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Abstract
Transformer-based models have demonstrated outstanding performance in natural language processing (NLP)
tasks and many other domains, e.g., computer vision. Depending on the size of these models, which have grown
exponentially in the past few years, machine learning practitioners might be restricted from deploying them in
resource-constrained environments. This paper discusses the compression of transformer-based models for
multiple resource budgets. Integrating neural architecture search (NAS) and network pruning techniques, we
effectively generate and train weight-sharing super-networks that contain efficient, high-performing, and compressed
transformer-based models. A common challenge in NAS is the design of the search space, for which we propose
a method to automatically obtain the boundaries of the search space and then derive the rest of the intermediate
possible architectures using a first-order weight importance technique. The proposed end-to-end NAS solution,
EFTNAS, discovers efficient subnetworks that have been compressed and fine-tuned for downstream NLP tasks. We
demonstrate EFTNAS on the General Language Understanding Evaluation (GLUE) benchmark and the Stanford
Question Answering Dataset (SQuAD), obtaining high-performing smaller models with a reduction of more than 5x in
size without or with little degradation in performance.
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1. Introduction

Transformers have driven the recent advancements
in Artificial Intelligence. For instance, they are at
the core of many successful large language mod-
els (LLMs), recently capturing the public’s atten-
tion. However, it is more than large models that
have been successful. Small and medium-sized
transformer-based models power many everyday
artificial intelligence applications. Unfortunately,
these models cannot often be deployed in compute-
constrained environments, e.g., many edge de-
vices, because of their size, computing, or memory
requirements. The attention operator (see Section
2 for details) at the core of Transformers has O(n2)
computational and memory complexity in the input
sequence length, which has motivated research on
how to effectively compress these models using tra-
ditional techniques like pruning, quantization and
neural architecture search (NAS). Another of the
many research paths explores approximations of
the attention operator (Tay et al., 2022) or alterna-
tive architectures, e.g., using Long Convolutions
and strengthening the data-control path of the pro-
posed architectures (Poli et al., 2023).

A standard workflow in Transformer-based archi-
tectures is to have a model trained with a large
dataset and then fine-tune this model for a down-
stream task, e.g., question-answering on a smaller
dataset (Raffel et al., 2020). This paper focuses on
techniques for obtaining efficient and compressed

Transformer-based models using weight-sharing
NAS super-networks that are fine-tuned for a down-
stream task. We demonstrate that super-network-
based NAS is a practical approach to obtaining
smaller, more efficient transformers-based models.
However, NAS solutions are plagued with many
challenges. For instance, designing a good search
space is a challenging task. Another challenge is
related to the effective reordering of weights and the
strategy for sampling subnetworks during training.
This paper tackles these challenges and discusses
the following contributions: A novel approach, EFT-
NAS, for (1) automating the generation of the
NAS search space using unstructured weight im-
portance information, effectively bridging the gap
between unstructured pruning and weight-sharing
super-network elasticity, and (2) improving the
weight arrangement of the super-network, result-
ing in robust super-networks with high-performing
subnetworks that we compare to other approaches
to confirm the benefits of the proposed approach.

This paper is organized as follows: Section 2 pro-
vides a background and related work references
for Transformers, Neural Network Pruning, Knowl-
edge Distillation, and Neural Architecture Search.
Section 3 focuses on the proposed methods for
obtaining high-performing Transformer-based sub-
networks. Section 4 discusses results obtained
with EFTNAS. Section 5 presents some concluding
remarks, and Sections 6 and 7 discuss limitations
and ethical considerations.
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2. Related Work

Transformers Since their inception, Transform-
ers (Vaswani et al., 2017) and the attention operator
have become the preferred components of Deep
Learning models and workflows. Transformer-
based models have excelled at natural language
processing (NLP) tasks (Devlin et al., 2019; Liu
et al., 2020; Goyal et al., 2021) and in many other
domains, e.g., image classification (Liu et al., 2021),
image segmentation (Zhang et al., 2023), multi-
modal schemes (Xu et al., 2023). At these models’
core is a stack of Transformers blocks, each with
two main components: the attention mechanism
and a fully connected feed-forward network. The
transformer’s paper by Vaswani et al. adopts scaled
dot-product attention (Equation 1).

Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V , (1)

where Q, K, and V are the result of linearly
transforming the input, X, i.e., text embeddings
or the output of the previous Transformer block,
depending on the location of the Transformer block
in the stack, with the weight matrices WQ, WK ,
W V , i.e., Q = XWQ, K = XWK , V = XW V .
dk is the hidden dimensionality for Q and K. The
scaling factor,

√
dk, ensures the Softmax operation

does not saturate. Multiple attention “heads” are
expected to run in parallel, denoted as multi-head
attention (MHA).

MHA(Q,K,V )=Concat(head1, ...,headh)W
O

headi=Attention(QWQ
i ,KWK

i ,V W V
i )

(2)

Following the attention layers, each transformer
block has a feed-forward network (FFN), which
is usually composed of linear projection layers
with an activation function, often the Gaussian
Error Linear Unit (GELU) (Hendrycks and Gimpel,
2016). These components are complemented
with residual connections and layer normalization
operations. The reader can find more details
about the transformer architecture in Vaswani
et al. (2017). Section 3 describes the steps
taken by EFTNAS to design a search space
based on a pre-trained transformer-based model
and add elasticity (defined later) to selected
transformer blocks, resulting in the generation of
weight-sharing super-networks with smaller and
more efficient models, a.k.a. subnetworks.

Neural Network Pruning is a popular method
for compressing neural networks and reducing
their computational complexity. The goal is to
remove parameters without significantly affecting
the model’s final performance (LeCun et al., 1989).

Unstructured pruning works at the parameter level
without any constraints, but it is often difficult
to see its benefits due to the lack of support in
generally available hardware. On the other hand,
structured pruning can be better realized in many
hardware platforms. To determine which elements
to remove or mask (pruning criteria), a common
zeroth-order approach is to use magnitude pruning
and calculate the lp−norm (∥x∥p := (Σn

i=1|xi|p)
1
p ,

where p ≥ 1), and remove the elements with
a value below a threshold. In the case of
Transformer-based models, first-order pruning
methods, e.g., movement pruning (Sanh et al.,
2020) and its extension, block pruning (Lagunas
et al., 2021), have been shown to outperform
traditional magnitude pruning algorithms. We
refer the reader to Blalock et al. (2020) for a
comprehensive survey on pruning algorithms.

Knowledge Distillation A popular technique to
improve the performance of compressed models
is to use a larger model, the teacher, to influence
the training of a smaller model, the student (Hinton
et al., 2015). We compare our approach against
several popular approaches that use knowledge
distillation to obtain high-performing compressed
models. DistilBERT (Sanh et al., 2019) trains a
distilled version of BERT (Devlin et al., 2019) while
removing components and reducing the number of
layers. DistilBERT retains most of BERT’s perfor-
mance while also performing well on downstream
tasks. TinyBERT (Jiao et al., 2020) proposes a
two-stage distillation framework (general and task-
specific) in which the second stage is improved
with data augmentation. TinyBERT improves com-
pared to the results obtained by DistilBERT. MiniLM
(Wang et al., 2020b) focuses on distilling the self-
attention component of the teacher’s last Trans-
former block. This approach is further improved
by introducing multi-head self-attention relations
in MiniLMv2 (Wang et al., 2021). EFTNAS’ sub-
networks compete with the compressed models
obtained from these approaches (Section 4).

Weight-Sharing Super-Networks and Neural Ar-
chitecture Search (NAS) Given a set of possible
neural network architectures (search space), NAS
methods apply search and performance estima-
tion strategies to discover high-performing architec-
tures that are often smaller and more efficient than
human-crafted architectures (Elsken et al., 2019).
Many NAS techniques have been proposed to dis-
cover high-performing architectures (White et al.,
2023). One-shot weight-sharing approaches, e.g.,
(Bender et al., 2018; Cai et al., 2019; Guo et al.,
2020; Liu et al., 2018b,a; Pham et al., 2018; Yu
and Huang, 2019; Cai et al., 2020) have shown
to be effective, avoiding the pitfalls of early NAS
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approaches, e.g., training many candidates, either
partially or entirely, from scratch. Several tech-
niques have been proposed to train the generated
super-networks, e.g., Progressive Shrinking (Cai
et al., 2020) and Single Stage (Yu et al., 2020) train-
ing. The automatic generation of weight-sharing
super-networks has been demonstrated by Boot-
strapNAS (Muñoz et al., 2022).

NAS has been used in the past to compress
Transformer-based models, e.g., HAT (Wang
et al., 2020a), demonstrated how to generate
a Transformer-based super-network for machine
translation. NAS-BERT (Xu et al., 2021) produced
a super-network with efficient subnetworks that
were demonstrated using the GLUE benchmark
(Wang et al., 2019). AutoDistil (Xu et al., 2022)
proposes to mitigate the problem of subnetwork in-
terference during training by partitioning the search
space into many subspaces and training a super-
network for each subspace using knowledge distil-
lation. However, researchers are still confronting
the challenges of designing robust search spaces
and improving the robustness of the trained super-
networks. Next, we present EFTNAS, an approach
to automate the generation of the search space
using first-order weight importance information that
can be adjusted based on the target’s resource bud-
get. To further boost the robustness of EFTNAS’
super-networks, the weight importance information
is reused to reorder the super-network weights and
further improve the quality of the super-network.

3. Methodology

Figure 1 illustrates EFTNAS’ stages to obtain com-
pressed high-performing transformer-based mod-
els, a.k.a. subnetworks, for a particular task. In the
following sections, We describe (1) the generation
of the unstructured weight importance mask (Sec-
tion 3.1), (2) a method for the automated generation
of the search space (Section 3.2), (3) training of
the super-network, and the subsequent search for
high-performing subnetworks that achieve a perfor-
mance target for a particular task (Section 3.3).

3.1. From Unstructured Weight
Importance to Structured
Super-Network Elasticity

Previous NAS approaches have used zeroth-order
weight importance, e.g., lp−norm, to sort the
weights of the super-network to allow smaller
subnetworks to benefit from more robust shared
weights (Cai et al., 2020). Empirically (Section
4.3), we observe and demonstrate the benefits of
discarding the zeroth-order approach in favor of
first-order weight importance (Sanh et al., 2020) for
weight-sharing super-networks. There are several

steps to obtain information on weight importance.
For each layer of interest, an importance mask, M,
often a binary mask, is computed using a threshold
τ and a score S, i.e., M = 1(S > τ) (Sanh et al.,
2020; Lagunas et al., 2021). S is computed over
several t forward and backward passes (Equation
3). W are the weights of the layer of interest, L is
the loss function, and αS is a scaling factor for the
movement accumulator, S.

S
(T )
i,j = −αS

∑
t<T

(
∂L

∂W i,j

)(t)

W
(t)
i,j (3)

EFTNAS uses first-order weight importance infor-
mation in two novel ways. First, EFTNAS uses both
the binary mask, M, and the score, S, to automate
the generation of the search space (Section 3.2),
and second, S is analyzed to reorder the weights
received from the pre-trained model before opti-
mizing the generated super-network (Section 3.3).
Next, we discuss EFTNAS’ approach to generating
the NAS search space automatically.

3.2. Automated Design of the Search
Space based on the Desired
Subnetwork Computational
Complexity

A common challenge when using neural architec-
ture search is the design of the search space, i.e.,
the set of possible architectures (subnetworks) that
can be activated, used to update the weights of the
super-network, and then extracted as compressed
models. Additional challenges include determining
the values for other NAS hyper-parameters, e.g.,
the minimum possible width of a layer and the in-
tervals between possible configurations, to name a
few. When we can activate different configurations
in a layer, we say the layer is elastic (Muñoz et al.,
2022).

A naive approach to designing the search space
is to collect all the possible configurations of every
layer with a variable configuration, e.g., different
numbers of heads in the multi-head attention layer.
Using this example, a challenge with this naive ap-
proach is determining the minimum (and maximum)
number of attention heads that should be allowed
or the possible width of the subsequent interme-
diate layers in the feed-forward network. Unfortu-
nately, these naive approaches often result in large
search spaces that are impractical for NAS due
to their immense exploration costs. The problems
are compounded when the NAS solution enters the
search stage for high-performing subnetworks in
subpar search spaces, spending search cycles on
search space regions that might contribute poorly
to the overall objective.
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Figure 1: EFTNAS’ end-to-end workflow. Unstructured weight importance information is used to obtain
subnetwork configurations at the boundaries of the desired search space. Next, intermediate subnetworks
are identified depending on the required complexity for the search space, and all subnetwork configurations
are combined, effectively automating the search space generation based on the desired computation
complexity. Weights are reordered, elasticity is enabled, and the super-network is trained. Finally,
high-performing Transformer-based subnetworks are discovered for a variety of performance targets.

Performance-Aware Search Space Design As
detailed in Algorithm 1, EFTNAS first obtains an
importance score, Sm (Equation 3), for the weights
of each layer in a pre-trained model, m. EFTNAS
uses the weight importance information stored in
the binary mask, Mm (obtained from Sm using the
value of a threshold, τ ), and the desired compu-
tational complexities, C(amin) and C(amax) (more
details below) to obtain the corresponding sub-
network configurations for the boundaries and
intermediate points of the search space.

At each iteration, EFTNAS searches for the value
of τ that will result in a binary mask, Mm, for the
whole model corresponding to a subnetwork with
computational complexity, c, e.g., a particular mea-
surement in GFLOPs. Other metrics can be used,
e.g., the latency of the subnetwork in a particular tar-
get hardware device. Binary search is an effective
method to find this value quickly, and EFTNAS al-
lows for approximations to speed up the search for
the value of τ . The corresponding subnetwork con-
figuration is stored in a set B. The explored range
for c starts at c = C(amin), the computational com-
plexity of the minimal subnetwork, amin, i.e., the
architectural configuration that satisfies the lower
end of the desired computational complexity range.
EFTNAS continues to find the corresponding N -2
intermediate subnetwork configurations that satisfy
the steps in the required computational complex-
ity until the architectural configuration of amax is
obtained when c = C(amax). Finally, EFTNAS as-
sembles the search space, A, by combining all the
subnetwork configurations in B. Often N <= 5
since we can derive a rich search space with just

a few subnetwork configurations. N must be at
least two since we need at least the subnetwork
configurations for the upper and lower bounds of
the search space.

An important benefit of using first-order weight
importance information when designing the NAS
search space is that EFTNAS can effectively set the
architectural lower and upper bounds of the search
space based on the performance objectives, e.g.,
the desired latency or GFLOPs ranges. A better-
designed and smaller search space reduces the po-
tential interference of subnetworks in regions with
an associated performance outside of the desired
performance target.

3.3. Transformer-based Super-Network

Super-network Generation Given the search
space obtained by Algorithm 1, EFTNAS gener-
ates the super-network. The starting point is a
transformer-based pre-trained model, e.g., BERT
(Devlin et al., 2019). To generate a weight-sharing
super-network, i.e., the abstraction that enables the
activation of smaller subnetworks from a single data
structure, EFTNAS enables elasticity at selected
multi-head attention and intermediate layers of the
subsequent feed-forward networks. In the case
of the multi-head attention layer, EFTNAS allows
the super-network to activate subnetworks with a
different number of heads, as illustrated in Figure 2,
based on the search space design discussed in the
previous section. In the case of the intermediate
layers of the feed-forward network (FFN) after the
attention mechanism, EFTNAS enables variable
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Algorithm 1: Automated Generation of the
NAS Search Space

Input: Base model, m
Input: Desired minimum subnet

computational complexity, C(amin)
Input: Desired maximum subnet

computational complexity, C(amax)
Input: Number of configurations per layer,

N
Output: Search space, A

1 /* Obtain importance score Sm

(Equation 3) for all elastic
layer in m. */

2 Sm ← Score(m)
3 step← (C(amax)− C(amin))/(N − 1)
4 B ← ∅
5 for c← C(amin) to C(amax) by step do
6 /* Obtain a new active

subnetwork configuration
by searching for
threshold τ to obtain a
binary mask Mm for m,
s.t., the associated
subnetwork configuration,
a has complexity c.
Mm = 1(Sm > τ) */

7 τ ← BinarySearch(Sm, c)
8 a← SubnetConfig(Mm, τ)
9 B ← B ∪ a

10 end for
11 /* Define search space from

boundaries and
configurations stored in B
*/

12 A ← Combine(B)
13 return A
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Figure 2: Elastic Number of Attention Heads.

width configurations, as illustrated in Figure 1.
EFTNAS allows amax (the maximal subnetwork)

to be different in its architectural configuration than
the base pre-trained model, m, used for generating
the super-network. That is, EFTNAS has two op-
tions for the upper-end configuration of the search
space: (i) config(amax)← config(m) s.t., at initial-
ization, Cost(m,Dval) ∼= Cost(amax, Dval), both
the pre-trained model, m and the maximal subnet-
work, amax will result in a similar performance on
a validation set, Dval. (ii) C(amax) < C(m), result-
ing in an architectural configuration of amax smaller
than the configuration of m. In this latter case, we
expect amax to have a strong initialization since, as
described next, this subnetwork shares the most
important weights from the pre-trained model.

First-Order Weight-Reordering Before training
the super-network, a standard step in weight-
sharing super-networks is to reorder the weights
inherited from a previous training stage or the pre-
trained model used to generate the super-network.
EFTNAS goes beyond zeroth-order weight impor-
tance approaches used previously in NAS to re-
order the super-network’s weights, using the first-
order importance score, S (Equation 3). At each
elastic linear layer (of the maximal architecture con-
figuration), its weights tensor, W , and its corre-
sponding score tensor, S, have the same shape,
allowing us to calculate the mean of the values in
each column in S to sort W ’s columns. As illus-
trated in Figure 1, we compute importance scores
Sq,Sv, and Sk for each attention head. These
scores allow EFTNAS to reorder the heads within
the multi-head attention layer. In the case of the
feed-forward network that follows multi-head atten-
tion in the transformer block, we obtain the score
Sinter that contains the importance of the channels
in this layer.

A particular consideration has to be made in the
case of the Q and K layers since they should ap-
ply the same permutation to their weights. EFT-
NAS uses the mean of the sum of each corre-
sponding column in these two tensors to sort
them accordingly. After weight reordering, the
pre-trained model, m used to generate the super-
network should have approximately similar perfor-
mance as the weight-reordered model, mw_sorted,
i.e., Cost(m,Dval) ∼= Cost(mw_sorted, Dval) on the
same validation data, Dval. Using the first-order
importance score, S, to reorder the weights of the
super-network gives EFTNAS an additional boost
in the performance of the Pareto frontier of subnet-
works (as shown in the results of Section 4).

Knowledge Distillation To further boost the per-
formance of smaller subnetworks, EFTNAS trains
the super-network with the supervision of the pre-
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trained model that was used to generate the super-
network, and with the loss following (Lagunas et al.,
2021), i.e.,

L = αKDLKD + αceLce, (4)

LKD = T 2
∑
i

pti(T )log pti(T )

psi (T )
(5)

pki (T ) =
exp(zki /T )∑K
j=1 (zkj /T )

, (6)

where T is a temperature hyperparameter, αce

is the scaling factor for the cross-entropy loss, and
αKD is the scaling factor for the distillation loss.
pti(T ) and psi (T ) denote the output probability vec-
tor of teacher and student, respectively. zkj is the
k-th value. K represents the number of classes.
Empirically, we have determined that this formula-
tion of knowledge distillation yields good results in
EFTNAS super-networks.

4. Experiments

Setup EFTNAS is implemented on top of Open-
VINO’s Neural Network Compression Framework
(NNCF)1 and its BootstrapNAS solution (Muñoz
et al., 2022), benefiting from its module wrap-
ping functionality. We also patch the Transform-
ers2 repository (Wolf et al., 2019) to enable EFT-
NAS’ elasticity controllers to be called by its Train-
ers. We generate fine-tuned transformer-based
super-networks for natural language processing
(NLP) tasks using the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2019) and the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016). To
train the super-networks, we apply the sandwich
rule (Yu and Huang, 2019). EFTNAS uses AdamW
(Loshchilov and Hutter, 2019) as the default op-
timizer; the batch size varies depending on the
dataset/task, i.e., 32 for GLUE, 16 for SQuADv1.1
and SQuADv2.0.Weight decay is set to 0 for BERT.
The learning rate scheduler uses Cosine Annealing.
Learning rates vary depending on tasks/datasets.
For GLUE and SQuAD, we use values in a range be-
tween 2e-5 and 3e-5. The base model for EFTNAS-
S1 subnetworks is BERT-base, and BERT-medium
for EFTNAS-S2 subnetworks. The search space
has five possible configurations per layer, i.e., N=5
in Algorithm 1. The step in computational com-
plexity is equal to the range of computational com-
plexity divided by N-1. The NLP tasks use 3 to 15
epochs to compute the importance score, S, and
4 to 20 epochs to train the super-network. We use

1https://github.com/openvinotoolkit/nncf
2https://github.com/huggingface

the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb et al., 2002) with 1000 evaluations
to obtain the Pareto frontier of high-performing sub-
networks. The population size is 40 subnetwork
configurations. Figure 3 shows examples of search
progression on several super-networks. We report
the performance of the discovered subnetwork
without any additional fine-tuning after being
extracted from the Pareto front.
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Figure 3: Examples of the search progression using
NSGA-II on several EFTNAS super-networks fine-
tuned for tasks in the GLUE benchmark. We show
1000 subnetwork configurations sampled for each
super-network. Many subnetworks outperform the
input base model in efficiency and accuracy.

For a downstream task t, EFTNAS uses Al-
gorithm 2 to discover the best subnetwork that
achieves the required performance target, e.g.,
computational complexity.

4.1. General Language Understanding
Evaluation (GLUE) Benchmark

As shown in Table 1, EFTNAS’ subnetworks often
outperform other approaches in the comparison, re-
sulting in the best average on the GLUE benchmark
for the development set and a competitive average
on the test set. We compare EFTNAS’ subnetworks
to DistilBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2020), MiniLM (Wang et al., 2020b, 2021),
AutoDistil (Xu et al., 2022), and NAS-BERT (Xu
et al., 2021). Figure 4 illustrates the architectures
discovered by EFTNAS-S1 for each of the tasks.
Figure 5 shows the search space generated for
each task of the GLUE benchmark used to dis-
cover the EFTNAS-S1 subnetwork. Each search
space is obtained using the proposed approach
in Algorithm 1, which derives possible subnetwork
configurations based on the desired computational
complexity of a few selected subnetworks. We use
a maximum of five possible configurations at each
layer.
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Model GFLOPs GLUE Avg. MNLI-m QNLI QQP SST-2 CoLA MRPC RTE
Develoment Set
BERTbase (teacher) 11.2 83.3 84.7 91.8 91.0 93.2 59.6 90.4 72.5
DistilBERT6 5.7 78.6 82.2 89.2 88.5 91.3 51.3 87.5 59.9
TinyBERT6 5.7 81.9 84.5 91.1 91.1 93.0 54.0 90.6 73.4
MiniLM 5.7 81.0 84.0 91.0 91.0 92.0 49.2 88.4 71.5
MiniLMv2(6× 768) 5.7 81.7 84.2 90.8 91.1 92.4 52.5 88.9 72.1
EFTNAS-S1 (Ours) 5.7 82.9 84.6 90.8 91.2 93.5 60.6 90.8 69.0
NAS−BERT10 +KD 2.3 74.2 76.4 86.3 88.5 88.6 34.0 79.1 66.6
AutoDistilProxy_S 2.0 79.9 83.2 90.0 90.6 90.1 48.3 88.3 69.4
AutoDistilAgnostic 2.1 79.6 82.8 89.9 90.8 90.6 47.1 87.3 69.0
EFTNAS-S2 (Ours) 2.2 80.5 82.3 88.6 90.4 91.2 52.1 90.1 69.0
Test Set
BERTbase (teacher) 11.2 78.2 84.6 90.5 71.2 93.5 52.1 88.9 66.4
DistilBERT6 5.7 76.8 82.6 88.9 70.1 92.5 49.0 86.9 58.4
TinyBERT6† 5.7 79.4 84.6 90.4 71.6 93.1 51.1 87.3 70.0
MiniLMv2(6× 768) 5.7 77.5 83.8 90.2 70.9 92.9 46.6 89.1 69.2
EFTNAS-S1 (Ours) 5.7 77.7 83.7 89.9 71.8 93.4 52.6 87.6 65.0
EFTNAS-S2 (Ours) 2.2 75.2 82.0 87.8 70.6 91.4 44.5 86.1 64.0

Table 1: Performance comparison on the development and test sets of the GLUE benchmark. We report
Matthews’ correlation coefficient for CoLA and accuracy (%) for the other tasks. † means using data
augmentation.
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Figure 4: Configurations for the architectures of each subnetwork discovered by EFTNAS-S1 for each
task in the GLUE benchmark. Each number represents the width of the module at that position in the
network.

4.2. The Stanford Question Answering
Dataset (SQuAD)

As summarized in Table 2, EFTNAS outperforms
other approaches and discovers a subnetwork,
EFTNAS-S1, with a higher F1-score for both
SQuADv1.1 and SQuADv2.0. We report the
number of parameters to compare with other ap-
proaches with similar model sizes. We also in-
clude the performance of EFTNAS-S2, a signifi-
cantly smaller subnetwork with a minor drop in the
F1-score.

4.3. Ablation Study: Weight Reordering
Strategies

To better understand the importance of the weight
reordering strategy when training a super-network,
Figure 6 compares the Pareto frontiers obtained af-
ter searching on three different super-networks fine-
tuned on four downstream tasks from the GLUE
benchmark. As the figure shows, using the first-
order importance score, S, for weight reordering
the weights of the super-network results in better
Pareto frontiers. In contrast, the L1-norm (as used
in other NAS approaches) tends to degrade the per-
formance of the super-network, performing worse
than without weight reordering in some cases.

4.4. Ablation Study: Varying the Number
of Possible Configurations for Each
Layer

In the main experiments on GLUE (Table 1), EFT-
NAS generates search spaces with a maximum
of five possible width configurations for each layer.
Table 3 describes the effects of using a different
value for the number of possible configurations for
each layer. We experiment using two datasets of
the GLUE benchmark, i.e., The Multi-Genre Natural
Language Inference (MNLI)(Williams et al., 2018)
dataset and the Recognizing Textual Entailment
(RTE) dataset (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009). In both cases, increasing the complexity
of the search space results in subnetworks with
improved performance: EFTNAS-S1 accuracy in
MNLI’s increases from 84.6 to 84.8 and from 69.0
to 70.4 in RTE. As future work, we are interested in
having an in-depth investigation of the trade-off be-
tween search space complexity and the efficiency
of the NAS solution.

5. Conclusion

Weight-sharing neural architecture search (NAS)
super-networks have proven effective at model com-
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Figure 5: Search spaces used to discover EFTNAS-S1 for each task in the GLUE benchmark. Each set
of numbers represents the possible width configurations of the module at that position in the network.

Algorithm 2: Discovery and evaluation
of the best subnetwork for a downstream
task, t, based on a desired computational
complexity.

Input: Pre-trained model m
Input: Downstream task t
Input: Desired minimum subnetwork

computational complexity, C(amin)
Input: Desired maximum subnetwork

computational complexity, C(amax)
Input: Desired computational complexity,

Ct

Input: Number of configurations per layer,
N

Output: Best subnetwork configuration, a∗,
and its performance on task t

1 Sm ← ImportanceScore(m)
2 /* Obtain search space using

Algorithm 1 */
3 A ←

SearchSpace(m,C(amin), C(amax), N)
4 Ω← GenerateSuperNetwork(m,A)
5 Ω′ ← ReorderWeights(Ω, Sm)
6 Ω∗ ← Train(Ω′)
7 a∗ ← Search(Ω∗, Ct)
8 /* No additional fine-tuning of

a∗ is required. */
9 return (a∗,Eval(a∗, t))

Model Param.(M) SQuADv1.1 SQuADv2.0

BERTbase (teacher) 85 88.2 78.6
DistilBERT6 42 86.9 -
TinyBERT6 42 87.5 73.4
MiniLM6 42 - 76.4
MiniLMv2(6× 768) 42 - 76.3

EFTNAS-S1 (ours) 42 88.7 78.0
EFTNAS-S2 (ours) 16 86.8 72.9

Table 2: Comparison of the number of parameters
and the F1-score for EFTNAS’ subnetworks and
other approaches on the SQuAD dataset.

Number of possible
configurations per layer MNLI RTE

3 84.6 68.2
5 84.6 69.0
7 84.8 70.4

Table 3: Increasing the number of possible con-
figurations for each layer during the generation of
the search space from 5 to 7 configurations results
in better accuracy (%) for the subnetwork configu-
ration constrained to 5.7 GFLOPs, i.e., EFTNAS-
S1, the MNLI and RTE datasets. However, larger
search spaces significantly impact the cost of super-
network training and subnetwork search.
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Figure 6: Comparison of the Pareto frontiers of
sampled subnetworks from three super-networks
trained with different weight-reordering strategies.
Using the importance score, S results in better
Pareto frontiers.

pression and specialization. This paper describes
EFTNAS, an end-to-end NAS solution that gen-
erates robust transformer-based super-networks.
EFTNAS incorporates first-order weight-sharing in-
formation to automatically generate the NAS search
space and reorder the weights of the super-network.
The improved search space considers the desired
range of computational complexity of the result-
ing compressed models, improving the efficiency
of the NAS training and searching stages since
there is no need to explore regions of the search
space that might be detrimental to the final objec-
tive. The result is a Pareto frontier of several high-
performing compressed subnetworks from which
we can extract models for several resource bud-
gets. The memory requirements of EFTNAS sub-
networks can be further reduced by applying other
compression techniques, e.g., quantization, to the
resulting subnetworks. We have left these addi-
tional optimizations outside the scope of this pa-
per. EFTNAS generates robust transformer-based
super-networks. EFTNAS’ models and code are
available at https://github.com/IntelLabs/Hardware-
Aware-Automated-Machine-Learning.

6. Limitations

The methods proposed in this paper have been
demonstrated with smaller language models. It is
an open research problem how EFTNAS could be
efficiently applied to large language models (LLMs).
EFTNAS’ search stage, in particular, requires sig-
nificant time and resources. A potential solution for
these limitations is parameter-efficient fine-tuning
methods (PEFT) that benefit from NAS techniques.
For instance, LoNAS (Muñoz et al., 2024b) has
attempted to combine NAS and PEFT to search

for more efficient LLMs. An improved iteration of
LoNAS, Shears (Muñoz et al., 2024a), explores
NAS in a space of PEFT adapter configurations
using an initial stage that sparsifies and freezes the
base model’s weights.

7. Ethics Statement

Although large language transformer-based mod-
els have achieved significant success lately and
are being integrated into many applications, they
are prone to output false information, potentially
contributing to misinformation. In this paper, we
have focused on a particular approach to optimiz-
ing language models fine-tuned for a target task
so users can deploy them in resource-constrained
environments. However, before deployment, we
suggest implementing the necessary safeguards
to prevent potential harm to others.

Another ethical concern when working with these
models is the large number of resources required
to train or use them for inference. A positive impact
of the approach proposed in this paper is that com-
pressed models have a reduced footprint compared
to their based models. There is work to be done
by the research community to continue reducing
the massive amount of resources that (large) deep
learning models tend to consume.
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