

Setting Text Train Val Test

Few-shot 116 200 100 1,038
Medium 124 13,607 3,452 1,038
Large 133 39,969 12,129 1,038

Table 1: SciGen dataset statistics. Text indicates
the average length in words of descriptions.

4.3. Experimental Settings

To use the above text-to-text generation baselines,
we follow the setting in Moosavi et al. (2021a) and
convert tables into the text sequences. To pre-
serve and help the model better learn the table
structure, we add four special tokens to specify
the beginning of rows, cells, table captions, and
CoT reasoning with tokens “<R>”, “<C>”, “<CAP>”,

“<CoT>”, respectively. Figure 3 shows an origi-
nal table from a scientific paper (Nam et al., 2019)
and its corresponding linearised input represen-
tation. The generated reasoning and description
from LLMs are also provided.

4.4. Automatic Evaluation Metric

We utilise a wide range of automatic evaluation
metrics from various levels to assess the perfor-
mance of the model.
Surface-level. Following Moosavi et al. (2021a),
we choose METEOR (Banerjee and Lavie,
2005), BERTScore (Zhang et al., 2020), and
BLEURT (Sellam et al., 2020) to measure the
surface similarity of the generated statements to
the gold references.
METEOR aligns the output text with the refer-

ence text and computes sentence-level similarity
scores based on the alignments.
BERTScore employs BERT embeddings,

which aligns words in both the generated and
reference sentences using cosine similarity. It
calculates precision, recall, and F1 scores.
BLEURT is a learned evaluation metric based

on BERT. It is first pre-trained on synthetic exam-
ples and then fine-tuned on human judgments for
the task of machine translation.
However, Moosavi et al. (2021a) stated that

these metrics are not sufficient as the value range
is quite low (except for BERTScore). In addition,
in some cases, the incorrect description scores
higher than the correct ones.
Faithfulness-level. Recent works (Moosavi et al.,
2021a; Liu et al., 2022a) have pointed out that
the above surface-level metrics cannot measure
the factual correctness of the generated descrip-
tions given the corresponding tables. The SciGen
task requires the model to generate statements
which contain numerical reasoning over table val-
ues. In addition, the generated statements might
cover a different table region from the gold ref-
erence. Therefore, we add two faithfulness-level
metrics (to assess whether the generated sen-
tence is grounded in the input table), TAPAS-Acc
and TAPEX-Acc (Liu et al., 2022a) to evaluate the
factual consistency and fidelity, which have been
widely used for table-to-text evaluation.
TAPAS-Acc fine-tunes TAPAS (Herzig et al.,

2020) on the TabFact dataset (Chen et al., 2020b)
and achieves 81% test accuracy.
TAPEX-Acc use TAPEX (Liu et al., 2022b)

which is fine-tuned on the TabFact dataset and
achieves 84% test accuracy. Previous works (Liu
et al., 2022a; Zhao et al., 2023b) stated that
TAPAS-Acc is overly positive about the predictions,
while TAPEX-Acc is more reliable for the evalu-
ation of the faithfulness of generated sentences.
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<R> <C> [BOLD] Dataset <C> [BOLD] BERT dev <C> [BOLD] BERT test <C> [BOLD] 
BioBERT dev <C> [BOLD] BioBERT test <R> <C> MedNLI <C> 79.56 <C> 77.49 <C> 
82.15 <C> 79.04 <R> <C> MNLI (M) <C> 83.52 <C> - <C> 81.23 <C> - <R> <C> SNLI 
(S) <C> 90.39 <C> - <C> 89.10 <C> - <R> <C> M → MedNLI <C> 80.14 <C> [BOLD] 
78.62 <C> 82.72 <C> 80.80 <R> <C> S → MedNLI <C> 80.28 <C> 78.19 <C> 83.29 <C> 
81.29 <R> <C> M → S → MedNLI <C> 80.43 <C> 78.12 <C> 83.29 <C> 80.30 <R> <C> S 
→ M → MedNLI <C> [BOLD] 81.72 <C> 77.98 <C> [BOLD] 83.51 <C> [BOLD] 82.63 
<R> <C> MedNLI (expanded) <C> 79.13 <C> 77.07 <C> [BOLD] 83.87 <C> 79.95 <R> 
<C> S → M → MedNLI (expanded) <C> [BOLD] 82.15 <C> [BOLD] 79.95 <C> 83.08 <C> 
[BOLD] 81.85 <CAP> Table 4: All experiment results of transfer learning and abbreviation 
expansion (top-2 scores marked as bold). <COT> Looking at the "S → M → MedNLI" row, 
we can see that the performance of S → M → MedNLI is higher on BioBERT compared to 
BERT.

Input Representation:Table:

Distilled Reasoning:
Looking at the "S → M → MedNLI" row, we can see that the 
performance of S → M → MedNLI is higher on BioBERT 
compared to BERT.

Distilled Description:
BioBERT performs better than 
BERT on the S → M → 
MedNLI task.

T5-CoT: 
BioBERT on S M MedNLI  has a higher 
score than that of BERT.

Teach

LLM

Figure 3: Sample table from Nam et al. (2019) with its corresponding input representation. The reasoning
and description are generated from LLMs for further fine-tuning smaller models.

Models #Params Faithfulness-level Surface-level
TAPAS-Acc TAPEX-Acc Meteor BERTScore BLEURT

Teacher Model
text-davinci-002 (1-shot direct) 175B 66.43 64.84 0.08 0.82 -0.97
gpt-3.5-turbo (1-shot direct) 175B 72.34 70.48 0.09 0.85 -0.91
text-davinci-002 (1-shot CoT) 175B 75.35 77.89 0.09 0.82 -0.94
gpt-3.5-turbo (1-shot CoT) 175B 82.53 84.99 0.09 0.83 -0.96

Medium Setting
BART-large 0.40B 57.45 58.41 0.23 0.84 -0.72
T5-base 0.22B 53.27 52.45 0.15 0.82 -0.89
T5-large 0.77B 56.32 54.78 0.17 0.83 -0.77
Flan-T5-base 0.22B 54.78 56.25 0.16 0.84 -0.82
Flan-T5-large 0.77B 58.91 57.29 0.18 0.84 -0.80

Large Setting
BART-large 0.40B 59.69 61.38 0.15 0.82 -0.89
T5-base 0.22B 55.32 53.76 0.15 0.82 -0.85
T5-large 0.77B 58.21 56.32 0.18 0.83 -0.79
Flan-T5-base 0.22B 56.41 55.37 0.16 0.82 -0.86
Flan-T5-large 0.77B 59.81 58.34 0.17 0.83 -0.83

CoT fine tuning
T5-base-CoT 0.22B 78.16 82.30 0.08 0.83 -0.89
T5-large-CoT 0.77B 80.62 81.97 0.07 0.82 -0.89
Flan-T5-base-CoT 0.22B 78.72 82.75 0.08 0.82 -0.89
Flan-T5-large-CoT 0.77B 79.05 82.53 0.06 0.83 -0.89

Table 2: Performance on the SciGen test set. Medium and large settings denote the setting of the
datasets used for training. For the teacher model, direct refers to direct prompt without CoT. CoT fine
tuning refers to fine-tuning smaller models with generated CoT data from teacher models.

Both above reference-free metrics score the gen-
erated descriptions as 0 for refuted and 1 for en-
tailed given the corresponding tables.

5. Results

In this section, we evaluate both the performance
of teacher LLMs and the fine-tuned smaller mod-
els on the scientific table-to-text task. We conduct
automatic evaluation on both Surface-level and
Faithfulness-level metrics. The overall results are

shown in Table 2. The comparison of Faithfulness-
level metrics between teacher models and student
models the large are presented in the Figure 5 and
Figure 6.

5.1. Performance of LLMs

Our experiments include two in-context learning
methods, Direct Prompt and CoT Prompt. We se-
lect text-davinci-002 and gpt-3.5-turbo
to conduct experiments on the SciGen dataset.
As shown in Table 2, on surface-level metrics,
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Default TAPAS-Acc TAPEX-Acc CoT (Ours) TAPAS-Acc TAPEX-Acc

T5-base 55.32 53.76 T5-base 78.16 82.30
Flan-T5-base 56.41 55.37 Flan-T5-base 78.72 82.75

T5-large 58.21 56.32 T5-large 80.62 81.97
Flan-T5-large 59.81 58.34 Flan-T5-large 79.05 82.53

Table 3: Smaller model performance on the test set of the SciGen dataset. Models fine-tuned with CoT
data generally perform better than the traditional fine-tuned ones (with a minimum of 20% improvement).

Figure 4: Ablation study of smaller models on the SciGen dataset. Compared with models using standard
fine-tuning, T5 and Flan-T5 fine-tuned with CoT data achieve significant improvements on both TAPAS-
Acc and TAPEX-Acc.

both Direct Prompt and CoT Prompt can-
not achieve the best performance, except for
gpt-3.5-turbo (1-shot direct) achieving
the best performance on BERTScore. However,
the surface-level metrics are unable to accurately
measure the faithfulness and accuracy of the
models’ generated outputs. In terms of the
faithfulness-level metrics, text-davinci-002
(1-shot direct) can achieve over 64%
accuracy and gpt-3.5-turbo (1-shot
direct) can achieve over 70% accuracy on
both TAPAS-Acc and TAPEX-Acc, which outper-
form the traditional fine-tuned baseline models
(i.e. BART and T5). When combined the direct
prompt with CoT reasoning, the accuracy of
both text-davinci-002 (1-shot CoT) and
gpt-3.5-turbo (1-shot CoT) increases by
around 10% on both metrics.

5.2. Performance of Fine-tuned Smaller
Model

Regarding the surface-level metrics, the smaller
models, whether fine-tuned with CoT data or not,
consistently exhibit a narrow range of low val-
ues, with absolute values falling within the 0-1
Likert scale range. The experimental results are
consistent with the statements in SciGen’s pa-

Figure 5: The TAPAS-Acc of the teacher models
(LLMs) and small models on the SciGen dataset.
All the small models fine-tuned with CoT data can
surpass LLMs with direct prompting.

per (Moosavi et al., 2021a) that surface-level met-
rics are not sufficient to reflect models’ abilities on
this complex task.
Small models with traditional fine-tuning do
not perform well on faithfulness-level met-
rics. In terms of the smaller models fine-
tuned without CoT data, BART-large fine-tuned
on the medium dataset achieves the best on
surface-level metrics. However, in terms of the
faithfulness-level, all the BART and T5 baselines
only achieve an accuracy slightly higher than ran-
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Figure 6: The TAPEX-Acc of teacher models and
small models on the SciGen dataset. The trend
is similar to TAPAS-Acc, with the performance of
small models fine-tuned with CoT data only un-
derperforming when compared to LLMs with CoT
prompting.

dom chance. We further investigate the impact
of dataset size, ranging from the Medium Setting
to the Large Setting. Although the size of the
Large Setting dataset is three times that of the
Medium Setting, performance improvements are
not as significant (i.e., only around 2% increase
on the faithfulness-level metrics). However, for the
surface-level metrics, models that are trained with
the Medium datasets achieve better overall perfor-
mance, especially in METEOR and BLEURT.
Small models fine-tuned with CoT data achieve
a significant performance improvement. On
the other hand, the T5 and Flan-T5 models
with CoT fine-tuning can achieve the best over-
all performance on the faithfulness-level metrics
among all the small models. All the perfor-
mances of CoT fine-tuning models are on par
with the teacher model (i.e., gpt-3.5-turbo
(1-shot CoT) on the faithfulness-level metrics.
For instance, T5-large-CoT and Flan-T5-base-
CoT achieve the highest TAPAS-Acc (80.62%)
and TAPEX-Acc (82.75%), and only underperform
the teacher model with the best performance by
a margin of 2%. These results indicate that fine-
tuning with CoT data distilled from LLMs can trans-
fer the table-based reasoning ability into smaller
models.
Larger model size does not guarantee the per-
formance improvement when fine-tuned with-
out CoT data. Furthermore, our experiments
also investigate the impact of the model size for
CoT fine-tuning, ranging from the base to the large
variant. While it is intuitive to expect performance
improvements with larger models, the experimen-
tal results on TAPEX-Acc metric reveal that mod-
els with larger parameter counts, such as T5-large
and Flan-T5-large, do not consistently outperform
their smaller counterparts, T5-base and Flan-T5-
base. However, regarding TAPAS-Acc, the perfor-

mance improvement is consistent, with the model
size increasing from base (0.22B) to large (0.77B).

5.3. Comparison between Teacher and
Student Models

We also compare the performance on faithfulness-
level metrics (TAPAS-Acc and TAPEX-Acc) of
both the teacher model (LLMs) and student
models in Figure 5 and Figure 6. For the
teacher model, gpt-3.5-turbo (1-shot
direct) outperforms all smaller baseline models
(smaller models fine-tuned without CoT data)
and text-davinci-002 (1-shot direct).
In addition, gpt-3.5-turbo (1-shot CoT)
achieves the best performances on both TAPAS-
Acc and TAPEX-Acc metrics among both teacher
and student models. As for smaller models, both
T5 and Flan-T5 can only achieve around 55% ac-
curacy on both faithfulness-level metrics without
being fine-tuned with CoT data. However, these
smaller models can be injected with reasoning
ability after fine-tuning with CoT data, achieving
approximately 80% accuracy on both metrics.

Figure 7: Evaluation of generated data of train and
test sets of SciGen dataset. Correct refers to the
data with statements verified correctly by LLMs.

5.4. Ablation Study
The ablation study of fine-tuning with CoT data are
shown in both Table 3 and Figure 4. For both
T5 and Flan-T5 models, we can observe the sig-
nificant increases after fine-tuning with with CoT
data in both TAPAS-Acc and TAPEX-Acc on the
SciGen table-to-text generation task. For TAPAS-
Acc metric, T5 and Flan-T5 base (0.22B) and large
(0.77B) models can only achieve over 55% accu-
racy. However, when fine-tuning with table-based
CoT data from LLMs, there is a significant accu-
racy increase (over 20%) observed. For instance,
the 55% accuracy of T5-large with standard fine-
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tuning can be improved to 80% after being fine-
tuned with CoT data. As for TAPEX-Acc metric, a
similar trend can be observed, where the overall
improvement in accuracy is over 25%. For exam-
ple, the most significant improvement can be ob-
served in the T5-base model, which is from 53%
(traditional fine-tune) to 82% (CoT fine-tune).

5.5. Generated Data Analysis
The LLMs we used in this paper contributed to-
wards the synthesis of high-quality table-based
CoT data. However, during the generation pro-
cess, there are certain falsely generated data due
to the hallucinatory nature of LLMs. Therefore, we
conduct a comprehensive analysis of the samples
generated by LLMs. The evaluation results are
shown in Figure 7, gpt-3.5-turbo achieves an
accuracy of 85% on the training set, where the gen-
erated descriptions are verified as correct. As for
the test set of SciGen, the accuracy is over 90%,
and with less than 10% of the samples regarded
as incorrect. Regarding the table-to-text genera-
tion task, both the generated reasoning and de-
scriptions reveal high-quality coherence and con-
sistency given the input table.

6. Conclusion

In this paper, we introduce a two-stage distillation
framework that distills table-based CoT data from
LLMs. Our experiments illustrate that this method
is able to effectively transfer table reasoning abil-
ities to smaller models in the scientific table-to-
text generation task. The performance improve-
ment can even outperform certain teacher LLMs
(e.g., gpt-3.5-turbo). Our proposed method
achieves comprehensive superiority in this spe-
cific task while requiring less data and smaller
models.
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