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Abstract
Knowledge-intensive tasks pose a significant challenge for Machine Learning (ML) techniques. Commonly adopted
methods, such as Large Language Models (LLMs), often exhibit limitations when applied to such tasks. Neverthe-
less, there have been notable endeavours to mitigate these challenges, with a significant emphasis on augmenting
LLMs through Knowledge Graphs (KGs). While KGs provide many advantages for representing knowledge, their
development costs can deter extensive research and applications. Addressing this limitation, we introduce a
framework for enriching embeddings of small-scale domain-specific Knowledge Graphs with well-established
general-purpose KGs. Adopting our method, a modest domain-specific KG can benefit from a performance boost
in downstream tasks when linked to a substantial general-purpose KG. Experimental evaluations demonstrate a
notable enhancement, with up to a 44% increase observed in the Hits@10 metric. This relatively unexplored
research direction can catalyze more frequent incorporation of KGs in knowledge-intensive tasks, resulting in more
robust, reliable ML implementations, which hallucinates less than prevalent LLM solutions.

Keywords: knowledge graph, knowledge graph completion, entity alignment, representation learning, ma-
chine learning

1. Introduction

In recent years, machine learning has started to
be commonly used in numerous applications. Re-
cent advancements in Natural Language Process-
ing, especially the emergence of Large Language
Models (Devlin et al., 2019; Brown et al., 2020;
Touvron et al., 2023), have sparked the adoption
of AI-based solutions in many real-world circum-
stances. The ever-growing demand for automat-
ing knowledge-intensive tasks (Petroni et al., 2021)
motivates many researchers to utilize NLP solu-
tions, but these are prone to errors (Adlakha et al.,
2023; Bowman, 2023). Knowledge-intensive tasks
are characterized by the need for comprehensive
understanding and reasoning, meaning they re-
quire AI models to go beyond surface-level data
and tap into a wealth of interconnected informa-
tion, much like a human expert would (Lewis et al.,
2020), while also accounting for the frequent up-
dates of its knowledge. Examples of knowledge-
intensive tasks include question-answering sys-
tems, fact-checking, information retrieval, and rec-
ommendation systems (Petroni et al., 2019). To
deal with the peculiarities of such a setting, one
might leverage Knowledge Graphs (KGs) that hold
knowledge specific to the domain of interest. That
is why there were several attempts to combine Lan-
guage Models with KGs (Colon-Hernandez et al.,
2021). However, building comprehensive KGs is
an expensive and complex task (Sequeda and Las-

sila, 2021), thus often avoided, which might hinder
the development of many endeavours. Therefore,
to foster the further development of KG-based sys-
tems, we propose a framework that combines well-
developed KGs with smaller and still-developing
domain-specific KGs.

Creating a KG is a resource-intensive process
that requires a significant investment of time and
capital. This makes it particularly challenging for
small to medium-sized teams, startups, or groups
in academia, who often face resource constraints
(Ji et al., 2022). A small, developing KG might be
insufficient as such a graph often suffers from lim-
ited relational structures, sparse entity interactions,
and reduced contextual information. This scarcity
of data can limit the model’s ability to generalize
well, capture intricate semantic relationships, or
make accurate predictions. To leverage the full po-
tential of Knowledge Graphs and enable their early
adoption, we propose an unexplored approach –
to focus on creating a smaller, domain-specific
KG (DKG), which addresses specific needs, and
combining it with a broader but well-developed
general-purpose KG (GKG). This enables small
KGs to immediately leverage additional knowledge
in downstream tasks, eventually leading to better
performance. This concept is visualized in Figure
1, i.e., we automatically link domain-specific KG
to general-purpose KG using entity alignment (or
alignment for short) and linking operations, which
combine two KGs by matching their nodes and
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Figure 1: Diagram presenting two aligned and
linked Knowledge Graphs: domain-specific (up-
per), general-purpose (bottom). Artificial links,
marked with dashed lines, connect two KG.

putting artificial links between them. Further, we
train a translation-based embedding method in a
KG completion task. We demonstrate that training
such a model on the linked KGs can enhance per-
formance in a downstream task of KG completion
on the domain-specific graph compared to a sce-
nario without general-purpose KG.

We summarize our contributions as follows:

1. We propose a generic and modular frame-
work for enriching small and domain-specific
KGs with general-purpose KGs using align-
ment and linking operation. The framework
is tailored to real-world scenarios.

2. We propose an evaluation methodology for ex-
periments and conduct empirical studies on
synthetic and real-world scenarios. In both
settings, evaluation is conducted under rigor-
ous conditions, i.e., DKG lacks many nodes
and links to perform well on a downstream
task.

3. We propose a weighted loss function to mit-
igate entity alignment’s negative effects be-
tween two considered KGs.

The work adheres to the widely-renowned re-
producibility standards. We publish full imple-
mentation and data (datasets, models) in the
GitHub repository1, and experiment tracking logs
on Weights&Biases (Biewald, 2020)2.

2. Related Work

To leverage a Knowledge Graph in a downstream
task, like KG completion, one has to obtain rep-
resentations (Bengio et al., 2013) of its entities
(and relations), which are feature vectors describ-
ing these objects (Hamilton et al., 2017), similar
to (contextual) word embeddings in Natural Lan-
guage Processing. This pertains to using stan-
dalone KG or fusing it with Large Language Model
(Colon-Hernandez et al., 2021). Recently, learn-
ing representation on graphs, including Knowl-
edge Graphs, gained much interest in the commu-
nity, primarily due to the development of Graph
Neural Networks (Gilmer et al., 2017; Kipf and
Welling, 2017). Representation learning of KGs
aims to map entities and relationships into low-
dimensional vector spaces, thereby indirectly cap-
turing their semantic meaning (Bengio et al., 2013).
However, unlike the most prevalent setup of pro-
cessing homogeneous graphs, learning represen-
tations on KGs requires tackling two main chal-
lenges. First, the vast size of KGs poses issues
as most established methods lose efficacy when
handling billions of data points. Second, KGs often
lack completeness due to inherent imperfections in
their creation process (Pujara et al., 2017).

Nonetheless, several groups of representation
learning methods for KGs can be found in the lit-
erature. Among these groups, translation-based,
GNN-based (Zhang et al., 2022), and factorization-
based (Trouillon et al., 2017; Balazevic et al., 2019)
methods stand out the most. The TransE model
(Bordes et al., 2013) is one of the most com-
mon translation-based models in KG representa-
tion learning. It operates on the principle of rep-
resenting relations as translations in the embed-
ding space, i.e., the embedding of the edge should
move the embedding of the head entity to end up
with an embedding of the tail entity. Due to sev-
eral limitations of TransE, models such as RotatE
(Sun et al., 2019), BoxE (Abboud et al., 2020), and
QuatE (Zhang et al., 2019) were proposed. For in-
stance, RotatE leveraged complex space, and the
representation of each relation is a rotation from
head to tail entity. Thus, RotatE can encapsulate
information about symmetry, anti-symmetry, inver-

1https://github.com/graphml-lab-pwr/
empowering-small-scale-kg

2https://wandb.ai/graph-ml-lab-wust/
empowering-small-scale-kg

https://github.com/graphml-lab-pwr/empowering-small-scale-kg
https://github.com/graphml-lab-pwr/empowering-small-scale-kg
https://wandb.ai/graph-ml-lab-wust/empowering-small-scale-kg
https://wandb.ai/graph-ml-lab-wust/empowering-small-scale-kg
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sion, and composition in the learned representa-
tions (Sun et al., 2019).

The requirements of KGs for learning the at-
tribute features and structural features of entities
and relationships can be met by GNN-based meth-
ods, which integrate the topology and attribute in-
formation. An early yet still prevalent approach
is the Relational Graph Convolutional Networks
(R-GCN) (Schlichtkrull et al., 2018), a relation-
aware variant of GCN. Later significant methods
include CompGCN (Vashishth et al., 2019), KB-
GAT (Nathani et al., 2019). While GNNs showed
promising performance in several studies, we
chose the family of translation-based methods for
learning representations on combined graphs due
to their comparable performance to GNN models
with higher stability and shorter learning times (Ali
et al., 2022).

Besides, in our work, we propose combining
two graphs by entity alignment and linking op-
eration before learning representations of enti-
ties. Given two KGs, alignment aims to au-
tomatically find matching pairs of entities corre-
sponding to the same real-world entity (Zhang
et al., 2022), and linking creates artificial connec-
tions between aligned entities. While several ap-
proaches for data-driven alignment (Zeng et al.,
2021) were proposed, including MTransE (Chen
et al., 2017), bootstrapping (Bordes et al., 2013),
or AttrE (Trisedya et al., 2019), current bench-
marks for assessing these methods exhibit notable
restrictions: assumptions of bijection, a lack of
name variety, and small scale of graphs. These
limitations starkly contrast with the realities en-
countered in real-world applications, which tend
to be larger in scale, more diverse, and far from
a 1:1 mapping (Zhang et al., 2022). In our work,
we accept that alignment methods might be imper-
fect and link two graphs based on simple similar-
ity scores between entities. Instead of optimizing
loss terms related to alignment, as done in other
studies (Liu et al., 2022; Sun et al., 2017), we
directly optimize KG completion loss over linked
KGs. The previous literature tackled graph link-
ing, but not our approach for embedding enrich-
ment. While aligned with the semantic web vision
(Gruber, 1995; Berners-Lee et al., 1998), our focus
goes beyond traditional discourse. Hence, to the
best of our knowledge, this is the first investigation
of this type.

3. Methodology

In this work, we propose learning Knowledge
Graph completion in a small-scale domain-specific
KG by connecting it with a larger general-purpose
KG by alignment and linking operation. Further,
such linked KG is fed to a downstream task model,

i.e., KG completion. The entire framework is
schematically presented in Figure 2, and below,
we formally introduce each component.

3.1. Notation

We denote Knowledge Graph as a multi-relational
heterogeneous graph G = (E ,R, T ), consisting
of a set of entities E , a set of relation predicates
R, and a set of triples (facts) T . A single triple
(h, r, t) ∈ T indicates a relation predicate r be-
tween two entities, a head entity h and a tail entity
t, where h, t ∈ E and r ∈ R (Hamilton et al., 2017).

3.2. Alignment and Linking

First, we define entity alignment in the context of
two KGs: a domain-specific (d) one and a general-
purpose (g) one:

Gd = (Ed,Rd, Td), Gg = (Eg,Rg, Tg)

Alignment aims to discover entity pairs (e
(d)
i , e

(g)
j ),

e
(d)
i ∈ Ed, e(g)j ∈ Eg where e

(d)
i and e

(g)
j correspond

to the same real-world entity. In other words, e(d)i

and e
(g)
j are aligned entities (Zeng et al., 2021).

We propose a simple strategy for alignment, de-
tailed below.

We observe that each entity has assigned a
word label, such as ”car”, and we can vectorize
it using a text embedding method of our prefer-
ence. Further, to achieve the representation x(ei)
for each entity ei, we concatenate three terms: em-
bedding of entity label, mean embedding of outgo-
ing neighbours’ labels and mean embedding of in-
going neighbours’ labels:

x(ei) =

ϕ(ei)
∥∥∥∥∥ ∑

eu∈O(ei)

ϕ(eu)

|O(ei)|

∥∥∥∥∥ ∑
ev∈I(ei)

ϕ(ev)

|I(ei)|

 ,

where embedding ϕ(·) is a pre-trained text embed-
ding,

∥∥∥ denotes the concatenation operator, O(ei)

returns outgoing nodes and I(ei) returns ingoing
nodes.

Then, for each entity in the DKG, we find k near-
est entities in the GKG, based on x(·) embeddings,
where k is a hyperparameter. The nearest neigh-
bour search leverages a vector distance metric,
e.g., euclidean, cosine. Further, for any pair of
found neighbours e

(d)
i and e

(g)
j , we create an ar-

tificial triple (e
(d)
i , rl, e

(g)
j ) ∈ Tl between two KGs

and call it linking. The linked KG is formalized as:

Gl = (Ed ∪ Eg,Rd ∪Rg ∪ {rl}, Td ∪ Tg ∪ Tl),
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Figure 2: Overview diagram of the proposed framework’s pipeline.

3.3. Representation Model
Representation learning aims to learn a model
that extracts relevant and semantically rich fea-
tures from the underlying data. In the context of
knowledge graphs, we formalize this task as learn-
ing (parametrized) function fθ : Gl → Z, where
Z ∈ RN×d is a matrix of entity representations,
where N is the number of entities, and d is a dimen-
sionality of the representation. In other words, we
expect to optimize θ under a particular loss func-
tion. It is worth noting that Representation Model
can be trained end-to-end with KG completion in
a supervised setting (Hamilton et al., 2017), which
is also our case. We present the particular choice
for the representation model in Section 4.3.

3.4. KG completion and Weighted Loss
function

In the KG completion task, for every pair of en-
tities in KG, the model predicts the existence of
each possible relation between them (Hamilton
et al., 2017). During training, the model treats
existing relations as positive examples, and to
avoid collapse, negative relations are sampled
(non-existing ones). In our setting, we assume that
the alignment is imperfect. Hence, we introduce
a loss function which differently weights relations
arising from the linking operation by the distance
score used in nearest neighbour search, as shown
in Equation (1):

L(T , T̃ ; θ) =
∑

t∈Td∪Tg

L(t, T̃ ; θ)+
∑
s∈Tl

ws ·L(s, T̃ ; θ),

(1)
where L(·) denotes loss function for the entire

model, L(·) is a loss function of the Representation
Model, and T̃ represents the sampled negative re-
lations, andws = 1/(1+distance(x(ei), x(ej))) rep-
resents similarity score between representation of

aligned entities ei and ej .

4. Experiments

We proposed a framework that performs effectively
in real situations, mainly when DKG are much
smaller than GKG. Since existing datasets do not
capture this scenario, we designed a custom eval-
uation procedure to fit this context. In particu-
lar, two distinct scenarios were implemented: syn-
thetic and real-world.

4.1. Datasets
In the experiments, we leveraged common KG
datasets which emulate the realistic conditions of
size diversity, domain overlapping, and mapping
possibilities. WN18RR (Dettmers et al., 2018)
– derived from WordNet (Miller, 1995), a lexical
database of English focuses on semantic relations
between words. FB15k-237 (Toutanova and Chen,
2015) – sourced from Freebase, a knowledge
graph that spans encyclopedic topics. WD50K
(Galkin et al., 2020) – an encyclopedic KG ex-
tracted from Wikidata (Vrandečić and Krötzsch,
2014) based on the seed nodes corresponding
to entities from FB15k-237. ConceptNet (Speer
et al., 2017) – semantic network encapsulating
commonsense knowledge (we used version 5.7.0
and extracted the English segment of this KG).
YAGO3-10 (Mahdisoltani et al., 2015) – a common-
sense KG sourced from multiples sources, includ-
ing WordNet (Miller, 1995).

To access textual labels of entities, we used
decoded versions of WN18RR, FB15k-237, and
YAGO3-10, which are available in the repository3.
For WD50K, we utilized Wikidata API4 to map en-

3https://github.com/villmow/datasets_
knowledge_embedding

4https://www.wikidata.org/wiki/
Wikidata:REST_API

https://github.com/villmow/datasets_knowledge_embedding
https://github.com/villmow/datasets_knowledge_embedding
https://www.wikidata.org/wiki/Wikidata:REST_API
https://www.wikidata.org/wiki/Wikidata:REST_API


5772

tity IDs to their textual labels. ConceptNet inher-
ently provides textual labels for its entities, elim-
inating the need for decoding. Finally, we re-
moved all terms used for identity identification, e.g.,
absorb.v.01 → absorb. The detailed statistics
of the used datasets are presented in Appendix B:
Table 3.

4.2. Evaluation procedure
An approach we adopted involves taking a dataset
and then sampling it for use as the DKG that we
used for both synthetic and real-world scenarios
we describe below.

4.2.1. Sampling

To simulate the early stages of KG development,
we introduce three distinct graph sampling strate-
gies:

Triple sampling draws triples (facts) at random.
While this directly affects the number of facts in the
sampled KG, it retains all entities and relations in
the chosen triples. However, this might result in
some entities or relations being disconnected.

Node sampling selects entities and all triples
associated with it. This approach often produces
a more cohesive subgraph but may exclude distant
interactions.

Relation sampling selects relations and all
triples containing this relation. This method fo-
cuses on preserving specific interactions, poten-
tially leading to diverse entities included, but only
via the selected relations.

Each strategy is parameterized by the probabil-
ity p of keeping a triple, node, or relation in the sam-
pled graph, thus determining the size of the result-
ing DKG. It offers precise control over the sampling
intensity, allowing us to craft KGs of varying sizes
and complexities to mimic different stages in devel-
oping a KG. The detailed statistics of the sampled
datasets are presented in Appendix B: Table 4.

Given the standard transductive setting, we
added an initial step to the sampling procedure
to ensure that all entities and relations from the
validation (val) and testing (test) subsets are pre-
served in a sampled dataset. This allowed to com-
pare across varying sampling parameters. For
triple sampling, this entails having at least one
triple for every entity and relation from the val/test.
In node sampling, for every entity from these sub-
sets, we ensure the preservation of at least one
connected entity, guaranteeing the inclusion of at
least one associated triple. However, depending
on the value of p, retaining all val/test data might
be impossible, leading to varying minimum p val-
ues across datasets. Notably, in relation sampling,
retaining the val/test subsets is impossible. Due
to that, performance metrics derived from these

sampled subsets should be interpreted cautiously,
avoiding direct comparisons among themselves
and with other datasets.

4.2.2. Scenarios

Synthetic scenario In this scenario, the GKG is
the original version of the graph, while the sam-
pled version is taken as DKG. Primarily, the syn-
thetic scenario provides a controlled environment
that mimics realistic conditions of non-proportional
graphs. It guarantees that the knowledge domains
of the two KGs overlap perfectly, ensuring that a di-
rect 1:1 alignment is feasible. This controlled align-
ment, in turn, provides a more straightforward con-
text to evaluate and understand the properties of
our proposed framework.

Real-world scenario Here, an external, distinct
KG takes on the role of the GKG, i.e., the two KGs
are inherently different. This mirrors realistic sce-
narios where it is needed to enhance the efficacy
of an underdeveloped knowledge graph by enrich-
ing it with a more extensive and well-established
KG. For instance, consider the sampled WN18RR
linked to ConceptNet, which encompasses knowl-
edge spanning the domain of WordNet. Unlike the
synthetic scenario, this real-world setup does not
offer the same level of control for the experimental
phase.

4.3. Experimental setup

4.3.1. Model setup

To perform alignment, we selected fastText word
embeddings (Joulin et al., 2016), as these turned
out to be effective in the KG domain (Liu et al.,
2022). During linking, we performed k nearest
neighbours search based on the Euclidean dis-
tance, leveraging the FAISS library (Johnson et al.,
2019). Further, as a Representation Model, we uti-
lized RotatE (Sun et al., 2019), which optimizes
lookup embeddings for each entity and relation.
We trained RotatE end-to-end with the KG comple-
tion task (without updating FastText embeddings).
We considered two variants of the loss function:
the first setting involves the weighted loss func-
tion from Eq. (1) setting both L(·) terms to self-
adversarial negative sampling loss (Sun et al.,
2019); the second uses standard loss that is equiv-
alent to setting all weights w = 1.0 in the weighted
loss. To optimize the model, we leveraged the
Adam optimizer (Kingma and Ba, 2014).

Based on the insights from Ali et al., 2022 com-
bined with our empirical observations, the param-
eters were established as follows: the embedding
dimension was set at 256, the batch size at 512,
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the learning rate at 0.004, the margin at 9, the ad-
versarial temperature at 0.34, for every positive 33
negatives were generated, and the models were
trained for 200 epochs.

During the synthetic scenario, the parameter k
was searched across values {1, 2, 3}. Based on
the results of this exploration, k was set to 1, as
it emerged as the most promising value for a real-
world scenario. Additionally, due to the large size
of GKGs in the real-world scenario, we consid-
ered cropping them to include only aligned enti-
ties and their c-hop neighborhood. This approach
reduced experiment time and, as our empirical
results showed, enhanced performance. Based
on preliminary results, we defined specific crop-
ping strategies (c = ∞ meaning not cropping) for
each (DKG, GKG) pair, and then searched to se-
lect the best-performing one. These strategies are
as follows: for (WN18RR, FB15k-237) c = ∞;
for (FB15k-237, YAGO3-10), c ∈ {1, 2}; and for
(WD50K, FB15k-237), we set c ∈ {1,∞}. For all
other pairs, we set c = 1.

4.3.2. Training & evaluation

DKGs were created by sampling based on strate-
gies described in Section 4.2.1 with values p ∈
{0.4, 0.6, 0.8}. There were three types of training
setups: single graph (using only the DKG with-
out any links to external graph); synthetic sce-
nario (linked with original GKG); real-world sce-
nario (linked with distinct GKG). Due to the non-
trivial nature of GKG selection in the real-world sce-
nario, we tested two different options for the GKG.
DKGs were sampled from WN18RR, FB15k-237,
and WD50K. For FB15k-237 and WD50K, node
sampling had to be restricted due to the high di-
versity of nodes in val/test (see Section 4.2.1). In
the real-world scenario, the ConceptNet, FB15k-
237, and WD50K were utilized as GKGs. Exper-
iments conducted on a single graph or for a syn-
thetic scenario were executed 3 times each with
a distinct random seed for both the sampling pro-
cedure and the model initialization. However, due
to the low standard deviation observed across the
runs, we reduced the number of runs to one for the
real-world scenario. We reported the mean and
standard deviation values of the runs. We used
standard metrics for the KG completion task, com-
puted on DKG: Hits@10, Mean Rank (MR) and
Mean Reciprocal Rank (MRR). During the hyper-
parameter search, the mean Hits@10 on val was
chosen as the benchmark to determine the optimal
set of hyperparameters.

The implementation used PyKEEN (Ali et al.,
2021) and PyTorch (Paszke et al., 2019) libraries.
To maintain reproducibility, we utilized DVC (Ku-
prieiev et al., 2023) and Weights&Biases (Biewald,
2020).

5. Results

5.1. Synthetic scenario

Results from the synthetic scenario are presented
in Table 1. For each combination of (dataset, sam-
pling, p), we recorded the efficacy of the trained
model on a single graph and using the proposed
framework (linked). The relative difference be-
tween them (boost) is a crucial metric that eval-
uates the framework. The results show that we
can obtain significant improvement by linking GKG.
Nevertheless, the boost is strictly dependent on
the sampling setting. The more rigorous the sam-
pling setting, the greater the increase in effective-
ness (see Figure 3). The negative correlation be-
tween p and performance boost indicates that our
framework can be helpful, especially in the harsh
conditions of early stages of KG development or
when it has limited data. Having only 40% of
triples we achieved 44.9%/0.0%/16.7% Hits@10
boost on WN18RR/FB15k-237/WD50K respec-
tively. However, the effectiveness differs among
the datasets. For instance, while WN18RR expe-
rienced a significant boost, FB15k-237 showed a
smaller increase. This variability can be attributed
to each dataset’s inherent characteristics and com-
plexities.

Figure 3: Synthetic scenario: performance boost
across different sampling strategies and varying
rates p. The boost is the performance improve-
ment the framework achieves over a single graph.
Please note that the relation sampling datasets
should not be directly compared amongst them-
selves as the test was not preserved, causing high
standard deviation (see 4.2.1).
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Hits@10 ↑ MR ↓ MRR ↑
sampling p single linked boost(%) single linked boost(%) single linked boost(%)

WN18RR
triple 0.4 0.347±0.005 0.502± 0.006 44.9 7681 ± 62 1245 ± 44 83.8 0.270 ± 0.003 0.345 ± 0.001 27.8
triple 0.6 0.446±0.001 0.519± 0.004 16.4 4908±172 1392 ± 15 71.6 0.342 ± 0.003 0.373 ± 0.004 9.3
triple 0.8 0.525±0.004 0.546± 0.004 4.0 2685±155 1435 ± 52 46.6 0.416 ± 0.005 0.421 ± 0.003 1.3
node 0.4 0.546±0.004 0.597± 0.002 9.3 2164 ± 52 713 ± 18 67.0 0.473 ± 0.002 0.494 ± 0.001 4.4
node 0.6 0.562±0.000 0.590± 0.001 4.8 2044 ± 29 950 ± 15 53.6 0.480 ± 0.001 0.488 ± 0.001 1.7
node 0.8 0.576±0.004 0.583± 0.001 1.3 1829 ± 8 1194 ± 20 34.7 0.484 ± 0.001 0.482 ± 0.001 −0.2
relation 0.4 0.696±0.182 0.721± 0.184 3.5 1083±450 124 ± 70 88.5 0.590 ± 0.233 0.557 ± 0.212 −5.6
relation 0.6 0.755±0.129 0.777± 0.143 2.8 1542±622 552± 649 64.2 0.684 ± 0.145 0.696 ± 0.160 1.7
relation 0.8 0.731±0.115 0.760± 0.135 4.0 2013±157 591± 671 70.7 0.659 ± 0.130 0.678 ± 0.149 3.0

Max boost (%) 44.9 88.5 27.8
Mean boost (%) 10.1 64.5 4.8

FB15k-237
triple 0.4 0.360± 0.002 0.360±0.000 0.0 315 ± 4 279 ± 1 11.2 0.204 ± 0.001 0.204 ± 0.001 0.1
triple 0.6 0.398± 0.001 0.393±0.003 −1.2 242 ± 1 231 ± 0 4.2 0.227 ± 0.001 0.224 ± 0.002 −1.5
triple 0.8 0.442± 0.000 0.430±0.002 −2.7 194 ± 2 195 ± 1 −0.3 0.254 ± 0.001 0.246 ± 0.000 −3.1
relation 0.4 0.480± 0.009 0.472±0.010 −1.6 256 ± 68 218 ± 61 14.7 0.297 ± 0.019 0.292 ± 0.018 −1.7
relation 0.6 0.490± 0.009 0.479±0.009 −2.2 197 ± 39 187 ± 39 5.0 0.308 ± 0.002 0.298 ± 0.000 −3.2
relation 0.8 0.502± 0.014 0.485±0.011 −3.3 169 ± 17 162 ± 12 4.4 0.304 ± 0.005 0.291 ± 0.004 −4.1

Max boost (%) 0.0 14.7 0.1
Mean boost (%) −1.8 6.5 −2.3

WD50K
triple 0.4 0.283±0.001 0.330± 0.000 16.7 1713 ± 42 585 ± 3 65.8 0.164 ± 0.001 0.189 ± 0.001 15.5
triple 0.6 0.353±0.000 0.369± 0.001 4.5 931 ± 20 503 ± 5 45.9 0.208 ± 0.001 0.213 ± 0.000 2.8
triple 0.8 0.400± 0.001 0.399±0.001 −0.2 667 ± 6 446 ± 4 33.1 0.240 ± 0.001 0.235 ± 0.000 −2.0
node 0.8 0.440± 0.002 0.431±0.001 −2.0 520 ± 2 380 ± 1 27.0 0.271 ± 0.001 0.259 ± 0.002 −4.6
relation 0.4 0.413±0.023 0.430± 0.029 4.0 768±123 343 ± 97 55.3 0.249 ± 0.025 0.254 ± 0.027 1.9
relation 0.6 0.437±0.014 0.439± 0.007 0.6 617 ± 42 337 ± 64 45.4 0.269 ± 0.013 0.263 ± 0.008 −2.2
relation 0.8 0.447± 0.016 0.441±0.008 −1.3 541 ± 83 336 ± 67 37.8 0.275 ± 0.010 0.266 ± 0.005 −3.5

Max boost (%) 16.7 65.8 15.5
Mean boost (%) 3.2 44.4 1.1

Table 1: Synthetic scenario: performance comparison on KG completion task in both single and linked
settings across various sampling types and rates p. Each result is presented as a mean value and
standard deviation. The superior performance for each metric, sampling and p combination is highlighted.
The boost is the performance improvement the framework achieves over a single graph. Please note
that the results on relation sampling datasets should not be directly compared amongst themselves as
the test was not preserved, causing high standard deviation (see 4.2.1).

The following observation emerges when com-
paring the effects of different sampling strategies
on boost. Triple sampling yielded a significantly
higher boost compared to node sampling. Inter-
estingly, node sampling maintained a higher base
performance on the single graph than achieved
with triple sampling (Hits@10 of 0.546 vs 0.347).
This potentially explains the lower boost observed
with node sampling. It indicates that while node
sampling retains more integral information about
the graph, triple sampling, being more disruptive,
allows for a higher improvement using our frame-
work.

In Figure 4, we can observe that while using
node sampling, performance on a single graph
does not decline significantly with lower p, and the
potential for improvement is limited. Conversely,
when sampling triples, there is a significant perfor-
mance drop, and our framework could help to miti-
gate it. Therefore, increasing the number of nodes
can lead to better outcomes than triples when ex-
panding one’s KG. Results for other datasets also
confirm this statement (see Appendix A: Figure 5,
6).

5.2. Real-world scenario
Results from experiments in the real-world sce-
nario are presented in Table 2. We only show-
cased DKGs created by sampling triples, as it
yielded the most significant differences in efficacy
on the single graph (see Section 5.1). This choice
allows a more convenient analysis of the frame-
work’s effectiveness. For each combination of
(dataset, p), we recorded the efficacy of the trained
model on a single graph and utilised the proposed
framework by linking it to external KG. We explored
two GKGs as potential external sources for each
dataset, given that finding a suitable match is not
straightforward. Similar to the previous scenario,
the crucial metric remains the boost, which again
shows dependency on the p value.

Under the most rigorous conditions (40% of
triples), we observed the highest efficacy improve-
ment, with a 14.0%/−6.9%/10.8% Hits@10 boost
on WN18RR-ConcepNet, FB15k-237-YAGO3-10,
and WD50K-FB15k-237 pairs, respectively. A sig-
nificant success was on WN18RR and WD50K.
This suggests that our framework can enrich the
embeddings of small-scale KGs in real-life situa-
tions. However, using FB15k-237 or less strict set-
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Figure 4: WN18RR: Performance across different
sampling strategies and varying rates p. Two set-
tings are shown: training on the single and linked
graph. The green line shows the performance on
the original graph (p = 1.0). The shaded areas rep-
resent the standard deviation across multiple runs.
Please note that the relation sampling datasets
should not be directly compared amongst them-
selves as the test was not preserved, causing high
standard deviation (see Section 4.2.1).

tings, the framework hurt performance. While our
framework shows promise, performance improve-
ment is not guaranteed in all situations. Further,
in most cases, only one of two GKGs provided im-
provement. This confirms the mentioned require-
ment that the chosen GKG must be well-suited to
the DKG.

5.3. Common findings
In both scenarios, we observed varying degrees of
improvement across different metrics. The highest
boost was observed for MR, followed by Hits@10,
with MRR registering the most minor enhance-
ment. Notably, in some cases, the boost for the
MR metric was negative, even while positive im-
provements were noted for other metrics. We
found that determining the optimal loss was not ob-
vious, as there was a slight variance in mean per-
formance on the downstream task. Nevertheless,
insights from the ablation study indicated that the
trained models predict lower scores for incorrect
linking triples. On average, the score of incorrect
links was lower by 5.00% while correct links’ score
only by 0.77% (see Appendix A: Figure 7). This
indicates that the proposed loss can incorporate
alignment probability into embeddings.

6. Limitations and Future Work

One identified limitation is that the method may en-
counter challenges when DKG and GKG have a
small number of common entities. A potential fu-
ture direction involves addressing this issue by en-
hancing the method’s robustness to the absence
of an entity in GKG.

Moreover, in the scenario of small, domain-
specific KGs already containing all necessary in-
formation for the completion task, our method—
by adding general knowledge—might not substan-
tially enhance performance. Nevertheless, it holds
potential benefits for tasks requiring more distant
connections than KG completion.

7. Conclusion

In this paper, we proposed the framework for
enriching embeddings of domain-specific KG by
aligning and linking entities to general-purpose KG.
The framework is general and modular, meaning
we can use any alignment method, representation
model and loss function. We utilized a simple align-
ment method based on the textual embeddings
of entities and their neighbourhood. Notably, this
alignment approach did not require additional an-
notation, making it readily applicable. Moreover,
we proposed the weighted loss function, which
could help mitigate entity alignment’s negative ef-
fects.

We examined the proposed framework in exten-
sive experiments, both in synthetic and real-world
scenarios. The evaluation methodology was tai-
lored to simulate the early stages of KG develop-
ment, which are rigorous conditions where a KG
may lack comprehensive information. Our results
demonstrated that utilizing the knowledge from
GKGs could significantly improve performance on
the downstream task. However, it is essential to
highlight that the degree of improvement depends
on the particular domain-specific KG and linked
general-purpose KG. This research underscores
the possibilities of harnessing established GKGs
to strengthen emerging KGs, offering a direction
for improving their utility in real-world scenarios.
Given that enriching small-scale KGs is an unex-
plored research area, this paper not only presents
a unique approach but also signals a potential
pathway for future research.
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Hits@10 ↑ MR ↓ MRR ↑
dataset p single linked boost(%) single linked boost(%) single linked boost(%)

CN FB CN FB CN FB
WN18RR 0.4 0.347±0.005 0.395 0.338 14.0 7681 ± 62 1508 4050 80.4 0.270± 0.003 0.259 0.262 −3.2
WN18RR 0.6 0.446±0.001 0.471 0.435 5.7 4908±172 963 2685 80.4 0.342± 0.003 0.330 0.330 −3.3
WN18RR 0.8 0.525±0.004 0.527 0.504 0.3 2685±155 750 1725 72.1 0.416± 0.005 0.390 0.400 −3.8

Max boost (%) 14.0 80.4 −3.2
Mean boost (%) 6.7 77.6 −3.5

CN Y3-10 CN Y3-10 CN Y3-10
FB15K237 0.4 0.360± 0.002 0.330 0.335 −6.9 315 ± 4 315 310 1.4 0.204± 0.001 0.189 0.192 −5.6
FB15K237 0.6 0.398± 0.001 0.359 0.362 −9.1 242 ± 1 254 251 −3.9 0.227± 0.001 0.202 0.208 −8.6
FB15K237 0.8 0.442± 0.000 0.387 0.395 −10.6 194 ± 2 213 214 −9.5 0.254± 0.001 0.221 0.225 −11.5

Max boost (%) −6.9 1.4 −5.6
Mean boost (%) −8.9 −4.0 −8.6

FB Y3-10 FB Y3-10 FB Y3-10
WD50K 0.4 0.283±0.001 0.313 0.284 10.8 1713 ± 42 758 961 55.8 0.164±0.001 0.181 0.163 10.6
WD50K 0.6 0.353±0.000 0.361 0.327 2.4 931 ± 20 558 644 40.0 0.208±0.001 0.212 0.190 2.0
WD50K 0.8 0.400± 0.001 0.396 0.358 −0.9 667 ± 6 450 510 32.6 0.240± 0.001 0.236 0.210 −1.8

Max boost (%) 10.8 55.8 10.6
Mean boost (%) 4.1 42.8 3.6

Table 2: Real-world scenario: performance comparison on KG completion task in both single and linked
settings across various datasets sampled using triple sampling and rates p. The DSKGs were linked
to two of the following GKGs: ConceptNet (CN), FB15k-237 (FB) and YAGO3-10(Y3-10). Each result
is presented as a mean value and standard deviation, where applicable. The superior performance for
each metric, dataset and p combination is highlighted in bold. The boost is the performance improvement
of linking a GKG that yielded the higher score over training on a single graph.
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A. Supplementary results

We extend the results of the synthetic scenario dis-
cussed in Section 5.1 by providing performance
analysis across different sampling strategies on
Figures 5 and 6 for datasets FB15k-237 and
WD50K, respectively.

We further explore the common findings outlined
in Section 5.3 by conducting a comparative analy-
sis of predicted scores for linking triples. This anal-
ysis contrasts models trained using the proposed
loss function against those trained with the stan-
dard loss function.

Figure 5: FB15k-237: Performance across differ-
ent sampling strategies and varying rates p. Two
settings are shown: training on the single and
linked graph. The green line shows the perfor-
mance on the original graph (p = 1.0). The shaded
areas represent the standard deviation across mul-
tiple runs. Please note that the relation sampling
datasets should not be directly compared amongst
themselves as the test was not preserved, causing
high standard deviation (see Section 4.2.1).

B. Supplementary statistics of
datasets

We provide detailed statistics of the original and
sampled datasets in Tables 3 and 4, respectively.

Figure 6: WD50K: Performance across different
sampling strategies and varying rates p. Two set-
tings are shown: training on the single and linked
graph. The green line shows the performance on
the original graph (p = 1.0). The shaded areas rep-
resent the standard deviation across multiple runs.
Please note that the relation sampling datasets
should not be directly compared amongst them-
selves as the test was not preserved, causing high
standard deviation (see Section 4.2.1).

C. Computational complexity

First, denote n and o as the number of DKG triples
and entities, respectively. RotatE time complex-
ity is O(n), and space complexity is O(o). Further,
in our method we add GKG with m triples and p
entities, linking each entity of DKG with k nearest
neighbors in GKG. Assuming the same embedding
dimension, the time complexity of the proposed
method is O(n+m+ k ∗ o), with space complexity
O(o+ p).

D. Alignment: entity representation

Based on the preliminary results, we selected the
best-performing method for entity representation,
described in Section 3.2. In this section, we pro-
vide an ablation study.

The proposed concatenation method yielded
promising results, achieving, on average, a 10%
higher accuracy during entity alignment compared
to the absence of concatenation (0.901 vs. 0.819).
Without concatenation, we averaged embeddings
across entity labels, outgoing neighbors’ labels,
and ingoing neighbors’ labels. This experiment
was conducted on all pairs of datasets utilized in
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Figure 7: Comparative analysis of predicted scores for incorrect and correct linking triples from the train-
ing set for each setting (dataset, sampling, p).

Triples Entities Relations
dataset train val test train val test train val test
WN18RR* 86 835 2817 2923 40 714 4835 4985 11 11 11
FB15k-237*† 272 115 17 526 20 438 14 505 9799 10 317 237 237 237
WD50K* 164 631 22 429 45 284 40 107 16 500 22 732 473 297 347
ConceptNet† 3 423 004 0 0 1 787 373 0 0 47 47 47
YAGO3-10† 1 079 040 4978 4982 123 143 7914 7906 37 37 37

Table 3: Statistics of the original datasets used in our experiments. The table shows the number of triples,
entities, and relations across the training (train), validation (val), and test sets for each dataset. Statistics
refer to original datasets. Some were sampled or cropped during experiments (see Sections 4.2.1 and
4.3.1). Datasets used as DSKG are marked with *, while datasets used as GKG are marked with †.

the synthetic scenario that allows for such evalua-
tion.
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Triples Entities Relations
sampling p train val test train val test train val test

WN18RR
triple 0.4 34 734 ± 0 2817 ± 0 2923 ± 0 30 975 ± 57 4835 ± 0 4985 ± 0 11±0 11±0 11±0
triple 0.6 52 101 ± 0 2817 ± 0 2923 ± 0 36 178 ± 27 4835 ± 0 4985 ± 0 11±0 11±0 11±0
triple 0.8 69 468 ± 0 2817 ± 0 2923 ± 0 39 093 ± 28 4835 ± 0 4985 ± 0 11±0 11±0 11±0
node 0.4 28 815 ± 78 2817 ± 0 2923 ± 0 16 286 ± 0 4835 ± 0 4985 ± 0 11±0 11±0 11±0
node 0.6 46 715 ± 90 2817 ± 0 2923 ± 0 24 428 ± 0 4835 ± 0 4985 ± 0 11±0 11±0 11±0
node 0.8 66 311 ± 157 2817 ± 0 2923 ± 0 32 571 ± 0 4835 ± 0 4985 ± 0 11±0 11±0 11±0
relation 0.4 20 367±18 482 511 ± 625 545 ± 616 14 485±10 417 933 ± 1168 989 ± 1150 4±0 4±0 4±0
relation 0.6 57 790±19 777 1765 ± 624 1827 ± 635 32 006 ± 7832 3135 ± 1000 3228 ± 1025 7±0 7±0 7±0
relation 0.8 61 586±17 153 1852 ± 598 1902 ± 610 34 809 ± 4855 3286 ± 949 3353 ± 974 9±0 9±0 9±0

FB15k-237
triple 0.4 108 846 ± 0 17 526 ± 0 20 438 ± 0 14 187 ± 10 9799 ± 0 10 317 ± 0 237±0 223±0 224±0
triple 0.6 163 269 ± 0 17 526 ± 0 20 438 ± 0 14 352 ± 6 9799 ± 0 10 317 ± 0 237±0 223±0 224±0
triple 0.8 217 692 ± 0 17 526 ± 0 20 438 ± 0 14 439 ± 7 9799 ± 0 10 317 ± 0 237±0 223±0 224±0
relation 0.4 103 999±16 860 6364 ± 891 7419±1056 12 884 ± 220 5457 ± 707 5981 ± 722 95±0 87±2 89±3
relation 0.6 156 537±20 322 9562±1011 11 186±1268 13 779 ± 352 7218 ± 571 7747 ± 589 142±0 133±3 134±3
relation 0.8 224 750±25 236 14 309±1632 16 748±1881 14 332 ± 75 8725 ± 633 9291 ± 618 190±0 178±2 180±2

WD50K
triple 0.4 65 852 ± 0 22 429 ± 0 45 284 ± 0 34 164 ± 32 16 500 ± 0 22 732 ± 0 434±2 297±0 347±0
triple 0.6 98 779 ± 0 22 429 ± 0 45 284 ± 0 37 091 ± 41 16 500 ± 0 22 732 ± 0 453±6 297±0 347±0
triple 0.8 131 705 ± 0 22 429 ± 0 45 284 ± 0 38 957 ± 16 16 500 ± 0 22 732 ± 0 464±3 297±0 347±0
node 0.8 147 774 ± 42 22 429 ± 0 45 284 ± 0 32 086 ± 0 16 500 ± 0 22 732 ± 0 450±1 297±0 347±0
relation 0.4 62 701±11 210 7865±1591 16 014±3259 25 204 ± 2662 7700 ± 956 11 535 ± 1186 189±0 112±6 127±5
relation 0.6 88 487±12 893 11 529±1838 23 332±3923 29 090 ± 3143 10 258 ± 1183 14 848 ± 1580 284±0 173±5 201±6
relation 0.8 121 499±15 858 16 250±2317 32 947±4969 33 181 ± 2970 12 848 ± 1161 18 053 ± 1489 378±0 238±4 275±5

Table 4: Statistics of the sampled datasets used in our experiments. The table shows the number of
triples, entities, and relations across the training (train), validation (val), and test sets for each dataset.
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