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Abstract
We investigate the roles that efficiency and effectiveness play in speakers’ repetition of shared word sequences, or
constructions, in task-oriented dialogue. We find that repeating constructions has negative effects on information rate
and positive effects on rate of delivery, that information rate managing strategies are predictive of task success,
and that this varies by the communicative function of the constructions being repeated. More effective dialogue
is characterised by greater levels of shared construction usage and more efficient task-related repetition; while
task-agnostic repetition can seem redundant, it can serve important efficiency and effectiveness functions. Our
results provide a nuanced picture of the importance of repetition and of developing a shared lexicon for both efficiency
and effectiveness in task-oriented dialogue.
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1. Introduction

Effective interaction in task oriented dialogue
requires complex, efficient strategies of coordina-
tion. Coordination can occur through alignment
of speaker behaviour, from lexical and structural
choice to gaze, gesture, and body posture (Bren-
nan and Clark, 1996; Reitter et al., 2006; Holler
and Wilkin, 2011; Rasenberg et al., 2020). Coordi-
nation of behaviour, whether strategic or automatic,
can indicate conceptual alignment of speakers’
mental models (Garrod and Pickering, 2007;
Pickering and Garrod, 2004a) and interpersonal
synergy between speakers (Fusaroli et al., 2014).
A key aspect of coordination is speakers’ tendency
to repeat one another’s linguistic forms. For
example, F: is it not a couple of inches G: aye
it’s a couple of inches across... The coordination
and repetition of shared linguistic forms allows
speakers to collaboratively establish and maintain
common ground (Pickering and Garrod, 2004b),
to develop particular partner-specific language,
and of that, reuse effective formulations (Brennan
and Clark, 1996), and to develop a mutual under-
standing of their shared goals, ultimately leading to
more effective communication (Wilkes-Gibbs and
Clark, 1992; Ward and Litman, 2007; Friedberg
et al., 2012; Reitter and Moore, 2014; Gallotti et al.,
2017; Sinclair et al., 2021; Sinclair and Schneider,
2021; Norman et al., 2022).

Repetition is also strongly related to communica-
tive efficiency. For speakers, it limits the effort re-
quired to retrieve or construct alternative realisa-
tions (e.g., Coupland, 1998; Sprenger et al., 2006),
and for comprehenders, repeated sequences are

more rapid to process (e.g., Bigand et al., 2005).
Overall, from an information processing point of
view, by exploiting the familiarity of their shared lex-
icon, speakers efficiently manage the information
density of the language they produce (Giulianelli
et al., 2022), and thus reduce their joint produc-
tion and comprehension effort (Siyanova-Chanturia
et al., 2017). There is a limit to how much infor-
mation speakers can transmit at once before both
production and comprehension costs become too
high for the communication to remain robust and
error-free (Shannon, 1948). Exploiting repetitions
to spread information evenly, and avoid peaks in
information rate can therefore be a rational strat-
egy for marrying effectiveness and efficiency, and
achieve successful communication (Genzel and
Charniak, 2002; Xu and Reitter, 2017).

In the present study, we focus our attention on
the relationship between efficient communication
strategies and effective communication, using a
navigational task-based dialogue activity (Ander-
son et al., 1991) as a case study. We take the
repetition of shared constructions—multi-word con-
figurations of structures and lexemes in the sense
of Construction grammar (Tomasello, 2003; Gold-
berg, 2006)—as our main unit of analysis. We
investigate to what extent the repetition of construc-
tions shared between speakers contributes to effi-
ciency effects, in terms of information density and
delivery rate, and further explore whether these
effects contribute to task effectiveness.

We find that repeating constructions in task-
oriented dialogue contributes to information pro-
cessing efficiency. We further find that construc-
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tion repetition contributes to increased rate of de-
livery, supporting the case for a trade-off between
redundancy—in terms of repetition, delivery rate,
and surprisal—and duration. We find that success-
ful dialogues are characterised by a greater level
of shared construction usage, highlighting the im-
portant role of shared routines to task effective-
ness (Pickering and Garrod, 2005; Norman et al.,
2022), and that information mitigating strategies
are important to effectiveness. Overall, our findings
provide a new, nuanced picture of the importance
of developing a shared lexicon to efficiency and
effectiveness in task-oriented dialogue.

2. Background & Related Work

2.1. Repetition and Coordination in
Dialogue

Repetitions are a natural facet of interactive
language. They can be a key element in first and
second language acquisition (Sinclair et al., 2021),
used to minimise the consequences of false-accept
errors in dialogue conversations (Giangola, 2022)
as well as for clarification requests (Schlangen,
2004), and can serve to reduce the information den-
sity of the language begin produced, to minimise
producer and comprehender effort (Giulianelli et al.,
2022). Repetition can contribute to, or indicate
speaker coordination or alignment, whereby speak-
ers adapt and adjust their language to achieve
better mutual understanding (Wilkes-Gibbs and
Clark, 1992; Gallotti et al., 2017), establishing
routines which can increase communicative
effectiveness (Pickering and Garrod, 2005). In
dialogue, repetition has been demonstrated to
correlate with student learning (Ward and Litman,
2007; Sinclair et al., 2018, 2021), peer-learner
collaboration quality (Sinclair and Schneider,
2021), and task success (Friedberg et al., 2012;
Reitter and Moore, 2014; Norman et al., 2022). To
our knowledge, the relationship between repetition,
information density, and success in task-oriented
dialogue remains an open question.

2.2. Processing Effort and Information
Rate in Dialogue

Processing effort is a phycholinguistic construct
developed as a measure of the expenditure of
information-processing resources required for the
perception and cognition of linguistic signals. It is
typically measured in terms of neural responses
or other forms of behaviour such as reading times
and fixation duration. According to expectation-
based psycholinguistic theories of language pro-
cessing (Hale, 2001; Levy, 2008), processing cost
is strongly related to the predictability of upcoming

linguistic signals given their context of occurrence.
An empirically successful operationalisation of pre-
dictability relies on the information-theoretic notion
of information content or surprisal (Shannon, 1948).
The surprisal of a signal is its negative log probabil-
ity, and thus a measure of its unexpectedness. In
recent years, surprisal estimates from autoregres-
sive neural language models have been shown to
be effective when predicting human comprehen-
sion behaviour in terms of reading times, gaze
fixation, and neural responses (Monsalve et al.,
2012; Smith and Levy, 2013; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020; Oh and Schuler,
2023; Michaelov et al., 2023). We thus make use
of surprisal as a measure of processing effort.

Surprisal in dialogue has been found to converge
between speakers (Xu and Reitter, 2018), and to
depend on contextual unit and speaker role (Giu-
lianelli et al., 2021), and speakers have been found
to coordinate how information dense their language
is (Xu and Reitter, 2017). Information rate can be
managed making use of multiple production strate-
gies: speakers have been found to choose words
which are less informative when their context can
predict them (Brothers and Kuperberg, 2021), and
speakers’ rate of delivery of highly informative con-
tent is lower (Pimentel et al., 2021).

2.3. Task Effectiveness in Dialogue
Effective task-oriented dialogues must balance effi-
ciency with informativeness. Aylett and Turk (2004)
argue that for robust, clear, and easy to interpret
communication, there is an inverse relationship be-
tween redundancy and duration, hypothesising that
robustness is improved by spreading information
more evenly. Asynchrony between speakers’ fluctu-
ations in information rate—their taking turns to con-
tribute highly information dense content—has been
found predictive of task success (Xu and Reitter,
2017). Alignment—either automatic (Pickering and
Garrod, 2004a) or strategic (Garrod and Pickering,
2007)—measured via between-speaker overlap
and repetition, has been found to occur to a higher
degree in more successful dialogues (Wilkes-Gibbs
and Clark, 1992; Gallotti et al., 2017; Reitter and
Moore, 2014; Sinclair and Schneider, 2021), specif-
ically when this repetition pertains to the task (Ward
and Litman, 2007; Friedberg et al., 2012; Norman
et al., 2022).

3. Data

3.1. Corpus Choice
As a corpus of task-oriented dialogue, we select the
HCRC Map Task Corpus1 (Anderson et al., 1991).

1https://groups.inf.ed.ac.uk/maptask/

https://groups.inf.ed.ac.uk/maptask/
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Mean±Std Median Min Max
Dialogue

Length (u) 211±107 183 42 686
Length (w) 1201±648 1014 266 4515
Duration (s) 408±186 363 156 1140

Utterance
Length (w) 5±6 3 1 106
Duration (s) 1.52±1.96 0.82 0.05 44.68

Task Success
PATHDEV 71±49 56 4 227

Table 1: Map Task statistics reported in utterances
(u), words (w), and seconds (s). PATHDEV is the
path deviation score: the distance between gold
route and attempt.

We study this corpus in detail, with the aim of dis-
covering whether speaker use of construction rep-
etition is an efficient and effective communication
strategy. The Map Task Corpus is comprised of
128 task-oriented dialogues, each conducted by
two participants: an instruction giver, and an in-
struction follower. Participants were given similar,
but non-identical, maps populated with imaginary
landmarks.2 The instruction giver was provided
with a map that contained a start point, pre-defined
route, and finish point, while the instruction follower
was provided only the start point. The task required
the follower to reproduce the route on their own
map, as dictated by the giver. Conversations were
recorded and transcribed.

3.2. Corpus Measures of Effectiveness
and Efficiency

Two key aspects of task-oriented dialogue are
whether it is effective, i.e., whether it leads to task
success, and whether the linguistic strategies used
by speakers to complete the task are efficient.

Effectiveness: Task Success The goal of the
Map Task was for the instruction giver to provide
instructions sufficient for the instruction follower
to replicate a specific path traversing their shared
map without having seen it. The performance of the
task was measured in terms of the deviation of the
route that the follower drew on their map from the
pre-defined route on the giver’s map (PATHDEV).
A larger value of PATHDEV indicates a poorer task
performance. Effectiveness, or task success, is
therefore measured as the inverse of PATHDEV.

Time Efficiency: Rate of Delivery Efficiency
can be measured as a function of the speed at

2The mismatch between two maps may be in terms
of landmarks’ existence, number of appearance, name,
or location.

which speakers communicate their information, or
speech rate in tokens per second (Giulianelli et al.,
2022; Reitter et al., 2006), or as the inverse, i.e.,
average token duration (Pimentel et al., 2021). We
choose the latter, making use of token duration, or
rate of delivery (in terms of seconds per token) as
a measure of time efficiency. We measure average
token duration across different spans of the text,
at the level of the entire dialogue, individual
utterances, and constructions (Sections 5 and 6).

3.3. Extracting Repeated Constructions
The main focus of this study is on repeated con-
structions, which are multi-word sequences re-
peated within a dialogue.

Mean±Std Median Max
Constr. Length (w) 3.43±0.79 3 9
Constr. Frequency 4.84±2.71 4 19
Constr. Rep. Dist. (w) 892±1179 424 8940
Constr. Incidence 102±72 80 282

— Landmark 22±19 17 70
— Direction 45±33 35 143
— Generic 37±29 27 117

Utterance Length (w) 5.66±6.16 4 68

Table 2: Construction (Constr.) statistics. The re-
ported statistics are for the analysis split, described
in Section 4.2. Length and repetition distance (Rep.
Dist.) measured in words (w).

To extract repeated constructions from the Map
Task Corpus, we use dialign, a framework for se-
quential pattern mining (Dubuisson Duplessis et al.,
2017).3 We then apply several filtering conditions to
the extracted lexicons of constructions. Specifically,
we discard repeated constructions with fewer than
three tokens, or those repeated fewer than three
times. Repeated constructions consisting solely
of punctuation or of more than half filled pauses
are also excluded.4 The remaining constructions
are what we consider as constructions. Relevant
construction statistics can be found in Table 2.

Dialogue specificity of constructions We
measure dialogue specificity using Pointwise Mu-
tual Information (PMI). PMI measures how much
more likely an construction is to occur in a specific
dialogue than it is to occur in general. In other
words, it measures the specificity of a construction
to the dialogue. PMI is computed as follows:

PMI(c, d) = log2
P (c|d)
P (c)

(1)

3https://github.com/GuillaumeDD/dialign#framework
4The full list of filled pauses can be found in Ap-

pendix B.

https://github.com/GuillaumeDD/dialign#framework
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A higher PMI for a construction indicates that it
is more strongly associated with, or specific to, the
dialogue due to its increased frequency of occur-
rence within the dialogue compared to its general
usage. Conversely, a PMI lower than 1 indicates
that the construction is not specific to the dialogue,
and can be seen as dialogue-independent.

Communicative functions of constructions
We distinguish constructions by their communica-
tive function, differentiating between two types of
task-specific construction: those relating to the
landmarks within the task (e.g., the gold mine, the
extinct volcano), and those relating to directions be-
ing used by participants to complete the task (e.g.,
to the left, straight up to).

The remaining constructions we consider to
be generic. These are typically non-referential
constructions (since they relate to other, less topic-
or task-determined functions) such as discourse
organisers or stance constructions (Biber et al.,
2004; Biber and Barbieri, 2007) (e.g., now if you,
what I mean, oh right okay) The vocabulary lists
constructed to perform this functional categori-
sation can be found in Appendix F.1.3. Table 3
contains examples.

4. Estimating Information Processing
Efficiency

We use surprisal estimates as approximate mea-
surements of the cost necessary to process words
and utterances (Levy, 2008; Smith and Levy, 2013;
Goodkind and Bicknell, 2018). We calculate sur-
prisal using an autoregressive neural language
model equipped with a simple utterance-level, and
dialogue-specific, adaptation mechanism (van Schi-
jndel and Linzen, 2018; Giulianelli et al., 2022).

4.1. Measures of Surprisal
The surprisal of a word wi is the negative logarithm
of the word probability given the utterance so far
u:wi and the local dialogue context l:

S(wi|u:wi , l) = − log2 P (wi|u:wi , l) (2)

Following Giulianelli et al. (2022), we determine the
size of the local dialogue context l by computing
the average word-level speech rate of the corpus
and multiplying it by 15 seconds.5 The resulting
context size for Map Task is 65 words.

Utterance surprisal To compute the surprisal
of an entire utterance, we average its per-word

515 seconds are the the locus of local repetition effects
identified in previous work (Reitter et al., 2006).

Landmarks Directions Generic
the rope bridge the left-hand side do you have
the white mountain about an inch there’s a
the diamond mine of the page I’ve got a
the gold mine to the right have you got
the trout farm the top of I’ve got
the slate mountain side of the have you got a
of the mountain about three inches do you have a
the dead tree to the left you’re at
of the stile the top of the until you’re
the carved stones to your left I don’t

Table 3: Examples of the 10 most frequent con-
structions for each communicative function.

surprisal values:6

S(u; l) =
1

|u|
∑
wi∈u

S(wi|u:wi
, l) (3)

Construction surprisal We apply the same av-
eraging strategy to compute the surprisal of a con-
struction:

S(c;u:c, l) =
1

|c|
∑
wi∈c

S(wi|u:c, l) (4)

Facilitating effect To quantify the change in sur-
prisal contributed by a construction to its containing
utterance, we calculate its facilitating effect, i.e.,
the logarithm of the ratio between construction sur-
prisal and the surprisal of the utterance context
(Giulianelli et al., 2022):

FE (c;u, l) = log2

1
|u|−|c|

∑
c ̸∋wj∈u S(wj |u:wi , l)

1
|c|

∑
wi∈c S(wi|u:c, l)

(5)
Facilitating effect is positive when the surprisal of a
construction is lower than the surprisal of its utter-
ance context, it is set to zero when they are equal,
and it is negative otherwise.

4.2. Language Model
To estimate surprisal (Eq. 2), we use GPT-2 (Rad-
ford et al., 2019), a Transformer-based autoregres-
sive language model. Its estimates have been
shown to be predictive of comprehension behaviour
(e.g., Wilcox et al., 2020; Shain et al., 2024). To
obtain estimates for the full Map Task corpus, we
iteratively fine-tune GPT-2 on an 80% split of the
data, then estimate surprisal over the remaining
20% split, and repeat this for 5 distinct splits. We

6The best aggregation depends on the type of compre-
hension behaviour surprisal is intended to predict (see,
e.g., Meister et al., 2021). We use averaging because it
captures a notion of information rate, rather than cumula-
tive cost, and is less affected by utterance length (Keller,
2004).
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thus collect surprisal estimates for the full corpus
while ensuring that the model has not been fine-
tuned on the target dialogues. 7 Transcribed spo-
ken dialogue only makes up a very small part of
the GPT-2 pre-training corpus, so fine-tuning is a
first necessary domain adaptation step (as shown
by the large decrease in perplexity after fine-tuning;
see Appendix C).

We equip the language model with a simple adap-
tation mechanism that allows the model to contin-
ually learn from exposure to utterances within a
given dialogue. After each utterance is processed,
we perform a back-propagation step using a cross-
entropy loss to update the parameters of the lan-
guage model. This mechanism makes the model
more cognitively plausible, and yields surprisal esti-
mates that are more in line with human expectations
(van Schijndel and Linzen, 2018). To determine an
appropriate learning rate for the adaptation mecha-
nism, we follow Giulianelli et al. (2022) and select
the learning rate which yields an optimal combina-
tion of in-distribution and out-of-distribution gener-
alisation (Hupkes et al., 2022) in a battery of cross-
validation tests. Further details in Appendix D.

5. Efficiency of Repetition

We explore efficiency through examining the rela-
tionship between construction repetition, informa-
tion density, and rate of delivery. For our statistical
analyses, we employ t-tests and linear mixed-effect
models. In the mixed effect models, we always in-
clude construction length and repetition index within
the current turn as baseline predictors (baseline
model), as well as dialogue and speaker as ran-
dom effects to capture group-level variability.8

5.1. Construction Repetition Facilitates
Processing in Task-Oriented
Dialogue

We analyse properties of construction surprisal and
facilitating effect (FE ) in task-oriented dialogue,
studying the effects of construction repetition on
utterance levels of information rate.

Construction use reduces information rate.
We compare the surprisal profiles of construction
and non-construction sequences. Our first hypoth-
esis is that the surprisal of constructions will be
lower. This would confirm, also from an information-
theoretic angle, that constructions have a process-
ing advantage (Conklin and Schmitt, 2012; Car-
rol and Conklin, 2020). Our second hypothesis

7More details on fine-tuning in Appendix C.
8Full model output for the results in this section can

be found in Appendices F.1 (Section 5.1), F.1.3 (Sec-
tion 5.2), and F.2 (Section 5.3).

is that the facilitating effect of constructions will
be positive. This would indicate that they have a
mitigating effect on utterance surprisal (Giulianelli
et al., 2022). Both hypotheses are confirmed: con-
structions have 39% lower surprisal (t = −35.943,
p < 0.05, 95% CI = [−1.724:−1.596]), and approx-
imately 6 times higher FE than non-construction
word sequences (t = 17.917, p < 0.05, 95% CI =
[0.672:0.784]).9 Taken together, these results con-
stitute new empirical evidence that construction use
reduces information rate in task-oriented dialogue.

Construction repetition has facilitating ef-
fects. We then analyse construction repetitions,
hypothesising that they have higher facilitating
effect than first construction mentions. We find
the FE of construction repetitions is 57% higher
than that of first mentions (t = −19.796, p < 0.05,
95% CI = [−0.415 : −0.367]). These strong
utterance surprisal reduction effects suggest that
repetition substantially contributes to making
interactions more cost-efficient.

Facilitating effects of construction repetition
are cumulative and decay. Given prior findings
for open-domain dialogue, we anticipate two further
key traits of the FE associated with constructions:
that the facilitating effects will decay as the distance
between subsequent mentions increases and ac-
cumulate over subsequent repetitions (Giulianelli
et al., 2022). We confirm empirically that these
trends hold also in task-oriented dialogues. FE is
lower as the distance between the current repetition
and its previous mention increases (β = −0.0.149,
p < 0.05, 95% CI = [−0.160:−0.138]), and higher
as the number of mentions of a construction in-
creases (β = 0.161, p < 0.05, 95% CI = [0.130 :
0.192]). Including these two predictors results in
improved model fit over the baseline model. These
results indicate a clear relationship between prox-
imity and cumulativity of repetitions, and enhanced
cost-efficiency.

5.2. A Construction’s Communicative
Function Affects Repetition
Efficiency

We now group constructions according to their
communicative function, distinguishing between
landmarks, directions, and generic constructions.
rere 1 shows construction FE by communicative
function (see Section 3.3 and Table 3 for example
constructions).

Task-related repetition shows higher facilitating
effect. Our main expectation is that landmarks

9The method to extract non-construction sequences
can be found in Appendix E.
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Figure 1: FE by communicative function.

and directions will exhibit higher facilitating effect
in line with trends observed for referential construc-
tions in conversational settings (Giulianelli et al.,
2022). Our analysis confirms this to be the case:
the FE of repeated landmarks is significantly higher
than that of the other two construction types, and
the FE of directions is higher than that of generic
constructions (landmarks : β = 0.634, p < 0.05,
95% CI = [0.576 : 0.691] ; directions : β = 0.195,
p < 0.05, 95% CI = [0.148 :0.242]).10 We also ob-
serve improved model fit when including these fac-
tors. Our finding of stronger FE in landmarks and
directions gives one possible, information-theoretic,
explanation for the importance of repeating task-
related routines to collaboration as shown in prior
work (Ward and Litman, 2007; Friedberg et al.,
2012; Norman et al., 2022).

5.3. Repetition and Rate of Delivery
Another dimension of efficiency that interacts with
information rate and repetition is the rate of deliv-
ery. We expect repeated constructions to have a
higher speed of delivery, and that more surprising
utterances and constructions will be delivered more
slowly (Aylett and Turk, 2004; Pimentel et al., 2021).
We define our normalised measure of duration as
durations

tokens
, where s (for ‘sequence’) is either an ut-

terance or a construction. To identify factors influ-
encing utterance and construction duration, we fit
linear mixed effect models with duration as a re-
sponse variable, and always include construction
length, average per-word character length and av-
erage word frequency as baseline predictors, as
well as dialogue and speaker as random effects.11

The more redundant the repetition, the higher
the speed of delivery. We find that the dura-

10These linear mixed effect models include landmarks
and directions as categorical fixed effects, with generic
included in the intercept.

11We obtain word frequencies extracted from a corpus
of subtitles by Brysbaert et al. (2012). More details and
full results in Appendix F.2.

Figure 2: Duration of constructions decreases with
subsequent repetitions

tion of constructions is shorter than that of non-
constructions (t = −24.869, p < 0.05, 95% CI =
[−0.048 : −0.043]) and that repetitions take less
time than first mentions (t = −9.517, p < 0.05,
95% CI = [−0.016 : −0.012]). For repetitions,
we observe that duration further decreases with
the number of repetitions (β = −0.061, p < 0.05,
95% CI = [−0.073 :−0.049]) and slightly decays
with a repetition’s distance from the previous men-
tion (β = 0.012, p < 0.05, 95% CI = [0.008:0.016]).
We observe clear differences between construc-
tion communicative function: landmarks and di-
rections take longer to produce than generic con-
structions (Landmarks : β = 0.360, p < 0.05,
95% CI = [0.328 : 0.391], Directions : β = 0.410,
p < 0.05, 95% CI = [0.391 : 0.429]. Overall, these
results provide further evidence that redundant in-
formation is delivered more rapidly (Aylett and Turk,
2004). However, the slower rate of task-related rep-
etitions suggests that expressions whose function
is essential to task completion may require addi-
tional emphasis for effective dialogue.

Surprisal duration trade-off coexists with ex-
tended Facilitating Effect. Further evidence for
the relationship between redundancy and duration
comes from surprisal theory (Hale, 2001; Levy,
2008). We expect to find a surprisal-duration trade-
off, as found by Pimentel et al. (2021): whereby in
delivering unexpected linguistic units more slowly,
speakers spread information more evenly over time.
We indeed find that higher construction surprisal
corresponds to longer duration, and thus lower
speed of delivery (β = 0.045, p < 0.05, 95% CI =
[0.037 : 0.054]). We also find that higher FE cor-
responds to longer duration (β = 0.021, p < 0.05,
95% CI = [0.011 : 0.031]). Since FE correlates
inversely with surprisal (r = −0.484) we might have
expected a negative effect of FE on duration. In-
stead, the observed moderate positive effect can be
interpreted as a strategy to stretch FE over longer
time spans, and it may coincide with emphasis
points. The fact that FE and surprisal are indepen-
dently predictive of duration further suggests that
speakers may use two information rate mitigation
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strategies: distributing information evenly over their
production, and introducing short intervals of fur-
ther reduced information load (via extending the
facilitating effects with lower delivery rate).

6. Analysing Effectiveness: Efficient
Strategies for Task Success

We now explore the efficiency effects found in Sec-
tion 5 with respect to their effectiveness in task-
oriented dialogue. We define task success as
the normalised inverse of the path deviation score
pathdev (see Section 3.2). This will be the depen-
dent variable in our analyses. As predictors of task
success, we consider factors capturing different
aspects of efficient language use: surface-level
patterns of repetition, information rate, and dura-
tion.

Construction usage and repetition: we include
construction usage proportion (measured as the
share of dialogue tokens belonging to construc-
tions), the number of unique constructions, the aver-
age construction length, the construction frequency,
and the distance between repeated constructions
as predictors. These factors capture efficiency in
terms of raw amounts of construction usage as well
as in terms of patterns of repetition (e.g., singling
out local repetitions). We expect task success to be
predicted by such surface-level patterns of efficient
language use.

Information rate: our information-theoretic pre-
dictors are facilitating effect, surprisal (average over
constructions and over utterances), variance in sur-
prisal (over the whole dialogue as well as within
utterances), as well as the slope of surprisal and
facilitating effect over the course of a dialogue. On
the one hand, higher facilitating effect and lower
surprisal correspond to lower processing effort, and
can thus be expected to predict success. The same
reasoning holds for surprisal and facilitating effect
slopes, which capture trajectories of information
rate over the course of dialogues. At the same time,
excessively low information rates may be a signa-
ture of uninformative interactions. We thus expect
to observe strategies that trade off efficiency and
informativeness to be predictive of success. Our
predictors also include surprisal variance, which
is an estimate of global (when measured over the
dialogue) and local (within the utterance) uniformity
of information. Under the uniform information den-
sity hypothesis (UID), which postulates information
transmission is optimal when abrupt changes in in-
formation are avoided (Genzel and Charniak, 2002;
Levy and Jaeger, 2007), we would expect dialogues
with higher uniformity to be more successful.

Duration: we consider dialogue length as mea-
sured by total dialogue tokens as well as total dia-
logue duration in seconds. We expect longer dia-

logues may be more successful as this can indicate
more information transmitted and a greater level of
detail in instruction giving and following utterances.

With the factors presented above included as
fixed effects, we fit a linear model that predicts
task success. For each model, we perform itera-
tive step-wise removal of factors with the lowest
contribution until only factors significantly predic-
tive of task success remain.12 In our first model,
which does not distinguish between self-repetitions
and repetitions of shared constructions, nor be-
tween constructions with different communicative
functions or uttered by dialogue participants with
different speaker roles, only the total number of
tokens is identified as a significant predictor of task
success. In the next sections, we consider the
predictors described above split by communicative
function (Section 6.1), whether constructions are
shared or unshared (Section 6.2), and speaker role
(Section 6.3).

6.1. Communicative Function
We split factors that relate to construction usage
and repetition by a construction’s communicative
function: landmark, generic, or direction. We
expect task-related repetition (i.e., landmark and
generic) to be important to success (Norman et al.,
2022). We find that effective dialogues are char-
acterised by speakers using less surprising con-
structions referring to landmarks (β = −1.442,
p < 0.05, 95% CI = [−2.267 : −0.616]) and re-
peating direction constructions with increasing fa-
cilitating effect (FE slope: β = 1.522, p < 0.05,
95% CI = [0.021 : 3.022]). These information
rate management strategies for task-related con-
structions indicate that processing efficiency is an
important predictor for task success. Finally, ef-
fective generic constructions are more surprising
(β = 1.557, p < 0.05, 95% CI = [0.305:2.809]) and
have higher facilitating effect (β = 1.679, p < 0.05,
95% CI = [0.366:2.992]), indicating that while also
facilitating, these task-agnostic constructions can
be effective and informative.

6.2. Shared vs. Unshared
We then fit separate models for shared (i.e.,
repeated by both speakers) vs. unshared (re-
peated by a single speaker) constructions. On
the one hand, shared constructions can attest to
the development of shared routines, which allow
speakers to establish a common ground necessary
for attaining their joint goals. On the other hand,
self-repetitions are related to processing efficiency
in language production, as a recently used
construction can be more readily accessible for

12Model details can be found in Appendix G.
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the speaker. We thus expect different efficient
strategies to be predictive of task success for
shared vs. unshared constructions.

We observe for both models that within-utterance
uniformity is not a characteristic of successful dia-
logue; more successful dialogues are characterised
by higher surprisal variance (Unshared: β = 0.732,
p < 0.05, 95% CI = [0.032 : 1.431], Shared:
β = 1.626, p < 0.05, 95% CI = [0.264 : 2.988]).
This result contributes to the body of evidence (Giu-
lianelli and Fernández, 2021; Giulianelli et al., 2022)
indicating that strategies of information transmis-
sion in dialogue are not as rational, or as optimal,
as UID would predict.

Unshared We find that unshared landmark con-
structions in more effective dialogues are less sur-
prising (β = −1.080, p < 0.05, 95% CI = [−1.873:
−0.288]), longer (β = 1.412, p < 0.05, 95% CI =
[0.700 : 2.125]), and less frequently repeated (β =
−1.382, p < 0.05, 95% CI = [−2.50 : −0.260]).
Longer, less surprising references to landmarks
may be easier to resolve, and thus less likely to
need to be repeated. Furthermore, using common
constructions for giving directions is more effec-
tive than using highly dialogue-specific ones (PMI:
β = −0.708, p < 0.05, 95% CI = [−1.273:−0.143]),
more so when their use becomes more facilitat-
ing (FE slope: β = 2.117, p < 0.05, 95% CI =
[0.995 : 3.239]). We take this to indicate that ef-
fective unshared directions should not diverge too
much from common vocabulary, likely already famil-
iar to and thus clear to both speakers. Finally, more
successful generic constructions become more sur-
prising over time (S slope, β = 1.440, p < 0.05,
95% CI = [0.27 : 2.603]), which suggests that the
information rate of task-agnostic repetitions is less
important to effectiveness.

Shared We find the proportion of shared con-
structions within the dialogue is an important pre-
dictor of effectiveness (β = 2.575, p < 0.05,
95% CI = [0.978 : 4.172]). In other words, in line
with our predictions, the development and reuse of
shared routines is a characteristic of successful dia-
logue. Effective landmark use consists of speakers
sharing a smaller set of constructions (β = −1.945,
p < 0.05, 95% CI = [−3.179 : −0.710]) that are
shorter (β = −1.199, p < 0.05, 95% CI = [−2.366:
−0.031]) and less surprising (β = −6.182, p < 0.05,
95% CI = [−9.106:−3.258]). We also observe that
lower FE of landmark constructions corresponds
to more effective dialogues (β = −2.359, p < 0.05,
95% CI = [−4.340 :−0.377])—which could be to
do with both speakers making short confirmatory
repetitions (when a construction fills the whole ut-
terance, its FE is equal to 0; see Section 6.3 for an
example)—and so does a positive surprisal slope

(β = 2.277, p < 0.05, 95% CI = [0.207:4.347]), indi-
cating an increasing trajectory of information rate
over time. Furthermore, we find effective direction
constructions to be longer (β = 3.089, p < 0.05,
95% CI = [0.309 : 5.869]), fewer (inventory size:
β = −2.231, p < 0.05, 95% CI = [−4.173:−0.289]),
and not repeated locally (distance between repe-
titions: β = 2.515, p < 0.05, 95% CI = [0.942 :
4.087]). Unlike unshared direction constructions,
more surprising directions are effective if they are
repeated by both speakers (β = 2.129, p < 0.05,
95% CI = [0.582 : 3.677]). Finally, shared generic
constructions are effective when frequently re-used
(β = 1.982, p < 0.05, 95% CI = [0.096:3.868]), re-
peated over longer distances (β = 2.286, p < 0.05,
95% CI = [0.467 : 4.104]), more surprising with
re-use (S slope: β = 1.876, p < 0.05, 95% CI =
[0.483:3.269]), and when they have lower FE (β =
−1.327, p < 0.05, 95% CI = [−2.524 : −0.130]).
While these properties do not correspond to pro-
cessing efficiency, they may serve the purpose of
allowing speakers to establish rapport (Cappella,
1990) and contributing to common ground, which
our measures do not directly capture.

6.3. Speaker Role
Finally, we investigate effective construction usage
patterns specific to speaker role. Followers repeat-
ing fewer unique landmarks (β = −1.230, p < 0.05,
95% CI = [−2.152 : −0.308]) that are not highly
specific or unique to that particular dialogue (PMI:
β = −1.622, p < 0.05, 95% CI = [−2.517:−0.727])
are characteristic of successful dialogues. We inter-
pret this—combined with instruction givers repeat-
ing more unique landmarks (β = 1.015, p < 0.05,
95% CI = [0.173 : 1.857])—as indicating the im-
portance of the giver describing landmarks clearly,
such that the follower will not repeat them. We
also observe that successful landmark use by the
giver shows increasing facilitating effects over time
(β = 2.236, p < 0.05, 95% CI = [0.647 : 3.826]),
indicating better integration of those constructions
into the common ground (even though the giver
may need to repeat themselves, this can lead to
more successful grounded communication). Fre-
quent direction repetition by followers is effective
(β = 2.376, p < 0.05, 95% CI = [0.372:4.381]); the
opposite is true for instruction givers (β = −0.920,
p < 0.05, 95% CI = [−1.820:−0.020]), for whom re-
peating the same direction multiple times indicates
unresolved misunderstanding. We also find that
followers in more successful dialogues repeat direc-
tion constructions with lower surprisal (β = −1.909,
p < 0.05, 95% CI = [−3.595 :−0.224]), and lower
FE (β = −2.660, p < 0.05, 95% CI = [−4.337 :
−0.983]). This is a combination particularly com-
mon for utterances consisting only of a repeated
construction, often indicating a clarification or confir-
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matory repetition such as G: er there’s an avalanche
just slightly to the right F: to the right. This result
thus highlights the importance of clarification re-
quests and confirmatory repetitions to task success.
Finally, local repetition of generic constructions
(β = −1.247, p < 0.05, 95% CI = [−2.311:−0.182])
that have a facilitating effect (β = 1.774, p < 0.05,
95% CI = [0.594 : 2.953]) is a successful strat-
egy for followers. For instruction givers, effective
generic construction use consists of re-using longer
(β = 1.757, p < 0.05, 95% CI = [0.207 : 3.307]),
more surprising constructions (β = 1.810, p < 0.05,
95% CI = [0.575 : 3.045]) that increase in facilitat-
ing effect (β = 7.336, p < 0.05, 95% CI = [2.477 :
12.194]). This can be viewed as a strategy that
trades off efficiency and effectiveness: including
more information, at a higher information rate, while
controlling for processing cost.

7. Discussion & Conclusion

Repeating information during linguistic interactions
may seem redundant and, as such, not conducive
to efficient or effective communication. Our
in-depth analysis of English dialogues in the
Map Task navigational game shows, instead, that
repetition of lexicalised constructions contributes to
efficiency at multiple levels, and that this efficient
hidden side of repetition serves a key function in
task-effective dialogue.

Estimates of utterance and construction surprisal,
which we take as proxies for processing cost, show
that construction repetition facilitates information
processing in task-oriented dialogue: surprisal is
lowered, and facilitating effect increased by: (i) con-
struction use, (ii) construction repetition, (iii) repe-
tition frequency, and (iv) distance from the previ-
ous mention. Our results contribute new evidence,
complementary to previous work in open-domain
dialogue (Giulianelli et al., 2022), that speakers
use efficient information-transmission strategies
in dialogue, even when these are not the most
optimal within the noisy channel model of com-
munication. We find speakers in Map Task dis-
tribute information evenly over time, as predicted
by information-theoretic and psycholinguistic ac-
counts of language production (Genzel and Char-
niak, 2002; Levy and Jaeger, 2007), but this uni-
form distribution of information does not positively
impact task effectiveness. By repeating construc-
tions with high facilitating effect, speakers produce
short bursts of non-uniform, reduced information
load. This points to uniformity being a base-level
rational strategy of use of the communication chan-
nel, on top of which speakers show a tendency for
cost reduction—a behaviour which seems to be
specific to dialogic interactions (Giulianelli and Fer-

nández, 2021; Giulianelli et al., 2021, 2022). When
considering the temporal dimension of efficiency,
we find repeated constructions have a higher rate
of delivery and that higher rate of delivery corre-
sponds to lower surprisal. These results provide
new support for the existence of a trade-off between
duration and redundancy—which results in more
uniform information distribution—both in terms of
repetitions (Aylett and Turk, 2004) and surprisal (Pi-
mentel et al., 2021). However, the rate of delivery
of constructions does not appear to directly influ-
ence effectiveness. Beyond uniformity, we do find
that the information profile of constructions is an
important factor in predicting successful dialogues:
efficient task-specific routines and more information
dense generic ones are most effective. We view
this as speakers combining the efficiency and effec-
tiveness of routines to help them achieve success-
ful communication (Garrod and Anderson, 1987;
Brennan and Clark, 1996; Pickering and Garrod,
2005).

We find that higher levels of shared construction
usage is predictive of successful dialogues. The
re-use of shared constructions allows speakers to
create short routines (Pickering and Garrod, 2005),
induces alignment (Garrod and Pickering, 2009), re-
duces information load (Siyanova-Chanturia et al.,
2017), and critically, as we observe, leads to pre-
dictably more successful dialogues. We find the
communicative function of a construction serves
an important role, both in the construction’s infor-
mation profile and in its contribution to successful
dialogue, in line with previous findings (Sprenger
et al., 2006; Tremblay et al., 2011). While task-
related repetition is important to success, so too is
establishing shared routines that include generic
language. These may serve important dialogue
facilitating and social functions, with sharing lan-
guage being a sign of developing rapport (Cappella,
1990; Sinha and Cassell, 2015). Finally, we find
successful strategies vary by speaker role. For ex-
ample, repeating directions is an effective strategy
for the follower, but not the giver.

We suspect that while some of our findings may
be task-dependent, information rate mitigation and
shared construction usage are general communi-
cation strategies at play in dialogue. We thus look
forward to seeing these findings replicated across
a wider range of task-oriented dialogues. Overall,
our results, in line with prior work (Pickering and
Garrod, 2005; Friedberg et al., 2012; Reitter and
Moore, 2014; Sinclair et al., 2021; Norman et al.,
2022) contribute new information about the impor-
tant role of construction repetition in the efficiency
and effectiveness of task-oriented dialogue.
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Limitations

Limitations to our work include the size of the cor-
pus: replicating these results on a larger dataset
can provide more robust evidence for the effects we
report. Since we only consider a single type of dia-
logue task, the findings we report relate to specific
types of constructions, which may not generalise
across different tasks, for example, in a task where
speakers have to agree on referring expressions
to a less concrete landmark (e.g., in a real-world
map setting) the relative importance of different con-
struction functions may change. Finally, our results
are limited to English-language dialogue, it would
be very interesting to compare which properties of
successful communication generalise across lan-
guages. We hope future work will try replicating our
findings on different task-oriented dialogue settings,
in particular with respect to the differences between
task-specific vs. more generic types of repetition.
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landmark, or direction lists, we assign to a third,
generic category which are more topic indepen-
dent.

Landmarks The vocabulary for landmarks was
extracted from the data provided on landmark
names within the MapTask corpus, with stop-words
removed. This results in the following landmark vo-
cabulary: mountain, lake, mine, bridge, rope, white,
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diamond, tree, monastery, great, gold, level, slate,
disused, stile, trout, farm, telephone, old, collapsed,
saxon, barn, dead, rock, shelter, valley, fallen, pil-
lars, outlaws, hideout, field, station, kiosk, river,
carved, stones, west, well, east, ruined, rift, fall,
truck, banana, viewpoint, indian, country, bandit,
territory, stone, saloon, bar, temple, lagoon, totem,
pole, broken, gate, granite, quarry, camera, shop,
box, flight, museum, pine, rocket, warehouse, ro-
man, baths, extinct, volcano, triangle, secret, start,
crevasse, missionary, camp, lost, steps, city, hot,
wells, stony, desert, safari, highest, finish, parched,
bed, rocks, slabs, noose, attractive, cliffs, remote,
village, abandoned, pyramid, water, green, bay, cat-
tle, stockade, wall, circle.

Directions The vocabulary for directions was de-
rived through manual annotation of extracted con-
structions and contains the following: go, side, right,
left, top, down, bottom, page, move, up, edge, inch,
inches, line, centimetres, centimetre, along, across,
half, paper, south, map, middle, end, corner, cou-
ple, turn, centre, quarters, straight, round, left-hand,
above, underneath, right-hand, below, thirds, under,
diagonally, towards, halfway, approximately, follow.

Within directions, we observe that there are some
ambiguous uses of right: it can be used either as a
generic backchannel, i.e. “okay right i understand”,
or as a direction “to the right of the”. After manually
analysing all constructions containing the keyword
right, which do not already contain either a land-
mark or direction keyword (thus already sufficient
to differentiate them), we create two categories:
direction right-grams: right until you ’re, right to,
the right, its right, right at, your right, my right, your
right, to right, going right, right of
generic right-grams: right that, right okay, right
got it, right you, right i, that ’s right, right could.

A further filtering step is used to correctly re-
categorise these cases as belonging to either
generic or direction. The remaining constructions
are categorised as generic.

B. Filled pauses

We define a list of filled pauses according to the
part-of-speech tags in MapTask and Switchboard.
Following is the filled pauses vocabulary for Map-
Task : mmhmm, uh-huh, uh-uh, mm-mm, mm-
hmm, mm, erm, eh, ehm, er, um, uh, hmm, nah,
huh. Following is the filled pauses vocabulary for
Switchboard : Hm, Huh, Huh-uh, Uh, Uh-huh, Um,
Um-hum, huh, huh-uh, uh, uh-huh, um.

C. Language Model Fine-Tuning

Using the Hugging Face fine-tuning script, from
the transformers library (Wolf et al., 2020), we fine-

tune GPT-2 (Radford et al., 2019) for 10 epochs,
using an early stopping technique to save the best
performing model (based on its perplexity).

To obtain estimates for the full Map Task corpus,
we iteratively fine-tune GPT-2 on an 80% split of
the data, then estimate surprisal over the remain-
ing 20% split, and repeat this for 5 distinct splits.
We thus collect surprisal estimates for the full cor-
pus while ensuring that the model has not been
fine-tuned on the target dialogues. The pre-trained
and fine-tuned perplexity for each split subset is
recorded in Table 4.

# Number of Pre-trained Fine-tuned
Dialogues Perplexity Perplexity

Set 1 26 191.677 7.282
Set 2 26 208.669 8.874
Set 3 25 210.997 8.450
Set 4 25 202.651 7.792
Set 5 25 197.179 8.261

Table 4: Perplexity of pre-trained and fine-tuned
models on the evaluation set.

D. Language Model Adaptation

Learning rate is a critical hyperparameter for ensur-
ing the success of the continuous learning mech-
anism. An inappropriate learning rate can result
in overfitting or underfitting of the language model.
To ensure that the model is appropriately tuned,
we conduct 18-fold cross-validation tests on six dif-
ferent learning rates: 1e − 5, 1e − 4, . . ., 1. The
learning rate is evaluated in terms of the model’s
change in perplexity after adaptation relative to
its perplexity before adaptation. We compute the
adaptation and generalisation performance of each
learning rate, and select the one with (i) the high-
est adaptation performance, and (ii) the smallest
difference between adaptation and generalisation
performance. Adaptation performance refers to
the change in perplexity in the training data (the
dialogue at hand) and generalisation performance
refers to the change in perplexity in the evaluation
data (the remaining 17 dialogues). We refer to the
performance on the remaining dialogues as ‘gen-
eralisation’ even though we do not explicitly test
for, but only assume, data distribution shifts (cf.
Hupkes et al., 2022) . We believe this is a safe
assumption to make given the different dialogues
are produced from different speakers, talking about
different maps, with different landmarks and routes.

https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm_no_trainer.py
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E. Non-Construction Sequences

After constructions are extracted from an utterance,
the text that remains is made up of non-construction
sequences. These sequences can vary in length
beyond the range that we find in our constructions.
In order to make a fair comparison—in terms of
sequence length—between construction and non-
construction sequences, we employ a random n-
grams sampling method. This approach enables
us to examine the information content, facilitating
effect, and speech duration of construction and non-
construction sequences in this study. We extract all
word sequences ranging from 3 to 7 words in length
(which are thus the minimum and maximum lengths
of constructions) from the entire corpus using this
n-gram sampling approach. Of these sequences,
we exclude all those which match the construction
sequences extracted, those remaining we refer to
as non-construction sequences. We ensure the
length distribution of construction sequences and
randomly sampled non-construction sequences
match, and ensure there is an equal number of
observations for both sequence types. We are
then able to compare the attributes of construc-
tion sequences with our extracted non-construction
sequences.

F. Efficiency

F.1. Facilitating Effect
We investigate how repetition affects facilitating
effect through constructing models to predict FE
given base (length and position), cumulative, and
communicative function factors.

F.1.1. Base Model
Formula : logFE10 ~ 1 + logLen + logPositionInTurn

Mixed Linear Model Regression Results
===========================================================
Model: MixedLM Dependent Variable: logFE10
No. Observations: 11786 Method: REML
No. Groups: 252 Scale: 1.3133
Min. group size: 1 Log-Likelihood: -18452.7283
Max. group size: 305 Converged: Yes
Mean group size: 46.8

-----------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

-----------------------------------------------------------
Intercept 0.958 0.072 13.225 0.000 0.816 1.100
logLen 0.069 0.040 1.749 0.080 -0.008 0.147
logPositionInTurn 0.144 0.043 3.398 0.001 0.061 0.228
Group Var 0.059 0.008
===========================================================

F.1.2. Decay & Cumulativity
Formula : logFE10 ~ 1 + logLen + logPositionInTurn

+ logCurrentFreq + logRecencyInTokens

Mixed Linear Model Regression Results
==============================================================
Model: MixedLM Dependent Variable: logFE10
No. Observations: 11751 Method: REML
No. Groups: 252 Scale: 1.2260
Min. group size: 1 Log-Likelihood: -17993.8234
Max. group size: 305 Converged: Yes
Mean group size: 46.6

--------------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

--------------------------------------------------------------
Intercept 1.825 0.092 19.851 0.000 1.645 2.005
logLen 0.173 0.039 4.470 0.000 0.097 0.249

logPositionInTurn -0.389 0.046 -8.531 0.000 -0.478 -0.300
logCurrentFreq 0.161 0.016 10.272 0.000 0.130 0.192
logRecencyInTokens -0.149 0.006 -26.559 0.000 -0.160 -0.138
Group Var 0.049 0.007
==============================================================

F.1.3. Communicative Function
Formula : logFE10 ~ 1 + logLen + logPositionInTurn

+ logCurrentFreq + logRecencyInTokens
+ ConstructionType

Mixed Linear Model Regression Results
=========================================================================
Model: MixedLM Dependent Variable: logFE10
No. Observations: 11751 Method: REML
No. Groups: 252 Scale: 1.1793
Min. group size: 1 Log-Likelihood: -17772.0695
Max. group size: 305 Converged: Yes
Mean group size: 46.6

-------------------------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

-------------------------------------------------------------------------
Intercept 1.232 0.094 13.066 0.000 1.048 1.417
ConstructionType[T.Landmark] 0.634 0.030 21.464 0.000 0.576 0.691
ConstructionType[T.Direction] 0.195 0.024 8.117 0.000 0.148 0.242
logLen 0.175 0.038 4.584 0.000 0.100 0.250
logPositionInTurn -0.265 0.045 -5.869 0.000 -0.353 -0.176
logCurrentFreq 0.207 0.016 13.305 0.000 0.177 0.238
logRecencyInTokens -0.116 0.006 -20.154 0.000 -0.127 -0.104
Group Var 0.049 0.007
=========================================================================

F.2. Speech Rate - Mean Token Duration

To explore the effects on the rate of delivery, we
construct models with base factors (construction
length in tokens, number of characters per word,
and average word frequency obtained from a cor-
pus of subtitles by Brysbaert et al. (2012)). We
then add Decay and Cumulativity, Communicative
Function and Information factors.

F.2.1. Base
Formula : logTokenMeanDuration ~ 1 + logLen + logMeanCharacter

+ logMeanTokenFrequency

Mixed Linear Model Regression Results
==================================================================
Model: MixedLM Dependent Variable: logTokenMeanDuration
No. Observations: 11786 Method: REML
No. Groups: 252 Scale: 0.1775
Min. group size: 1 Log-Likelihood: -6777.4806
Max. group size: 305 Converged: Yes
Mean group size: 46.8

------------------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

------------------------------------------------------------------
Intercept -1.585 0.086 -18.413 0.000 -1.754 -1.416
logLen -0.023 0.015 -1.559 0.119 -0.052 0.006
logMeanCharacter 0.685 0.016 44.049 0.000 0.655 0.716
logMeanTokenFrequency -0.965 0.026 -36.629 0.000 -1.016 -0.913
Group Var 0.032 0.009
==================================================================

F.2.2. Decay & Cumulativity
Formula : logTokenMeanDuration ~ 1 + logLen + logMeanCharacter

+ logMeanTokenFrequency
+ logCurrentFreq
+ logRecencyInTokens

Mixed Linear Model Regression Results
==================================================================
Model: MixedLM Dependent Variable: logTokenMeanDuration
No. Observations: 11751 Method: REML
No. Groups: 252 Scale: 0.1750
Min. group size: 1 Log-Likelihood: -6684.8476
Max. group size: 305 Converged: Yes
Mean group size: 46.6

------------------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

------------------------------------------------------------------
Intercept -1.589 0.086 -18.405 0.000 -1.758 -1.419
logLen -0.052 0.015 -3.531 0.000 -0.082 -0.023
logMeanCharacter 0.693 0.015 44.758 0.000 0.663 0.723
logMeanTokenFrequency -0.949 0.027 -35.759 0.000 -1.001 -0.897
logCurrentFreq -0.061 0.006 -10.124 0.000 -0.073 -0.049
logRecencyInTokens 0.012 0.002 6.209 0.000 0.008 0.016
Group Var 0.032 0.009
==================================================================
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F.2.3. Communicative Function
Formula : logTokenMeanDuration ~ 1 + logLen + logMeanCharacter

+ logMeanTokenFrequency
+ logCurrentFreq
+ logRecencyInTokens
+ ConstructionType

Mixed Linear Model Regression Results
=========================================================================
Model: MixedLM Dependent Variable: logTokenMeanDuration
No. Observations: 11751 Method: REML
No. Groups: 252 Scale: 0.1520
Min. group size: 1 Log-Likelihood: -5866.3916
Max. group size: 305 Converged: Yes
Mean group size: 46.6

-------------------------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

-------------------------------------------------------------------------
Intercept -2.388 0.092 -25.993 0.000 -2.568 -2.208
ConstructionType[T.Landmark] 0.360 0.016 22.391 0.000 0.328 0.391
ConstructionType[T.Direction] 0.410 0.010 41.979 0.000 0.391 0.429
logLen -0.144 0.014 -10.236 0.000 -0.171 -0.116
logMeanCharacter 0.625 0.015 42.987 0.000 0.596 0.653
logMeanTokenFrequency -0.606 0.030 -19.947 0.000 -0.666 -0.547
logCurrentFreq -0.046 0.006 -8.135 0.000 -0.057 -0.035
logRecencyInTokens 0.012 0.002 6.603 0.000 0.009 0.016
Group Var 0.029 0.008
=========================================================================

F.2.4. Information Factors
Formula : logTokenMeanDuration ~ 1 + logLen + logMeanCharacter

+ logMeanTokenFrequency
+ S + logFE10

Mixed Linear Model Regression Results
==================================================================
Model: MixedLM Dependent Variable: logTokenMeanDuration
No. Observations: 11786 Method: REML
No. Groups: 252 Scale: 0.1756
Min. group size: 1 Log-Likelihood: -6722.4105
Max. group size: 305 Converged: Yes
Mean group size: 46.8

------------------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

------------------------------------------------------------------
Intercept -1.735 0.088 -19.629 0.000 -1.908 -1.562
logLen -0.004 0.015 -0.260 0.795 -0.033 0.025
logMeanCharacter 0.689 0.015 44.480 0.000 0.658 0.719
logMeanTokenFrequency -0.971 0.026 -36.818 0.000 -1.023 -0.920
S 0.045 0.004 10.245 0.000 0.037 0.054
logFE10 0.021 0.005 4.146 0.000 0.011 0.031
Group Var 0.031 0.009
==================================================================

F.2.5. Full
Formula : logTokenMeanDuration ~ 1 + logLen + logMeanCharacter

+ logMeanTokenFrequency
+ logCurrentFreq
+ logRecencyInTokens
+ ConstructionType
+ S + logFE10

Mixed Linear Model Regression Results
=========================================================================
Model: MixedLM Dependent Variable: logTokenMeanDuration
No. Observations: 11751 Method: REML
No. Groups: 252 Scale: 0.1502
Min. group size: 1 Log-Likelihood: -5807.5897
Max. group size: 305 Converged: Yes
Mean group size: 46.6

-------------------------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

-------------------------------------------------------------------------
Intercept -2.549 0.093 -27.375 0.000 -2.732 -2.367
ConstructionType[T.Landmark] 0.372 0.016 23.059 0.000 0.340 0.403
ConstructionType[T.Direction] 0.416 0.010 42.741 0.000 0.397 0.435
logLen -0.122 0.014 -8.643 0.000 -0.149 -0.094
logMeanCharacter 0.625 0.014 43.257 0.000 0.597 0.654
logMeanTokenFrequency -0.599 0.030 -19.825 0.000 -0.659 -0.540
logCurrentFreq -0.037 0.006 -6.532 0.000 -0.048 -0.026
logRecencyInTokens 0.008 0.002 4.291 0.000 0.004 0.012
S 0.044 0.004 10.592 0.000 0.036 0.052
logFE10 0.019 0.005 4.030 0.000 0.010 0.028
Group Var 0.029 0.008
=========================================================================

G. Effectiveness - Predicting Task
Success

G.1. Base

Duration, Information and Construction Usage
We consider dialogue length and duration, propor-
tion of construction usage, then factors specific to

construction usage: length, frequency (cumulativ-
ity), repetition distance (recency), normalised count
of unique constructions, construction PMI. We also
include information measures: global utterance and
construction information rate, construction FE, and
how it changes with repetition, global uniformity of
information, and within utterance uniformity.

OLS Regression Results
=========================================================================
Dep. Variable: log_success R-squared: 0.041
Model: OLS Adj. R-squared: 0.034
Method: Least Squares F-statistic: 5.423

Prob (F-statistic): 0.0215
Log-Likelihood: -142.58

No. Observations: 128 AIC: 289.2
Df Residuals: 126 BIC: 294.9
Df Model: 1
Covariance Type: nonrobust
=========================================================================

coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------
Intercept -4.4715 0.202 -22.105 0.000 -4.872 -4.071
log_total_dialogue_token 0.9022 0.387 2.329 0.021 0.136 1.669
=========================================================================
Omnibus: 7.860 Durbin-Watson: 1.743
Prob(Omnibus): 0.020 Jarque-Bera (JB): 7.524
Skew: 0.540 Prob(JB): 0.0232
Kurtosis: 3.495 Cond. No. 7.37
=========================================================================

G.2. Communicative Function
We split factors in our base model that relate to con-
structions (length, frequency (cumulativity), repeti-
tion distance (recency), normalised count of unique
constructions, construction PMI, surprisal, FE and
their slope) by communicative function: Generic,
Direction and Landmark.

OLS Regression Results
=========================================================================
Dep. Variable: log_success R-squared: 0.173
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 4.824

Prob (F-statistic): 0.000485
Log-Likelihood: -126.41

No. Observations: 121 AIC: 264.8
Df Residuals: 115 BIC: 281.6
Df Model: 5
Covariance Type: nonrobust
=========================================================================

coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------
Intercept -5.5190 0.490 -11.255 0.000 -6.490 -4.548
log_total_dialogue_token 1.3038 0.422 3.093 0.002 0.469 2.139
landmark_constr_surprisal -1.4415 0.417 -3.460 0.001 -2.267 -0.616
generic_constr_surprisal 1.5570 0.632 2.463 0.015 0.305 2.809
generic_constr_fe 1.6789 0.663 2.533 0.013 0.366 2.992
direction_constr_fe_slope 1.5217 0.757 2.009 0.047 0.021 3.022
=========================================================================
Omnibus: 5.996 Durbin-Watson: 1.527
Prob(Omnibus): 0.050 Jarque-Bera (JB): 5.686
Skew: 0.411 Prob(JB): 0.0582
Kurtosis: 3.672 Cond. No. 19.2
=========================================================================

G.3. Shared Vs. Unshared Constructions
We then investigate whether the same set of factors
(including communicative function) , but differen-
tiating between whether the constructions consid-
ered are shared (repeated by both speakers) or
unshared (repeated only by one speaker).

G.3.1. Unshared Constructions: Self
repetition

=========================================================================
OLS Regression Results

=========================================================================
Dep. Variable: log_success R-squared: 0.327
Model: OLS Adj. R-squared: 0.285
Method: Least Squares F-statistic: 7.704

Prob (F-statistic): 1.43e-07
Log-Likelihood: -111.77

No. Observations: 119 AIC: 239.5
Df Residuals: 111 BIC: 261.8
Df Model: 7
Covariance Type: nonrobust
=========================================================================



5577

coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------
Intercept -4.5066 0.498 -9.055 0.000 -5.493 -3.520
landmark_constr_length 1.4124 0.359 3.929 0.000 0.700 2.125
landmark_constr_freq -1.3821 0.566 -2.440 0.016 -2.50 -0.260
direction_constr_pmi -0.7079 0.285 -2.483 0.015 -1.273 -0.143
landmark_constr_s -1.0803 0.400 -2.701 0.008 -1.873 -0.288
generic_constr_s_slope 1.4395 0.587 2.452 0.016 0.27 2.603
direction_constr_fe_slope 2.1167 0.566 3.739 0.000 0.995 3.239
token_s_variance 0.7319 0.353 2.073 0.040 0.032 1.431
=========================================================================
Omnibus: 5.193 Durbin-Watson: 1.788
Prob(Omnibus): 0.075 Jarque-Bera (JB): 5.861
Skew: 0.252 Prob(JB): 0.0534
Kurtosis: 3.963 Cond. No. 18.4
=========================================================================

G.3.2. Shared Constructions:
Between-speaker repetition

=========================================================================
OLS Regression Results

=========================================================================
Dep. Variable: log_success R-squared: 0.574
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 3.413

Prob (F-statistic): 0.00110
Log-Likelihood: -42.782

No. Observations: 54 AIC: 117.6
Df Residuals: 38 BIC: 149.4
Df Model: 15
Covariance Type: nonrobust
=========================================================================

coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------
Intercept -5.6640 1.025 -5.528 0.000 -7.738 -3.590
constr_proportion 2.5749 0.789 3.265 0.002 0.978 4.172
landmark_constr_length -1.1985 0.577 -2.079 0.044 -2.366 -0.031
direction_constr_length 3.0891 1.373 2.250 0.030 0.309 5.869
generic_constr_frequency 1.9821 0.932 2.127 0.040 0.096 3.868
direction_constr_rep_dist 2.5147 0.777 3.237 0.003 0.942 4.087
generic_constr_rep_dist 2.2857 0.898 2.545 0.015 0.467 4.104
landmark_constr_inventory -1.9448 0.610 -3.189 0.003 -3.179 -0.710
direction_constr_inventory -2.2311 0.959 -2.325 0.02 -4.173 -0.289
landmark_constr_s -6.1818 1.444 -4.280 0.000 -9.106 -3.258
direction_constr_s 2.1291 0.764 2.785 0.008 0.582 3.677
landmark_constr_s_slope 2.2769 1.023 2.226 0.032 0.207 4.347
generic_constr_s_slope 1.8761 0.688 2.726 0.010 0.483 3.269
landmark_constr_fe -2.3585 0.979 -2.410 0.021 -4.340 -0.377
generic_constr_fe -1.3270 0.591 -2.244 0.031 -2.524 -0.130
token_s_variance 1.6259 0.673 2.417 0.021 0.264 2.988
=========================================================================
Omnibus: 0.938 Durbin-Watson: 1.916
Prob(Omnibus): 0.626 Jarque-Bera (JB): 0.322
Skew: 0.069 Prob(JB): 0.851
Kurtosis: 3.352 Cond. No. 35.9
=========================================================================

G.4. Speaker Role
We then run the same model as in Communicative
Function, with factors split by speaker role (Giver:
g, Follower: f ).
=========================================================================

OLS Regression Results
=========================================================================
Dep. Variable: log_success R-squared: 0.352
Model: OLS Adj. R-squared: 0.212
Method: Least Squares F-statistic: 2.521

Prob (F-statistic): 0.00619
Log-Likelihood: -70.010

No. Observations: 80 AIC: 170.0
Df Residuals: 65 BIC: 205.7
Df Model: 14
Covariance Type: nonrobust
=========================================================================

coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------
Intercept -6.9228 1.152 -6.007 0.000 -9.224 -4.621
generic_constr_rep_dist_g 1.8630 0.577 3.227 0.002 0.710 3.016
generic_constr_rep_dist_f -1.2466 0.533 -2.339 0.022 -2.311 -0.182
direction_constr_rep_freq_g -0.9199 0.451 -2.042 0.045 -1.820 -0.020
direction_constr_rep_freq_f 2.3764 1.004 2.367 0.021 0.372 4.381
generic_constr_length_g 1.7571 0.776 2.264 0.027 0.207 3.307
landmark_constr_inventory_g 1.0153 0.421 2.409 0.019 0.173 1.857
landmark_constr_inventory_f -1.2301 0.462 -2.665 0.010 -2.152 -0.308
landmark_constr_pmi_f -1.6218 0.448 -3.619 0.001 -2.517 -0.727
direction_constr_s_f -1.9093 0.844 -2.263 0.027 -3.595 -0.224
generic_constr_s_g 1.8096 0.618 2.927 0.005 0.575 3.045
direction_constr_fe_f -2.6597 0.840 -3.167 0.002 -4.337 -0.983
generic_constr_fe_f 1.7736 0.591 3.003 0.004 0.594 2.953
landmark_constr_fe_slope_g 2.2363 0.796 2.810 0.007 0.647 3.826
generic_constr_fe_slope_g 7.3357 2.433 3.016 0.004 2.477 12.194
=========================================================================
Omnibus: 1.354 Durbin-Watson: 1.643
Prob(Omnibus): 0.508 Jarque-Bera (JB): 1.290
Skew: 0.186 Prob(JB): 0.525
Kurtosis: 2.501 Cond. No. 68.2
=========================================================================
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