@inproceedings{zhao-penn-2024-generative,
title = "A Generative Model for {L}ambek Categorial Sequents",
author = "Zhao, Jinman and
Penn, Gerald",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.50",
pages = "584--593",
abstract = "In this work, we introduce a generative model, PLC+, for generating Lambek Categorial Grammar(LCG) sequents. We also introduce a simple method to numerically estimate the model{'}s parameters from an annotated corpus. Then we compare our model with probabilistic context-free grammars (PCFGs) and show that PLC+ simultaneously assigns a higher probability to a common corpus, and has greater coverage.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-penn-2024-generative">
<titleInfo>
<title>A Generative Model for Lambek Categorial Sequents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jinman</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerald</namePart>
<namePart type="family">Penn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we introduce a generative model, PLC+, for generating Lambek Categorial Grammar(LCG) sequents. We also introduce a simple method to numerically estimate the model’s parameters from an annotated corpus. Then we compare our model with probabilistic context-free grammars (PCFGs) and show that PLC+ simultaneously assigns a higher probability to a common corpus, and has greater coverage.</abstract>
<identifier type="citekey">zhao-penn-2024-generative</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.50</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>584</start>
<end>593</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Generative Model for Lambek Categorial Sequents
%A Zhao, Jinman
%A Penn, Gerald
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F zhao-penn-2024-generative
%X In this work, we introduce a generative model, PLC+, for generating Lambek Categorial Grammar(LCG) sequents. We also introduce a simple method to numerically estimate the model’s parameters from an annotated corpus. Then we compare our model with probabilistic context-free grammars (PCFGs) and show that PLC+ simultaneously assigns a higher probability to a common corpus, and has greater coverage.
%U https://aclanthology.org/2024.lrec-main.50
%P 584-593
Markdown (Informal)
[A Generative Model for Lambek Categorial Sequents](https://aclanthology.org/2024.lrec-main.50) (Zhao & Penn, LREC-COLING 2024)
ACL
- Jinman Zhao and Gerald Penn. 2024. A Generative Model for Lambek Categorial Sequents. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 584–593, Torino, Italia. ELRA and ICCL.