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Abstract

The widespread use of pre-trained language models (PLMs) in natural language processing (NLP) has greatly
improved performance outcomes. However, these models’ vulnerability to adversarial attacks (e.g., camouflaged
hints from drug dealers), particularly in the Chinese language with its rich character diversity/variation and complex
structures, hatches vital apprehension. In this study, we propose a novel method, CHinese vAriatioN Graph
Enhancement (CHANGE), to increase the robustness of PLMs against character variation attacks in Chinese
content. CHANGE presents a novel approach for incorporating a Chinese character variation graph into the PLMs.
Through designing different supplementary tasks utilizing the graph structure, CHANGE essentially enhances PLMs’
interpretation of adversarially manipulated text. Experiments conducted in a multitude of NLP tasks show that
CHANGE outperforms current language models in combating against adversarial attacks and serves as a valuable
contribution to robust language model research. These findings contribute to the groundwork on robust language
models and highlight the substantial potential of graph-guided pre-training strategies for real-world applications.

Keywords: PLMs, Chinese adversarial attacks, variation graph

1. Introduction

The field of natural language processing (NLP) has
seen remarkable advancements in recent years,
with pre-trained language models (PLMs) like BERT
(Devlin et al., 2018) being one of the most widely
adopted tools for various applications, such as lan-
guage generation (Radford et al., 2018), text clas-
sification (Sun et al., 2019), and entity recognition
(Andrew and Gao, 2007). PLMs are trained on
vast amounts of text data, enabling them to cap-
ture patterns and relationships between words and
phrases. Yet there is a major limitation of PLMs
that their vulnerability to adversarial attacks can
lead to the dissemination of false or misleading
information (Jiang et al., 2019; Liu et al., 2022;
Chen et al., 2024). Adversarial attacks refer to ma-
licious modifications made to the input text, which
can cause the language model to make incorrect
predictions or misbehave (Ebrahimi et al., 2018).
This has become a growing concern, as the use of
these models in real-world applications continues
to increase. In particular, the Chinese language
presents unique challenges in terms of adversarial
attacks due to its rich variety of characters (Jiang
et al., 2019).

Existing methods for mitigating the vulnerability
of language models to adversarial attacks primar-
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Figure 1: Character Variations via semantic, visual,
and pronunciation in Chinese Spam Texts.

ily focus on fine-tuning models with augmented
data (Wang et al., 2020), pre-training models on
adversarial examples (Su et al., 2022), employing
adversarial training techniques (Si et al., 2021a) or
incorporating regularization methods (Liang et al.,
2021). The data augmentation strategy heavily
depends on the coverage of the augmented data,
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which may require an exhaustive exploration of the
adversarial space to generate a comprehensive
training dataset. This process can be both computa-
tionally expensive and time-consuming. Moreover,
incorporating adversarial samples may negatively
impact the model’s performance on clean datasets,
as adversarial examples often significantly differ
from regular samples.

In this paper, we introduce a novel approach to
enhance the robustness of PLMs for the Chinese
language. Our proposed method combines multi-
ple adversarial pre-training tasks and incorporates
a Chinese Character Variation Knowledge Graph
to improve the model’s ability to comprehend adver-
sarially attacked natural language text. The multi-
task framework facilitates the integration of the
knowledge graph into the language model, enabling
the model to better capture the linguistic and con-
textual nuances of the attacked text, thereby enrich-
ing the model’s textual representations. Our pro-
posed framework, the CHhinese vAriatioN Graph
Enhancing method(CHANGE), is illustrated in Fig-
ure 2. This PLM-independent method bolsters the
model’s robustness against poisoned text content
and consists of two main components:

(1) The Chinese Variation Graph Integration
(CVGI) method which employs a variation graph
to enhance PLM robustness during the fine-tuning
procedure. As depicted in Figure 2, we reconstruct
the input sentence following the variation graph.

(2) A Variation Graph Instructed Pre-training
method which further trains the PLMs under the
guidance of the Variation Graph by appending
additional pre-training tasks with the graph to
transformer-based PLMs, maximizing the poten-
tial of the variation graph.

In comparison to existing techniques, our pro-
posed method offers a more lightweight and cost-
efficient solution. By leveraging the graph infor-
mation as a supplement, the approach maintains
convenience while minimally impacting the model’s
performance on clean datasets. It is primarily at-
tributed to the model’s reduced reliance on adver-
sarial data and diminished training on perturbed
distributions. Meanwhile, the model places greater
emphasis on integrating the graph information,
leading to a more streamlined and effective learning
process.

Our experimental results demonstrate the supe-
riority of the proposed approach compared to exist-
ing PLMs. The results show improved performance
in several NLP tasks, as well as increased robust-
ness against adversarial attacks. These findings
highlight the potential of multi-task and knowledge
graph-augmented language models for practical
applications and provide valuable insights for the
development of robust language models. In conclu-
sion, our contribution to the field of NLP research is

a novel approach for enhancing the robustness of
language models against adversarial attacks in the
Chinese language, which can be applied to other
languages as well.

2. Related Work

Robust Chinese Language Models: The use of
PLMs has revolutionized the field of NLP, allow-
ing for significant improvements in a wide range of
downstream tasks without the need for training a
new model from scratch. One of the first and most
influential of these models is BERT (Devlin et al.,
2019), which employs a masked language model
objective and next sentence prediction task to learn
universal language representations. This approach
has been further refined by subsequent models
such as RoBERTa (Liu et al., 2019) and ALBERT
(Lan et al., 2019). In the realm of Chinese NLP,
ChinseBERT (Cui et al., 2021) has made signifi-
cant strides by incorporating both glyph and pinyin
features of Chinese characters into its pre-training
process, achieving state-of-the-art results on many
Chinese NLP tasks. Despite these successes, the
focus of these models has largely been on improv-
ing performance on standard texts, with relatively
little attention paid to enhancing their robustness.

In the face of real-world adversarial scenarios,
many black-box attacks have been developed un-
der the assumption that the adversary only has
query access to the target models without any
knowledge of the models themselves (Li et al.,
2018; Ren et al., 2019; Garg and Ramakrishnan,
2020). To defend against these attacks, counter-
measures such as adversarial training and adver-
sarial detection have been proposed to reduce the
inherent vulnerability of the model. Adversarial
training typically involves retraining the target model
by incorporating adversarial texts into the original
training dataset, which can be seen as a form of
data augmentation (Si et al., 2021b; Ng et al., 2020).
Adversarial detection involves checking for spelling
errors or adversarial perturbations in the input and
restoring it to its benign counterpart (Zhang et al.,
2020a; Bao et al., 2021). While these methods
have proven effective in the English NLP domain,
they are difficult to directly apply to the Chinese
domain due to language differences. As a result,
many studies have attempted to design specific
defenses that take into account the unique proper-
ties of Chinese. For example, Wang et al. (2018)
and Cheng et al. (2020) improved Chinese-specific
spelling check using phonetic and glyph informa-
tion. Li et al. (2021) proposed AdvGraph, which
uses an undirected graph to model the phonetic
and glyph adversarial relationships among Chinese
characters and improves the robustness of sev-
eral traditional models. Su et al. (2022) proposed
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Figure 2: The overview architecture of the CHANGE method. For the attacked content, the Chinese
Variation Graph Integration recognizes the possible variation and reconstruct a postfix attached to the raw
input.

RoCBERT to enhance robustness by pre-training
the model from scratch with adversarial texts cov-
ering combinations of various Chinese-specific at-
tacks, which may not be maintained in downstream
tasks.
Knowledge Graph Enhanced PLMs: The en-
hancement of language understanding in PLMs
can be achieved by integrating structured knowl-
edge and linguistic semantics. Recent advance-
ments in Knowledge-Enhanced PLMs (KEPLMs)
have uncovered two primary approaches: The first
category pertains to the direct incorporation of struc-
tured knowledge in PLMs. This category encom-
passes methods that leverage linguistic semantics
inherent in pre-training sentences, and those that
utilize entity embeddings derived from structured
knowledge. The former technique is exemplified
by Lattice-BERT (Lai et al., 2021), which pre-trains
a Chinese PLM on a word lattice (Buckman and
Neubig, 2018), exploiting multi-granularity inputs to
imbue the model with richer semantic understand-
ing. In contrast, the latter technique employs en-
tity embeddings from knowledge encoders, woven
into contextual representations to enhance seman-
tic understanding, as exemplified by ERNIE-THU
(Zhang et al., 2019). The second category com-

prises methods that involve reformatting and in-
corporating knowledge information within the PLM
framework, either by encoding textual descriptions
of knowledge or transforming knowledge relation
triplets into text. This category emphasizes the in-
tegration of knowledge descriptions and relation
triplets into the textual modality. For instance, KE-
PLER (Wang et al., 2021) represents the former
by jointly encoding pre-training corpora and en-
tity descriptions within a shared semantic space
in the same PLM. The latter technique is effec-
tively demonstrated by K-BERT (Liu et al., 2020)
and CoLAKE (Sun et al., 2020), which transform
relation triplets into text and add the transformed
text to training samples, circumventing the need
for pre-trained embeddings. This paper posits that
amalgamating various forms of knowledge infor-
mation can substantially bolster the context-aware
representation abilities of PLMs.

3. Chinese Variation Graph
Integration

We introduce a variation graph that encompasses
a comprehensive collection of Chinese character
variations utilized in adversarial attacks on Chinese
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text. This knowledge graph captures variations in
phonetics, character shape, and other aspects of
Chinese characters, representing the most preva-
lent attack methods employed in malicious texts
such as those found in black-gray industries and
fraudulent activities (Jiang et al., 2019; Su et al.,
2022; Yang et al., 2021). By incorporating this
graph into a language model via a carefully re-
designed transformer encoder, our approach en-
hances the model’s resilience to adversarial attacks
and preserves its intended functionality. Further-
more, our proposed method is both flexible and
lightweight, making it suitable for integration with
most transformer-based PLMs.

3.1. Chinese Character Variation Graph
The Chinese Character Variation Graph, includes
most of the Chinese character variation ap-
proaches. The graph is annotated as G =
(c0, r0, c1), (c2, r1, c3), ..., (ci, rm, cj), in which cn
means attacked character or attack character, rm
means the attack method. The attack methods
include the following variation forms:

Pinyin: In the Chinese language, multiple char-
acters may share the same pinyin code represent-
ing their pronunciation, making them homophones.
Our pinyin variation replaces a Chinese character
with one of its homophones. Since a single charac-
ter may have multiple pronunciations, this can result
in homophone variations with different pinyins. We
constructed our pinyin variation relation using the
pypinyin library∗.

Visual: Chinese characters are logograms,
and their visual appearance conveys a significant
amount of information. Visual similarity can some-
times be used to confuse readers about the in-
tended meaning of a text. Our visual transformation
is based on the SimilarCharacter dataset†, which
calculates Chinese character similarity using the
cv2 library‡.

Character to pinyin: In Chinese text attack sce-
narios, replacing a character with its pinyin code
is a common tactic used to evade word filtering
checks. Our character to pinyin variation is also
based on the pypinyin library.

These methods can be used to attack Chinese
text, making it difficult for text censorship systems
to accurately detect and remove illegal or malicious
content while human readers can comprehend the
content by association, experience, or metaphor.
In the attacking scenario, an attack incident may
correspond to a triplet in the variation graph. For
example, in Figure 2, a node for the character “微”
(person) could be connected to a node “薇”, with an

∗https://github.com/mozillazg/python-pinyin
†https://github.com/contr4l/SimilarCharacter
‡https://pypi.org/project/opencv-python/

edge “[PIN]” to indicate the relationship between
the character and the method used to alter it, as
“微” and “薇” share the same pinyin pronunciation
“wei1”. In this paper, we refer to this as an attacking
path, denoted as p(n1, r1, n2), representing poten-
tial paths used to attack text content. The path
is used to attack the text to hide the intention of
inducing readers to add the attacker’s (potentially
fraudulent) WeChat account. Our variation graph
can be readily integrated into PLMs using our pro-
posed CVGI method, which we will discuss in the
following section.

3.2. Variation Graph Integration
In this section, we elaborate on the techniques of
our Chinese Variation Graph Integration method,
namely CVGI. As presented in Figure 2, the method
integrates the graph in a transformer-based PLM
by reconstructing the input and building a 2D atten-
tion mask corresponding to the reconstructed input.
The model takes a series of tokens, (x1, x2, ..., xn)
as input, and use a stacked transformer encoder
layer to generate the contextual representations
Hi. Specifically, we use the following three steps
to integrate the graph:

Recognizing Attacked Tokens(RAT): Our ap-
proach begins by utilizing language model proba-
bility to identify tokens that may have been subject
to attack. These tokens serve as the targets for the
addition of graph information. Given the context
C = (w1, w2, ..., wn), the bert output fwi

(C) and
bert vocabulary V , the language probability of wi

is:
P (wi|C) =

exp (fwi
(C))∑

wj∈V exp (fwj (C))

In an input sentence, we can rank the tokens
according to their probability and take the low-
est k% tokens as possibly potentially attacked to-
kens W a. This approach is commonly used in
Chinese Spelling Correction problems, where lan-
guage model output probability is a recognized
metric for identifying incorrect words or attacked
characters within a sentence. Then, we can lever-
age the Variation Graph to retrieve possible can-
didate original words W c for the attacked tokens
W a = {wa

1 , w
a
2 , ..., w

a
n} in the graph and the corre-

sponding attacking paths P = {p1, p2, ..., pn}.
Reconstructing Input Sentences: Based on

the original input C and the attacking paths P we
get, we will add a postfix to C which is generated
from P . As shown in Figure 3 (a), an attacking path
p(微, pinyin,薇) will generate an span formated as
“[PIN]微[/PIN]” and appended to C. Specifically,
the [PIN]([/PIN]) token corresponds to pinyin varia-
tion, while [VIS]([/VIS]) corresponds to vision varia-
tion, and [CTY]([/CTY]) corresponds to character
to pinyin variations. Note that each wc in the possi-
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bly attacked tokens W c may correspond to several
attacking paths p, which may result in a very long
reconstructed postfix and bring much noise to the
original input C. To reduce the computational com-
plexity and weaken the noise, we further use a 2D
mask to eliminate the cross attention between the
reconstructed span from attacking paths p and most
of the original input C, except for only the attack
word wa in p.

Adversarial 2D attention map: As shown in
Figure 3 (b), our model use a 2D attention mask in-
stead of cross attention mask. For a reconstructed
input, the part of the original sentence will use full
cross-attention. For the postfix part, “[VIS]徽[/VIS]”
for example, would only have attention with the
attacked token “微”. The 2D attention mask is cal-
culated during the tokenization phase of the model
input. The 2D attention mask is fluently combined
with the reconstructed input, enabling the PLMs
to gather the original word information to attacked
tokens through the attacking path. PLMs have the
potential to tell the right attacking path from atten-
tion and pick the right original word and inject its
information into the original content.

Our CVGI method has broad applicability to vari-
ous Chinese NLU tasks and can enhance the per-
formance of most transformer-based PLMs. The
reconstruction method is adaptable to various in-
put formats, while the 2D mask is compatible with
most of the transformer architectures and the CVGI
method does not depend on a specific PLM. The
effectiveness of our CVGI method is demonstrated
in section 5.3. Since the objective of fine-tuning
does not directly guide the PLMs and the integrated
component to construct the attacking path, only
fine-tuning is insufficient for the CVGI method to
accurately recognize the attacked token and the
attacking path from the Variation Graph. We fur-
ther designed Variation Graph instructed pretrain
tasks to help a target PLM to learn to identify the
vital path of the graph for enhancing the robustness
against attacks in the next section.

4. Variation Graph Instructed
Pre-training

In this section, we present the details of how we fur-
ther improve the effectiveness of CVGI by design-
ing Variation Graph instructed pre-training tasks.
The key point to strengthen the ability of CVGI is
to improve the effectiveness of RAT and the ability
to restore the attacking paths by PLMs. It’s im-
portant to design tasks to help the PLMs learn to
adjust the 2D attention mask to the reconstructed
text input so that it can better integrate the adver-
sarial information to the attacked tokens. The pre-
training is designed to be light weighted so that it
can be relatively easy and less costly to apply to

ordinary PLMs. In our settings, it only uses a 14
GB corpus from Chinese Wikipedia, Baidu Baike,
and THUCTC as the pre-training data.

4.1. pre-training tasks
The pre-training task is designed based on the
CVGI paradigm to enhance the RAT. We develop a
language probability modeling task using Masked
Language Modeling (MLM) as the training objec-
tives and create several Variation Graph instructed
pre-training tasks. In contrast to common pre-
training tasks, our tasks are conducted on attacked
samples, which are constructed from a clean cor-
pus using our Variation Graph. During the attacking
process, we generate samples annotated with at-
tacking paths. Next, we reconstruct input examples
and produce 2D attention maps similar to CVGI but
with slight differences for each task. Specifically, for
the RAT enhancing task, we generate an attacked
sample with annotations indicating which tokens
have been attacked. As we know the ground truth
attacking path, we design the reconstructed sam-
ples to contain only the true attacking path (pT ) and
can additionally sample false attacking paths (pF )
to construct postfixes and append to the input. For
MLM tasks, we mask tokens in the reconstructed
samples following various strategies and conduct
MLM training. We design 3 tasks: Attack Token
Prediction, Attack Method Prediction, and Attacked
Character Prediction, which includes the following:

Attack Token Prediction Attack Token Predic-
tion (ATP) task is to predict the attack characters
based on the raw input, corresponding to the RAT
task. Suppose the token yi ∈ 0, 1 is labeled as
attacked (1) or normal (0), its LM probability is pi.
The loss of ATP is:

LATP = − 1

N

N∑
i=1

yi log pi + (1− yi) log(1− pi)

Note that the ATP task can be performed on the
target PLM or a certain PLM. It is aimed to enhance
the ability of the RAT task by constructing a rich
RAT annotated train set using Variation Graph.

Attack Method Prediction Attack Method Pre-
diction (AMP) predicts the attack method by predict-
ing the masked attack method in the reconstructed
input. In the reconstruction, 15% of the method to-
kens are masked if there are more than N attacking
paths in the reconstructed sample, else one ran-
dom method will be masked. If the ŷMi,j stands for
the one-hot code of the ith method token, m stands
for the one-hot code of masked method tokens, ŷMi,j
stands for the probability. The MLM loss of AMP is:

LAMP = −
m∑
j=1

yMj log(ŷMj )
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Figure 3: (a): An example of reconstruction. In the Variation Graph, the red “+” symbol has two variations:
“加” through pinyin variation and “十” through visual variation. Similarly, the red “莪” character possesses
two variations in the Variation Graph: “我” and “窝”, both derived from pinyin variation. The red “徽”
character features two variations in the graph: “薇” through pinyin variation and “微” through visual
variation. (b): An example of adversarial 2d attention map. In the whole reconstructed sentence, the
raw text segment “您有筷递超时未取” employs full cross-attention. The identified attacked character
“筷” exclusively attends to its variations in the postfix segment. And the candidate original characters,
“[PIN]块[/PIN]” in example, only have attention with the attacked character “快”.

The AMP task aims to predict the relationship based
on the head entity and the contextual environment.

Attacked Character Prediction Attacked Char-
acter Prediction (ACP) predicts the attack character
by predicting the masked attacked character in the
reconstructed input. In the reconstruction, 15% of
the attacked tokens are masked if there are more
than 6 attacking paths in the reconstructed sample,
else 1 random attacked token will be masked. If
the ymi,j stands for the one-hot for the ith attacked
character token, n stands for the num of masked
attacked character tokens, ŷci,j stands for the prob-
ability. The MLM loss of ACP is:

LACP = −
n∑

j=1

ycj log(ŷ
c
j)

The ACP task focuses on predicting the tail entity
based on the head entity, the relation, and the con-
textual environment.

5. Experiment

We conducted an evaluation of our proposed
method on three distinct datasets and compared its
performance against several existing pre-trained
language models. Our results demonstrate that our
model consistently outperforms the baseline mod-
els across all datasets, providing strong evidence
for the effectiveness of our approach.

5.1. Experiment Setup
Training Detail. For pre-training, we utilized a com-
bined corpus comprising Chinese Wikipedia, Baidu

Baike, and THUCTC§. Our model was trained for
100,000 steps with a batch size of 64, a learning
rate of 1e-4, and a warm-up rate of 2,000 steps.
The corpus contains 13GB of pure text. The train-
ing was conducted on 8 Tesla V100 GPUs using
the DeepSpeed framework.

Baseline Models. We tested our approach
based on several SOTA models: (1) Chinese-bert-
wwm (Cui et al., 2019), (2) MacBERT (Cui et al.,
2020), (3) RocBERT (Su et al., 2022). Chinese-
bert-wwm uses the Whole Word Masking pre-
training strategy to enhance BERT model especially
for the Chinese language. MacBERT applies the
MLM-As-Correlation pre-training strategy as well
as the sentence-order prediction task. RocBERT is
a pre-trained Chinese BERT model that is robust to
various forms of adversarial attacks such as word
perturbation, synonyms, and typos. It is pre-trained
with a contrastive learning objective that maximizes
the label consistency under different synthesized
adversarial examples.

Tasks. Our proposed method is tested on two
standard Chinese NLU tasks and a real-world toxic
detection task, which are: (1) TNews¶: news title
classification with 50k training data, (2) AFQMC‖:
question matching with 34k training data, (3) Mes-
sage: The Message Toxic dataset consists of real-
world data collected from a real-world application
that receives short message notifications and de-
tects messages sent by frauds or black-grey indus-
try practitioners. We manually annotated 15,000

§http://thuctc.thunlp.org/
¶https://www.cluebenchmarks.com/tnews_public
‖https://www.cluebenchmarks.com/afqmc_public
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Base Model Method
TNews

Clean Attacked Argot

Chinese-
bert-
wwm

BASE 54.04 50.68 49.63
CVGI 54.47 51.84 50.94
CHANGE 54.28 53.91 52.87

MacBERT
BASE 56.12 52.34 51.54
CVGI 55.33 53.49 52.62
CHANGE 55.79 55.37 54.22

RocBERT
BASE 56.22 54.88 51.83
CVGI 56.37 55.74 52.84
CHANGE 57.09 56.94 54.22

Table 1: Experimental results on TNews. Bold
shows the best performance of method variants
with the same base model.

Base Model Method
Afqmc

Clean Attacked Argot

Chinese-
bert-
wwm

BASE 68.91 64.38 59.43
CVGI 68.58 65.83 60.84
CHANGE 69.46 67.96 62.71

MacBERT
BASE 70.83 66.75 61.50
CVGI 69.98 67.67 62.40
CHANGE 70.69 68.99 64.20

RocBERT
BASE 70.41 67.11 62.07
CVGI 70.95 67.68 62.18
CHANGE 69.85 69.05 63.03

Table 2: Experimental results on Afqmc. Bold
shows the best performance of method variants
with the same base model.

Base Model Method
Message

F1micro Recall Precision

Chinese-
bert-
wwm

BASE 82.76 91.28 75.70
CVGI 84.06 92.59 76.97
CHANGE 85.93 94.66 78.67

MacBERT
BASE 84.74 93.35 77.59
CVGI 85.69 94.33 78.50
CHANGE 87.01 95.30 80.05

RocBERT
BASE 85.94 95.81 77.92
CVGI 86.81 96.53 78.87
CHANGE 87.61 97.37 79.63

Table 3: Experimental results on Message. Bold
shows the best performance of method variants
with the same base model.

user inputs and identified 2,000 toxic contents (pos-
itive), of which 90% were in adversarial forms. We
then randomly sampled 2,000 negative texts and
split the entire dataset into training, development,
and testing sets with an 8:1:1 ratio.

Settings. We conducted the experiment under
several circumstances: (1) Clean: the uncontam-
inated dataset, (2) Attacked: based on the clean
dataset, use the variation graph to attack the data.
(3) Argot (Zhang et al., 2020b): Use the Argot algo-

rithm which is designed for the Chinese language
to attack the original data. (4) Toxic: The original
toxic detection dataset collected from a real-world
application. The test on the contaminated dataset
proves the robustness of our method, while the test
on the clean datasets proves the generativity of our
method. The results are shown in Table 3.

5.2. Experiment Result
In Tnews, AFQMC and Message datasets, we test
the NLU ability of our models under both attacked
and clean circumstances, measured by F1-macro.
For every task, we report the model performance
under 2 adversarial algorithms, Att and Argot. We
also report the performance of all base-version
models for a fair comparison. The results are pre-
sented in Table 1, Table 2, and Table 3. On aver-
age, the performance of PLMs using our CHANGE
framework negligibly decreased by only 0.05% on
clean data, which is approximately equivalent to
no significant change. In contrast, on attacked
datasets, the performance of CHANGE improved
by 1.21% (Att) and 1.03% (Argot), respectively. In
the Att and Argot test settings, CHANGE consis-
tently outperforms all baseline models, with partic-
ularly notable improvements over MacBERT and
Chinese-bert-wwm. In the clean dataset, the per-
formance of methods utilizing CHANGE is com-
parable to that of the baseline models. When
employing CHANGE methods, the performance
in attacked test sets more closely approximates
that in the clean set than when using baseline
models. Of all the baselines, RocBERT performs
closest to RocBERTCHANGE under the two attacks,
likely due to its multimodal input and its use of
adversarial samples during training. Both BERT
and MacBERT show significant improvement with
CHANGE pre-training and integration. After being
enhanced by CHANGE, their robustness perfor-
mance surpasses that of RocBERT but still falls be-
hind RocBERTCHANGE. Since BERT and MacBERT
were not specifically trained to handle adversar-
ial circumstances, the improvement brought by
CHANGE is particularly notable.

5.3. Ablation Study of CHANGE
We conducted a series of ablation studies to un-
derstand the functionality of different components
in CHANGE. In the experiments, The models then
tested on three datasets: Tnews, Afqmc and Mes-
sage. For Tnews and Afqmc, there are three sub-
datasets: Clean, Att, and Argot, and the measure-
ment is F1-score. For the message dataset, the
measurement is F1-score, precision and recall. All
the fine-tuning is conducted with the same base ar-
chitecture for a maximum of 10 epochs and an early
stop strategy on training text. We devised several
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Base Model Method
TNews Afqmc

MessageClean Attacked Argot Clean Attacked Argot

Chinese-
bert-
wwm

CHANGE 54.28 53.91 52.87 69.46 67.96 62.71 85.93
↪→w/o ATP 54.51 52.87 51.99 69.61 66.99 61.88 85.07
↪→w/o AMP 53.89 52.36 51.61 68.83 66.35 61.27 84.53
↪→w/o ACP 54.12 52.62 51.69 69.19 66.47 61.56 84.74

MacBERT

CHANGE 55.79 55.37 54.22 70.69 68.99 64.20 87.01
↪→w/o ATP 55.48 54.92 53.97 70.15 68.79 63.71 86.90
↪→w/o AMP 55.62 53.94 53.14 70.30 67.97 62.89 86.13
↪→w/o ACP 55.68 54.19 53.29 70.58 68.19 63.08 86.27

RocBERT

CHANGE 57.09 56.94 54.22 69.85 69.05 63.03 87.61
↪→w/o ATP 56.45 55.32 53.06 69.89 67.80 62.24 86.44
↪→w/o AMP 56.11 56.34 53.56 69.34 68.36 62.45 87.42
↪→w/o ACP 56.44 56.43 53.27 69.72 68.25 62.64 87.29

Table 4: Ablation experimental results with different base models and different pre-training strategies on
TNews, Afqmc and Message. Bold shows the best performance of method variants with the same base
model.

Base Model Method
TNews

Clean Attacked Argot

RocBERT BASE 55.92 54.73 51.96
CVGE 56.91 56.63 54.32

ChatGPT gpt-3.5-turbo-0301 43.68 40.02 37.45

Table 5: Experimental results of performance(%)
comparison with ChatGPT on TNews test sets.

variants of CHANGE, each excluding specific com-
ponents of the strategy: w/o ATP, w/o AMP, and w/o
ACP represent variants that exclude the ATP, AMP,
and ACP tasks from CHANGE during pre-training.
The results, as illustrated in Table 4, reveal that the
inclusion of ATP, AMP, and ACP tasks led to aver-
age performance improvements of 0.53%, 0.47%,
and 0.61% for CHANGE, respectively.

5.4. Robustness Analysis

As illustrated in Table 3, our approach demon-
strates effectiveness on both clean and attacked
datasets. In clean datasets, our method main-
tains the original performance of the models,
while significantly improving their robustness in at-
tacked datasets. The integration of variation graph-
instructed pre-training tasks with our approach re-
sults in a noticeable improvement across all at-
tacked experiment settings. In the best-case sce-
nario, the performance improved by 4.3% in an
attacked dataset, reducing the gap between clean
and attacked datasets from 5.2% to 0.9%. This in-
dicates that our method, CHANGE, can effectively
mitigate the effects of attacks on PLMs without sac-
rificing their performance on normal data.

Moreover, we also conduct an experiment to eval-
uate the performance of ChatGPT on TNews. Due
to space limitations, experiment results are shown
in Table 5.

25.0 50.0
Training Time/h

55.4

55.6

55.8

56.0

F1
-s

co
re
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5 10
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(c)
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(d)

Figure 4: The impact of corpus size and training
costs on the f1-score performance of CHANGE-
enhanced PLM on the TNews Dataset.

5.5. Costs of pre-training

Our method follows a plug-and-play design to flex-
ibly and generically enhance the robustness of
PLMs. As such, it is essential that our model incurs
low training costs. We conducted experiments on
the TNews dataset using the Chinese-bert-wwm
model. In one set of experiments (Figure 4 (b)),
we trained CHANGE using 3GB, 6GB, 9GB, and
12GB of corpus data (evenly split across multiple
sources) for a fixed 2 epochs. In another set of
experiments (Figure 4 (c)), we trained on 12GB of
corpus data for 2, 4, 6, and 8 epochs. The train-
ing time costs and the effectiveness of fine-tuning
are shown in Figure 4 (a). As can be seen, us-
ing 9GB of corpus data yields satisfactory results.
Training on 12GB of corpus data for 10 hours on a
bert-based pretrain language model is sufficient to
achieve strong robustness enhancement. These
experiments demonstrate the plug-and-play nature
and usability of our CHANGE method.

6. Limitation

In this section, we discuss the limitations of our
proposed method. Although our approach demon-
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strates promising results in terms of performance
and robustness, several challenges need to be ad-
dressed in future research: (1) Domain Adaptability:
While our method exhibits improved performance
on various NLP tasks, these tasks may not cover
the complete range of domains that pre-trained lan-
guage models might encounter in real-world appli-
cations. Therefore, the adaptability of the proposed
approach to the adversarial robustness across dif-
ferent domains warrants further investigation. (2)
Limited Adversarial Defense Scope: Our method
enhances the adversarial robustness of pre-trained
language models on several NLP tasks; however,
potential attack strategies not covered in the ex-
periments might exist. To comprehensively assess
the robustness of our approach, it is essential to
validate it under a broader range of attack sce-
narios. (3) Scalability: Our study focuses on the
robustness of pre-trained language models in the
Chinese context. However, due to structural and
linguistic differences between languages, directly
applying the proposed method to other languages
may pose challenges. Consequently, appropriate
adjustments and validation are required before ex-
tending our approach to other languages. (4) Com-
putational Cost: Our proposed method necessi-
tates constructing the Variation Graph and employ-
ing multi-task learning during the pre-training and
fine-tuning processes. This might lead to increased
computational costs, limiting the applicability of our
method in resource-constrained environments.

In conclusion, despite our achievements made in
enhancing the robustness of pre-trained language
models, several limitations and challenges remain
to be addressed. Investigating these issues will
contribute to a better understanding and utiliza-
tion of knowledge graphs and multi-task learning
methods, ultimately improving the robustness of
language models in practical applications.

7. Conclusion

In this paper, we introduce CHANGE, a univer-
sal method for integrating the Chinese charac-
ter variation graph into Chinese language models
to enhance their robust representation. Our ap-
proach involves designing a method for injecting
the graph into transformer-based PLMs during the
fine-tuning phase and enhancing adversarial graph
injection during PLM pre-training. Experimental
results demonstrate that all PLMs enhanced by
our CHANGE outperform their respective baselines
in robustness tests. Further analysis reveals that
CHANGE can effectively capture various paths of
common Chinese attacks. For future work, we plan
to extend CHANGE to encompass additional types
of attacks beyond character variation (e.g., substi-
tution) and apply CHANGE to a broader range of

downstream tasks.
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