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Abstract
In this work, we introduce a generative model, PLC+, for generating Lambek Categorial Grammar(LCG)
sequents. We also introduce a simple method to numerically estimate the model’s parameters from an annotated
corpus. Then we compare our model with probabilistic context-free grammars (PCFGs) and show that PLC+
simultaneously assigns a higher probability to a common corpus, and has greater coverage. Our code is available at
https://github.com/zhaojinm/Probabilistic_Lambek_Categorial_Sequent.
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1. Introduction

The success of large language models like
GPT (et al., 2020), LLaMa (et al., 2023) and
PaLM (et al., 2022) has cast a shadow over the role
of grammar in NLP: perhaps scaling up language
models and feeding them massive amounts of data
will converge on a similar syntactic mastery of lan-
guage. These large models have their drawbacks:
they demand extensive resources and are challeng-
ing to interpret and scrutinize. More importantly,
they require vast amounts of data. Some work,
furthermore, has shown that syntax-based models
can improve the performance of transformer-based
language models (Bai et al., 2021; Zhang et al.,
2022), text generation with autoencoders (Zhang
et al., 2019), named entity recognition (Yu et al.,
2020) and so on. Therefore, grammar is still es-
sential for NLP research.

It probably is true, however, that our effective
choice of context-free grammars (CFGs) for an-
notating syntactic corpora has made it relatively
easy to disparage the use of grammar altogether.
CFGs massively over-generate. While statistical
methods help us choose the right tree for gram-
matical sentences to some extent, the underlying
discrete formalism does impose limits upon this, as
it does upon how much probability must be wasted
upon ungrammatical sentences. Besides, CFG
articulates a view of syntax with almost no connec-
tion to semantics, and even then cannot capture
long-distance dependencies.

Categorial Grammars (CGs) such as Lambek
Categorial Grammar(LCG) addresses these is-
sues. LCG connects syntax and semantics through
a very transparent, compositional labeled-term-
deduction system based upon the lambda calcu-
lus. LCG lexicalizes grammar to the point that it
requires only four, fixed grammar schemata. Re-
cent research in Quantum NLP, as discussed in

the Wu et al. (2021) has seen the adoption of pre-
group grammar for mapping linguistic structures
into quantum systems. Pregroups are an efficient
variant of LCG. While parsing with LCG is theoreti-
cally intractable (Pentus, 2006; Savateev, 2012), ?
demonstrates that natural-language corpora pose
no real challenge to parsing because of empirical
limits on the order of functional categories.

There are stochastic context-free gram-
mars(Huang and Fu, 1971) for generative
purposes. There have been stochastic frameworks
proposed for CG before (Osborne and Briscoe,
1997), with the earliest merely transforming
derivations from CFG directly. (Bonfante and de
Groote, 2004) proposed a stochastic model for
LCG that was not generative. To our knowledge,
(Zhao and Penn, 2021) is the only stochastic
generative model for LCG sequents, and even that
has some observable drawbacks: the procedure is
rather complicated, and sequents like:

• NP/N/N N N |= N , and

• NP/N N/N N |= NP

receive the same probability, even though the sec-
ond is far more common for Noun Phrases.

In this work, we propose a generative model
that fixes these drawbacks. Section 2 presents
the background information necessary to follow
the technical details. In section 3, we present a
method for representing LCG sequent derivations
in a more tree-like structure that simplifies the over-
all formalism, separating the stochastic generation
of a proof net into a phase that generates the tree
first, followed by a phase that generates a proof
net, the LCG equivalent of a phrase structure tree,
directly from this tree. In section 4, we compare
our model with PCFGs on a corpus using MLE.

https://github.com/zhaojinm/Probabilistic_Lambek_Categorial_Sequent
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2. Preliminaries

2.1. Lambek Calculus

Lambek (1958) first proposed Lambek calculus(L).
Prim = {p1, p2, p3, ...} is a set of letters. There
are three binary connectives /, \ and ·. The prim-
itive types, together with their closure under the
available connectives, will be called categories,
also known as types. The intuition is that a func-
tional category such as S\NP takes an NP on its
left to produce an S, as a verb phrase would, and
dually, a category such as NP/N takes a noun on
its right to produce an NP , as a determiner would.
This is not the traditional notation for LCG, which
is far less readable, but it is the one we will use in
this paper.

There are several variations of the Lambek calcu-
lus itself, the system of rules for deriving sequents
with these types. We will focus on the variant in
which the LHS of a sequent cannot be empty, and
only types with / and \ connectives are allowed,
the so-called product-free fragment of the calculus
L.

2.2. Proof Nets

Proof nets are commonly used to determine the
derivability of an LCG sequent. Roorda (1991)
adapted the proof nets of linear logic to the Product-
free Lambek calculus. Constructing a (Lambek)
proof net from a sequent consists of four steps:

1. Labeling each category. All LHS categories
will receive a negative polarity and the RHS
category will receive a positive polarity. We
also label each category with a unique vari-
able.

2. Unfolding a sequent to terminal formulae. Ap-
ply the substitution rules to each labelled cat-
egory from the previous step recursively until
no more rules can be applied:

(A\B)−:t→ A+:u B−:tu (1)

(A\B)+:v → B+:v′ A−:u[v := λu.v′] (2)

(A/B)−:t→ A−:tu B+:u (3)

(A/B)+:v → B−:u A+:v′[v := λu.v′] (4)

When unfold positive-polarity categories with
variable v, new variables u and v′ will be
added to the proof framework. v is known
as a lambda node or lambda variable. u and
v′ will likewise be referred to as the daughters
of v.

3. Adding a half planar linkage between formu-
lae. Link each pair of formulae that has same
primitives and opposite polarities. The edges

of half-planar graph will be known as axiom
links.

4. Variable substitution.

Let us consider the sequent for "Who eats
cake?" as an example:

S/(NP\S) (NP\S)/NP NP |= S

One of the possible linkages Figure 1:

Figure 1: Example proof net.

2.3. LC-graph

The LC-graph(Penn, 2004) of a proof net is a di-
rected graph G = ⟨V,E⟩, such that V is the set of
all variables that appear in its category labels and
E is the smallest set such that:

• for every v ∈ V , if v is a lambda-variable,
then for both daughter variables of v, u and v′,
(v, u) ∈ E, and (v, v′) ∈ E, and

• for every axiom link matching p+ : u and p− : t
and for every v in the string t, (u, v) ∈ E.

The LG-graph for the above linkage and se-
quence of axiomatic formulae is Figure 2.

d+

a−e+

g+

b−f+

c−

i+

h−

Figure 2: LC-graph example.

An LCG sequent is derivable iff the following
three integrity criteria are true of its LC graph, G:

• I(1) there is a unique node in G with in-
degree 0, from which all other nodes are path-
accessible.

• I(2) G is acyclic.

• I(3) for every lambda-node v ∈ V , there is a
path from its plus-daughter, v′, to its minus-
daughter, u.
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• I(CT) for every lambda-node v ∈ V , there
is a path in G, v ⇝ x, such that x labels a
negative-polarity category, x has out-degree 0
and there is no lambda-node v′ ∈ V such that
v ⇝ v′ → x.

Then we say that G is integral.

3. Simplifying the LC-Graph

LC-graphs are very useful for checking derivabil-
ity, but not for generation, because the mapping
between proof nets and LC-graphs is not bijective.
We perform the following modifications.

3.1. Imposing Variable Order

For every axiom link matching p+ : u and p− : t, t
is a string t1...tn, where ti are children of u. Let t1
be the leftmost child of u, t2 be the second leftmost
child, and so on. We will reflect this in our depiction
of the above graph, as shown in Figure 3.

d+

e+

g+

i+

h−

f+

c−

b−

a−

Figure 3: Ordered Variables

3.2. Adding Edge and Node Labels

We will add labels to some edges. For each edge:

1. If u is a positive non-lambda node and v is
positive, add as a label the connective that we
use in the unfolding rule when v is created.

2. Otherwise, add nothing.

We will label every node. Some of these labels
will resemble primitive types. For each node u,
define its augment as ψ(u):

1. If u is a lambda node, ψ(u) = λ.

2. If u is a positive non-lambda node, then there
must be exactly one axiomatic formula p+ : u.
Let ψ(u) = p.

3. If u is a negative non-lambda node, then there
must be exactly one axiomatic formula p− : t,
where t is a string and u ∈ t. Let ψ(u) = p

d : S+

e : λ+

g : S+

c : NP+

h : NP−

f : NP+

i : NP−

b : S−
/

\

a : S−

/

Figure 4: Adding augment.

The above graph changes to the one shown in
Figure 4.

We name this augmented graph LC-graph+. For
each LCG sequent, all primitive types, lambda
nodes and connectives are stored in the LC-graph+
with a certain arrangement.

Theorem 3.1. The mapping from proof nets to
LC-graphs+ by the above procedures is bijective.

The proofs of this and the other theorems of this
paper can be found in Section 6.

3.3. Pruning Extra Edges

Theorem 3.2. Let P be a valid proofnet and G =
⟨V,E⟩ be its corresponding integral LC-graph+. Let
E′ = {(u, v)|(u, v) ∈ E, u is a lambda node , v is
negative} and T = ⟨V,E − E′⟩. Given T , the rest
of G can be inferred.

This means that drawing the edge from the
lambda node to its negative daughter is not neces-
sary. Thus, the above graph can be represented
as a tree. But we can further simplify this tree. The
variable of each node itself is redundant since all
variable names are distinct and the mapping from
proof nets to LC-graphs+ is injective. Also, if an
LC-graph is integral, it is obvious that leaves are
only negative and all internal nodes are positive.
So we can eliminate the polarities of nodes. In ad-
dition, each leaf must have the same primitive type
as its parent. So all leaves’ polarities and primi-
tives are determined by the internal nodes. This
means we do not need to draw any of the leaves
in the previous tree. We will call the result of these
changes, Figure 5, the LC-tree.

One assumption of Theorem 3.2 is that the
LC-graph+ is integral. Removing edges from the
lambda node to its negative daughter makes the
LC-tree unsuitable for checking the derivability of
prior input because we lose some essential infor-
mation. But we are focusing on generating a string
in this work.
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S

λ

S

NPNP

/ \

\

/

Figure 5: LC-graph+ simplified into an LC-tree.

3.4. Integrity Condition

Given LCG proof nets for a training corpus, we first
transfer them to LC-trees, then learn how to gen-
erate these trees using different machine learning
methods such as neural networks, MLE, etc. But
not all trees with primitive types as nodes slashed
edges can be called LC-trees. There is one re-
maining condition left over from L in order for it to
correspond to a valid proof net:

• T(CT): For each sub-tree at v, the number of
nodes labelled λ is less than the number of
nodes not labelled λ.

The mapping of LC-trees for which this condi-
tion holds to proof nets is bijective. We call these
integral trees.

Without this extra condition, it is relatively simple
to generate LC-trees: we can simply use a top-
down (i.e., LHS-normalized) PCFG for LC-trees
and their labels. T(CT) interferes with this because
it violates the context-freeness of the generated
subtrees, and would require a balance condition
to ensure that the number of λ-nodes is bounded.
Our approach is to use a top-down PCFG anyway,
without T(CT), and then to repair the broken trees.

3.5. Repairing T(CT)

For any tree that violates this condition, we can do
the following recursively until it holds:

1. Pick any node u such that u = λ, its child
tree satisfies T(CT), but the tree rooted at u
violates T(CT).

2. Delete u and the edge from u to its child.

3. Connect u’s parent to u’s child.

Figure 6 provides an example of repairing a tree
in one step. We can repeatedly apply this proce-
dure, until T(CT) is satisfied. Because the tree
only becomes smaller, termination is guaranteed.
Because only λ-nodes are removed, T(CT) will
eventually be satisfied.

Figure 6: Left tree violates integral, we fix it by
removing nodes and edges in the red box.

3.6. From Tree To Proof Net

Given a tree that is generated by the model, we
can build a proof net recursively from proof nets
of sub-tree(s). Algorithm 1 demonstrates such a
procedure.

Algorithm 1: Generating a proof net from a
tree.
Result: proofnet

1 Algorithm gen(t)
2 p = t.prim;
3 if t.child = NIL then
4 return proof net of p |= p;
5 con = (t, t.child[0]).connective;
6 if c.prim = λ & con = / then
7 sub_pn = gen(c);
8 if len(sub_pn LHS)=1 then
9 return sub_pn;

10 else
11 pn = sub_pn apply Figure 7;
12 return pn;
13 else if c.prim = λ & con = \ then
14 sub_pn = gen(c);
15 if len(sub_pn LHS)=1 then
16 return sub_pn;
17 else
18 pn = sub_pn apply Figure 8;
19 return pn;
20 pn = proof net of p |= p;
21 foreach c ∈ t.child do
22 sub_pn = gen(c);
23 con = (t, c).connective;
24 if con = / then
25 pn = pn and sub_pn apply

Figure 9
26 else
27 pn = pn and sub_pn apply

Figure 10
28 end
29 return pn;

Instead of actually modifying the tree during re-
pair, Algorithm 1 merely ignores those λ-nodes
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(a) Input: sub_pn.

(b) Output: pn.

Figure 7: We do not change the sequence of
terminal formulae, and the linkage, only step is
to combine left most two categories using the
inverse of unfolding rule 4. This will create a
new variable vn+2. And change the proofnet of
A1, A2, ..., An−1, An |= An+1 to A1, A2, ..., An−1 |=
An+1/An.

(a) Input: sub_pn.

(b) Output: pn.

Figure 8: We move all the formulae generated
by first category to the end. So A1 becomes
the left most category in the sequent. But do
not change the endpoints of linkages. Linkage
is still planar. Then combine left most two cate-
gories using the inverse of unfolding rule 2. This
will also create new variable vn+2. This proce-
dure will change A1, A2, ..., An−1, An |= An+1 to
A2, ..., An |= A1\An+1.

while generating the corresponding proof net in
lines 8 to line 19.

3.7. Probability Convergence

We must then define the probability of a proof net,
P , as the sum of the probabilities of all of the trees
for which there is a sequence of repairs ending in
the integral tree that converts directly to P . There
are infinitely many such trees, and yet that infinite
sum does converge:

(a) Input: Top one is pn, bottom one is sub_pn.

(b) Output: pn.

Figure 9: Let p+ : v be the root of tree t, there is
unique Ak that contains the axiom primitive that
links to p+ : v. First move Bm in the sub_pn from
right most to left most without modifying the end-
points of the linkage. So it is still planar. Then move
entire sub_pn inside pn between Ak and Ak+1.
Then combine Ak and Bm by the inverse of unfold-
ing rule 3. This procedure will result a new proofnet
A1, ..., Ak/Bm, B1, ..., Bm−1, Ak+1, ... |= An.

Theorem 3.3. Given a proof net P and its cor-
responding integral LC-tree T , let p1 = Prob(T ),
p2 = Prob(λ→ \λ) + Prob(λ→ /λ) and n be the
number of nodes v in T such that, in the subtree
rooted at v, the number of λ-nodes is exactly one
less than the number of non-λ-nodes. Then:

Prob(P ) =
p1

(1− p2)n

3.8. N-parent LCG

PLCG extends in the same way as Markov assump-
tions do. In the previous generative model, the cur-
rent state only depends on one previous state. This
assumption leads to a problem, however. For some
sequent, there might be multiple ambiguous proof
nets that derive them, each receiving the same
probabilities. For example, A/A A A\A |= A has
two LC-trees as shown in Figures 11 and 12. If
the training set contains only one sample which
is Figure 11, it has two production rules A → \A
and A→ /A. And both have conditional probabil-
ity 1

2 . Both Figures 11 and 12 then receive 1
4 as

probabilities. But Figure 11 should have a higher
probability than Figure 12 since this is the one
attested in the training set.

We name the previous model Uni-parent PLC+,
because it depends on only one previous state.
We call the model that depends on two previous
states Bi-parent PLC+. In Bi-parent PLC+, the
training set that contains only Figure 11 will learn
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(a) Input: Top one is pn, bottom one is sub_pn.

(b) Output: pn.

Figure 10: Let p+ : v be the root of tree t,
there is unique Ak that contains the axiom prim-
itive that links to p+ : v.We do not change
anything to sub_pn. Move entire sub_pn in-
side pn between Ak and Ak+1. Then com-
bine Ak and Bm by the inverse of unfolding
rule 1. This procedure will result a new proofnet
A1, ..., B1, ..., Bm−1, Bm\Ak, Ak+1, ... |= An.

two production rules: A → \A and A\A → /A.
Therefore, Figure 12 will receive 0 probability, as
wanted.

A

A

A

\

/

Figure 11: LC-tree for A/A A A\A |= A.

A

A

A

/

\

Figure 12: LC-tree for A/A A A\A |= A.

4. Results

4.1. Dataset

LCGbank(Bhargava et al., 2024) is a conversion
of CCGbank(Hockenmaier and Steedman, 2007)
to LCG. CCGbank in turns a conversion of the

Penn TreeBank(Marcus et al., 1993). We train and
test on LCGbank, using section 23 as the test set,
which contains 2416 proof nets. For the training
set, we use sections 1-22 and 24, which contain
44870 proof nets. Unlike the Penn TreeBank, which
uses more than 50 POS tags, LCGBank only has
4 primitives: NP, S, N and conj,

4.2. Comparison with Probabilistic
Context Free Grammar

We name our models *-parent PLC+, and compare
our results with PLC(Zhao and Penn, 2021) and
PCFG, all using MLE parameter estimation. The
PCFG is trained and tested on the PTB with the
same sections. Also, we exclude the lexica which,
for PLC(+), means that we are generating sequents
instead of sentences. For PCFG, this means we
only generate POS tag sequences, for uniformity.

Table 1 shows the coverage of six models, in-
cluding four PLC+ variants. PCFG assigns zero
probability to 272 sentences in the test set. That is
because many production rules in the PTB test set
never appear in the training set. PLC is capable
of generating all sequents in the test set. Uni-
parent PLC+ cannot generate all test set sequents,
although only 8 are missing. Even Quad-parent
PLC+ has better coverage than PCFG.

P ≥ 0 P = 0
PCFG 2144 272
PLC 2416 0

Uni-parent PLC+ 2408 8
Bi-parent PLC+ 2373 43
Tri-parent PLC+ 2283 133

Quad-parent PLC+ 2149 267

Table 1: Number of sentences receiving positive
and zero probabilities.

Table 2 shows that the majority of sequents are
assigned a higher probability by all of the PLC+
variants than by PCFG.

>0 <0 0
Uni-parent PLC+ 528 1883 5
Bi-parent PLC+ 298 2098 20
Tri-parent PLC+ 234 2136 46

Quad-parent PLC+ 205 2132 79

Table 2: Sign of p(PCFG)− p(PLC+).

Table 3 presents the normalized negative log
likelihood (NLL) of the test set, which is calculated
by adding the log probabilities of each sequent
and then dividing by the total number of tokens.
Note that we only compute NLL using inputs with
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positive probability. These two tables together sug-
gest that PLC+ is far better at saving probability for
sequents that we know to exist.

Although PLC has excellent coverage, its NLL
performance is very poor. It does not generalize as
well beyond its training data. PLC+ achieves great
NLL with just a slight loss in coverage.

PCFG 2.95
PLC 4.06

Uni-parent PLC+ 2.36
Bi-parent PLC+ 1.96
Tri-parent PLC+ 1.75

Quad-parent PLC+ 1.71

Table 3: Negative log probability of test set normal-
ized by the number of tokens.

4.3. LCG Proofnet Ranker

We can also employ PLC+ for ranking proof nets.
A given LCG sequent may have numerous pos-
sible proof nets (“matches”). In Figure 13, the
sequent with the maximum number of proofnets
reads slightly over 14 on a (natural) log scale,
which corresponds to more than 2 million possi-
ble proof nets.

Only one of these is the gold-standard proof
net found in the corpus, however. As shown in
Figure 14, 419 sequents among the 2285 within
the test set of length ≤40 have a unique proof
net. An additional 205 sequents have two possible
proof nets (matches), and so forth. 567 sequents
have more than 50 possible proof nets. The Bi-
parent PLC+ assigns the highest probability to the
gold-standard proof net for 1329 of these sequents
(including the 419 with only one to offer). The gold
standard ranks second for another 264 sequents
and so on. The Bi-parent variant was chosen for
this figure because it has the best distribution. This
demonstrates the power of the probabilistic model
for proofnet disambiguation. On the other hand,
when it is wrong, it can be very wrong. While the
median gold-standard rank is 1, the mean is 82.

5. Conclusion and Future work

In this work, we have presented a probabilistic gen-
erative model for sequent derivability in the Lambek
calculus. We compared it with PCFG and with the
only other known approach to generative LCG us-
ing MLE, both trained and tested on comparable
corpora. The results show that PLC+ has the high-
est data likelihood and the best overall combination
of data likelihood and test-set coverage.

The performance of PLC+ may be further im-
proved if we use a different corpus that utilizes
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Figure 13: Number of proof nets for sequents in
the LCGbank test set of length ≤40, sorted by
sequent length. The red line is the natural-log-
scale linear regression between number of proof
nets and length, which has a slope of 0.19.
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Figure 14: Gold-standard ranks and number of
proof nets for sequents in the test set with length
≤40.

more primitives than just 4. This model can also be
used to determine the best proof net for a sequent
— the first such algorithm known to exist for the
Lambek Calculus. This opens the door to using
LCG for other downstream NLP tasks.

6. Proofs

Lemma 6.1. Let f be a mapping from proofnets to
LC-graphs+ by the above procedures. f is surjec-
tive.

Proof. Induction on the number of nodes. We want
to prove that, for each LC-graph+ G, there exists
a proofnet P such that f(P ) = G. We denote the
root of G as a.
Base case: n = 2.
Let p denote the primitive of each node. The
proofnet of p |= p generates the LC-graph+.
Inductive Step:
case11: the root is a lambda node.
Then root only has one positive child. b denotes
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this node. Then by IH, there must exist a proofnet
P1 of sequent A1 ... An |= An+1 that generates
the LC-graph+ rooted at b. If the augment of edge
a → b is /, then the proofnet P of A1 ... An−1 |=
An+1/An generates G. Otherwise, the proofnet P
of A2 ... An |= A1\An+1 generates G. P and P1

have the same linkages.
case 2: the root is not a lambda node.
Let p be the augmented primitive of the root. Let
b1 ... bm be the positive children of a, with this order.
Each LC-graph+ rooted at bi can be generated by
a proofnet Pi such that f(Pi) = bi. Each Pi is a
proofnet for the sequent Γi |= Xi. Then the fol-
lowing proof net generates G, starting from the
proof net of p |= p. Let A be the LHS category that
contains p:

• for i:=1 to m:

• if the augment of the edge a→ bi is /, update
P as the proofnet of A/Xi Γi |= p.

• if the augment of the edge a→ bi is \, update
P as the proofnet of Γi Xi\A |= p.

Apparently all linkages in Pi are also in P , with an
extra link from root to its negative child.

Lemma 6.2. Let f be a mapping from proofnets to
LC-graphs+ by the above procedures. f is injec-
tive.

Proof. Induction on the number of nodes in the LC-
graph+. We want to prove that if f(P1) = f(P2) =
G then P1 = P2.
Base case: n = 2. Let p be the augmented primi-
tive of the root of G. The only case is p |= p.
Inductive Step:
case 1: The root is a lambda node.
Let a be the root of the LC-graph+ and b, the posi-
tive child of a. Assume P1 and P2 are different.
First consider a → b = /. P1 is for the sequent
A1 ... An |= An+1/An+2 and P2 is for the sequent
B1 ... Bm |= Bm+1/Bm+2. There must exist a
proofnet P ′

1 such that all the links are the same as
in P1 but the sequent is A1 ... An An+2 |= An+1.
Also, there must exist a proofnet P ′

2 such that all
links are the same as in P2 but the sequent is
B1 ... Bm Bm+2 |= Bm+1. If P1 ̸= P2 then P ′

1 ̸= P ′
2.

But f(P ′
1) = f(P ′

2), which is the LC-subgraph+
rooted at b, so by IH, P ′

1 = P ′
2, which is a contradic-

tion.
The proof of the dual case a → b = \
is the same, except P1 is for the sequent
A1 ... An |= An+1\An+2, P2 is for the sequent
B1 ... Bm |= Bm+1\Bm+2, P ′

1 is for the sequent
An+1 A1 ... An |= An+2, and P ′

2 is for the sequent
Bm+1 B1 ... Bm |= Bm+2.
case 2: The root is not a lambda node.
case 2a: G contains at least one lambda node.
Let b be any anterior lambda node. Let G′ be the

LC-graph+ of G but remove the sub-graph rooted
at b. There must exist a unique proofnet P1 for
sequent Γ |= A for the LC-graph+ rooted at b.

By Lemma 4.9 and Lemma 4.10 in (Zhao and
Penn, 2021), everything in the tree rooted at b can
be removed to form a new proofnet of G′, say P ′.
By IH, P ′ is unique. P1 is also unique, and so the
proofnet of G is also unique.
case2b: G contains no lambda node. This obvious
case is proved by Lemma 4.12 in (Zhao and Penn,
2021) and IH.

Theorem 6.3. Let f be a mapping from proofnets
to LC-graphs+ by the above procedures. f is bijec-
tive.

Proof. From Lemma 6.1 and Lemma 6.2

Theorem 6.4. Let P be a valid proofnet and G =
⟨V,E⟩ be its corresponding LC-graph+. Let E′ =
{(u, v)|(u, v) ∈ E, u is a lambda node , v is
negative} and T = ⟨V,E − E′⟩. Given T , the rest
of G can be inferred.

Proof. It is sufficient to prove that for each LC-
Graph+ rooted at lambda-node a, if all its descen-
dent lambda nodes are inferrable then the edge
from a to its negative daughter is also inferrable. If
this holds then G itself is inferrable from bottom to
top.
Let b be the positive child of a. Consider the sub-
graph G′ rooted at b.
case 1: edge a → b = /. Theorem 6.3 im-
plies that there exists a unique P ′ with sequent
A1 ... An An+1 |= An+2 such that f(P ′) = G′.
Consider the proof net P of sequent A1 ... An |=
An+2/An+1 that has same linkage as P ′. The LC-
graph+ should be the same as the subgraph of G
rooted at a. By Lemma 6.2, such P is unique. So
the edge from a to its negative daughter is also
unique. a should link to the node representing the
category An+2.
case 2: edge a→ b = \. Similar to case 1, but P
is for the sequent A2 ... An An+1 |= A1\An+1.

Theorem 6.5. Given a proof net P and its cor-
responding LC-tree T , let p1 = Prob(T ), p2 =
Prob(λ→ \λ) + Prob(λ→ /λ) and n be the num-
ber of nodes v in T such that, in the subtree rooted
at λ, (the number of lambda nodes) = (the number
of non-lambda nodes) - 1. Then:

Prob(P ) =
p1

(1− p2)n

Proof. Let us consider a simple case of LC-tree
from the right side of Figure 6, where n = 1.
Then all the trees in Figure 15 generate the same
proofnet. So to compute the probability of the
proofnet, we need to compute the probability of
the sum of the trees. For the case n > 1, all the
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trees with an extra lambda node right above the n
nodes described in the statement of the theorem
are able to generate P .

S

λ

λ

S

NP

/

\

/

Figure 15: Set of trees that generates the same
proofnet.

Let us define the tree Tk1,...kn with n subscripts
ki, 1 ≤ i ≤ n. ki decorates a tree that adds ki
extra lambda nodes above the ith node for which
(the number of lambda nodes) = (the number of
non-lambda nodes) - 1. Note that if ∀i, ki = 0, then
Tk1,...kn = T .

Let us consider the proposition that, for any m:∑
ki≥0∀i≤m,
ki=0∀i>m

prob(Tk1,...kn
) =

p1
(1− p2)m

We prove this by induction on m.
base case: m = 0. then∑

ki≥0∀i≤m,
ki=0∀i>m

prob(Tk1,...kn) = Prob(T )

= p1

=
p1

(1− p2)n

as wanted.
Inductive Step:∑

ki≥0∀i≤m,
ki=0∀i>m

prob(Tk1,...kn)

=

∞∑
km=0

∑
ki≥0∀i≤m−1,
ki=0∀i>m

prob(Tk1,...kn
)

=

∞∑
i=0

pi2
∑

ki≥0∀i≤m−1,
ki=0∀i>m

km=0

prob(Tk1,...kn
)

=

∞∑
i=0

pi2
∑

ki≥0∀i≤m,
ki=0∀i>m

prob(Tk1,...kn
)

=

∞∑
i=0

pi2
p1

(1− p2)m−1
ByIH =

p1
(1− p2)m

Then we are able to compute Prob(P ), since
all Tk1,...kn

are able to generate P by Algorithm 1.
Therefore, the probability of P is :

Prob(P ) =
∑

ki≥0∀i≤n

prob(Tk1,...kn)

=
p1

(1− p2)n
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