
LREC-COLING 2024, pages 5878–5895
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

5878

Enhancing Code Generation Performance of Smaller Models by
Distilling the Reasoning Ability of LLMs

Zhihong Sun1, Chen Lyu1∗†, Bolun Li1, Yao Wan2

Hongyu Zhang3, Ge Li4, Zhi Jin4∗
1School of Information Science and Engineering, Shandong Normal University, China

2Huazhong University of Science and Technology, China 3Chongqing University, China
4Key Lab of HCST (PKU), MOE; SCS, Peking University, China

2022021002@stu.sdnu.edu.cn, lvchen@sdnu.edu.cn, libolun118@gmail.com
wanyao@hust.edu.cn, hyzhang@cqu.edu.cn

{lige, zhijin}@pku.edu.cn

Abstract
Large Language Models (LLMs) have recently made significant advances in code generation through the ’Chain-of-
Thought’ prompting technique. This technique empowers the model to autonomously devise "solution plans" to tackle
intricate programming challenges, thereby improving its performance in code generation. Nevertheless, smaller
models have been struggling to keep up with LLMs in deducing these plans, adversely affecting their code generation
capabilities. Given the considerable size and associated deployment costs, along with concerns about data security,
many teams opt for deploying smaller models for code generation. Consequently, there arises a compelling need
for transferring LLMs’ code generation reasoning abilities to the smaller models. In this paper, we propose the
CodePLAN framework, which aims to transfer LLMs’ reasoning capabilities to smaller models through distillation.
We adopt a multi-task learning approach, jointly undertaking code generation and solution plan generation tasks, to
enhance the code generation capabilities of the smaller model. To ensure the superior quality of the solution plans,
we advocate for the utilization of backward reasoning and plan sampling strategies. Our experiments show that in
comparison to the conventional fine-tuning approach, our approach improves the smaller model’s code generation
performance (measured in pass@1 metric) by over 130% on the challenging APPS benchmark.

1. Introduction

Automatic code generation has a history spanning
decades, aiming to create executable programs
from problem specifications (Backus et al., 1957;
Waldinger and Lee, 1969; Manna and Waldinger,
1971). As artificial intelligence technology rapidly
advances, the application of neural network tech-
niques in intelligent code generation is increasingly
gaining attention in the field of software engineer-
ing (Ling et al., 2016; Yin and Neubig, 2018; Lyu
et al., 2021). Recently, large language models
(LLMs) such as ChatGPT (OpenAI, 2022) have
made significant advances in code generation ow-
ing to their superior reasoning capabilities. How-
ever, deploying these mammoth models comes
with significant computational, time, and financial
demands, coupled with data and security risks.
Consequently, many enterprises and teams still
prefer more manageable, smaller models.

In the realm of code generation, smaller models
lag in reasoning capabilities compared to LLMs,
leading to challenges with complex programming
tasks. Our empirical studies highlight the excep-
tional in-context learning (ICL) of LLMs. By uti-

∗Zhi Jin and Chen Lyu are the corresponding au-
thors.

†This work was done when Chen Lyu was a visiting
scholar at Peking University.

lizing "Chain-of-Thought (CoT)" (Wei et al., 2022)
as human-defined solution steps, LLMs can bol-
ster their reasoning, allowing them to craft solu-
tion plans from these in-context examples. This
methodology elevates LLMs’ problem-solving ac-
curacy and is notably effective in code genera-
tion (Jiang et al., 2023; Huang et al., 2024). How-
ever, while CoT strategies shine with massive-
parameter models, smaller models, even after fine-
tuning, struggle in deriving CoT-based solution
plans due to ICL and reasoning constraints. Yet,
we have observed that a smaller model, around
1B parameters in size, when fine-tuned and given
both problem description and a precise CoT-based
solution plan (labeled as "best plan"), sees a sub-
stantial boost in code generation capabilities, as
shown in Figure 1.

This finding prompted us to further explore strate-
gies for providing smaller models with a “best plan”
when addressing programming tasks. However, we
face two significant challenges: 1) Dependency
on Large Language Models (LLMs) during infer-
ence. Utilizing LLMs to generate solution plans for
smaller models might be pragmatic, but it becomes
impractical if the smaller model consistently relies
on LLMs during inference. 2) Securing accurate,
high-quality solution plans. Solution plans are
primarily procured either manually by experts or
automatically by LLMs. While expert-curated plans

5879

CodeT5-770M CodeT5-220M GPT2-1.5B
0.0

0.1

0.2

0.3

0.4

pa
ss

@
1

Results on Competition-level task of APPS
no_plan
with_greedy_plan
with_best_plan

Figure 1: Comparison results of different models
without solution plans, spliced LLM greedy gener-
ated solution plans and the best quality solution
plans as prompt, where all models were fine-tuned
on the APPS train dataset.

are typically more reliable, their high costs make
them less feasible for automated code generation.
In contrast, most LLM-generated plans, directly de-
rived from problem descriptions, often do not meet
the desired quality. Notably, even state-of-the-art
LLMs like ChatGPT can produce plans that are not
consistently accurate, leading not only to missed
enhancements but potential performance regres-
sions in smaller models, as depicted in Figure 1.

To address these challenges, we introduce
“CodePLAN”, a novel multi-task plan-based frame-
work designed to enhance the code generation
for smaller models by distilling LLMs’ reasoning
ability. Essentially, CodePLAN utilizes multi-task
learning to imbue smaller models with LLMs’ rea-
soning capabilities, allowing them to autonomously
develop solution plans and generate code. Cen-
tral to CodePLAN’s effectiveness is the precision
of these solution plans, both in training and infer-
ence. Thus, we innovate two techniques: "back
reasoning" and "plan sampling", which respectively
enhance the quality of plans during LLM distillation
and during CodePLAN’s own inference.

Specifically, to tackle the first challenge, we con-
ceptualize LLMs as "teachers" and smaller models
as "students", with the objective of distilling the
teacher’s reasoning capabilities into the student.
We employ a multi-task training framework, using
solution plans from LLMs and actual codes as su-
pervisory signals. This framework emphasizes two
tasks: 1) Code generation, which develops the
smaller model’s coding skills, and 2) Plan gener-
ation, aiming to distill LLMs’ reasoning prowess.
Leveraging this strategy, the smaller model’s code
generation performance improves notably. While
it leans on LLMs during training, it operates au-
tonomously during inference. At this stage, capital-
izing on its refined skill to generate solution plans,
the model uses its plans to enhance the code gen-

eration process, optimizing its output potential.
For the second challenge, we guide LLMs to

create solution plans based on actual codes us-
ing a "back reasoning" approach. This deviates
from methods by Jiang et al. (2023) and Li et al.
(2023c), who rely solely on problem descriptions.
Our method prioritizes obtaining top-tier solution
plans (refer to section 3.1), a claim supported by
our empirical data (see Table 5). Nonetheless,
smaller models still confront a similar obstacle dur-
ing the inference phase - the inability to directly
generate correct solution plans. To address this
problem, we take inspiration from the process that
programmers use to solve complex programming
problems. The process of programmers in solv-
ing complex programming problems is actually a
process of continuous trial and error of thinking,
where the correctness of thinking has been veri-
fied by writing code according to the constructed
thinking until the problem is solved. Consequently,
in the inference phase, we introduce a technique
called "plan sampling" to simulate a programmer’s
problem-solving. The key was to ensure efficiency
while targeting quality solutions. To this end, we
craft a strategy using limited sampling and concise
unit tests for each sampled solution plan. This
makes "plan sampling" both lightweight and highly
effective.

We executed a comprehensive series of exper-
iments on two distinct streamed code generation
datasets, namely APPS and MBPP. Our novel ap-
proach, in comparison to standard finetune meth-
ods, considerably enhances the code generation
proficiency of the model, most notably improving
the pass@1 metric on the APPS dataset by over
130%. To the best of our knowledge, this study is
the first exploration of distilling the reasoning abil-
ity of LLMs to improve code generation in smaller
models. Our codebase is publicly accessible at:
https://github.com/sssszh/CodePLAN.

2. Related Work

Code Generation. With the advent of trans-
former (Vaswani et al., 2017) and the development
of pre-training techniques (Devlin et al., 2018),
more and more pre-training models are applied
in the field of code generation. For instance, open-
source code models like CodeT5 (Wang et al.,
2021), CodeT5+ (Wang et al., 2023), CodeGen (Ni-
jkamp et al., 2022), PolyCoder (Xu et al., 2022),
InCoder (Fried et al., 2022), StarCoder (Li et al.,
2023a), as well as general-purpose language mod-
els such as GPT-J (Wang and Komatsuzaki, 2021),
GPT-Neo (Black et al., 2021) have demonstrated
substantial performance in code generation tasks.

The dominant approaches in code generation
mainly involve fine-tuning pre-trained code genera-

https://github.com/sssszh/CodePLAN

5880

tion models using supervised learning (Hendrycks
et al., 2021) or reinforcement learning (RL) (Li
et al., 2022; Le et al., 2022; Shojaee et al., 2023; Li
et al., 2024). However, neither supervised nor re-
inforcement learning fine-tuning allows the model
to learn reasoning well. Moreover, RL-based ap-
proaches decompose code generation into se-
quences of token-generating actions, which may
limit the model to learn reasoning ability due to
the lack of high-level thinking. Different from these
methods, we achieve high-level thinking in smaller
models by distilling the reasoning abilities of LLMs
into them.

Chain-of-Thought (CoT). With the advent of
large language models, such as ChatGPT (Ope-
nAI, 2022) and GPT4 (OpenAI, 2023), and the
evolution of CoT prompting techniques (Wei et al.,
2022; Wang et al., 2022), an increasing number of
researchers have committed themselves to identify
strategies that effectively augment the emergent
capabilities of LLMs (Shum et al., 2023; Zhou et al.,
2022). Jiang et al. (2023) proposed a “self-plan” ap-
proach, leveraging the inherent reasoning abilities
of LLMs to sequentially decompose and solve prob-
lems. This methodology has yielded promising re-
sults for fundamental programming tasks. However,
these CoT prompt-based techniques are predomi-
nantly applicable to models with many parameters
(e.g., 100 B or more) and are less suitable for mod-
els with fewer parameters, which lack inferential
solid interpretation abilities to decompose com-
plex problems independently. Ho et al. (2022) and
Hsieh et al. (2023) employed a novel strategy of
using inference interpretations generated by LLMs
as supervised signals to train smaller models, with
the aim of enhancing their performance on simple
natural language processing (NLP) tasks.

In summary, the “self-plan” approach proposed
by Jiang et al. (2023) relies heavily on the inherent
reasoning ability of LLMs. Different from meth-
ods that stimulate the inherent reasoning abilities
of LLMs themselves, our methodology utilizes so-
lution plans generated by LLMs as supervised
signals for training smaller models, distilling the
reasoning ability of LLMs into small models, it
can reduce the expensive cost of deploying LLMs.
Previous studies (Ho et al., 2022; Hsieh et al.,
2023) have leveraged the reasoned interpretation
of LLMs to enhance the performance of smaller
models on simple NLP tasks. However, unlike
these simple NLP tasks, code generation is a much
more complex task, and the difficulty of obtaining
high-quality solution plans prevents these meth-
ods from being directly applied to the field of code
generation.

num = int(input())
if num == 0:
 print(1)
elif num == 1:
 print(0)

Code:

Plan:
1. Read the input value for x.
2. If x is equal to 0, print 1 .
3. If x is equal to 1, print 0.

Figure 2: We use the prompt to allow LLM to rea-
son backwards a solution plan from the code writ-
ten by the programmer (highlighted in green).

3. CodePLAN

In this section, we provide a comprehensive expo-
sition of the core principles underlying CodePlan.
First, we outline how CodePlan extracts distilled
knowledge from LLMs, with a specific emphasis
on the key ingredient termed "solution plans". Fol-
lowing this, we demonstrate the detailed training
process by which CodePlan leverages these "solu-
tion plans" within a multi-task learning framework.
Lastly, we describe in-depth how CodePlan, dur-
ing its inference phase, utilizes its self-generated
"solution plans" to facilitate code generation.

3.1. Generating Plans through LLM

Contemporary research reveals that LLMs have the
capacity to generate high-quality inference steps
for certain rudimentary NLP tasks, thereby inter-
preting the solutions it produces (Wei et al., 2022).
However, within the domain of code generation,
LLM does not guarantee the generation of high-
quality inference steps for intricate programming
challenges. This necessitates the exploration of
an effective methodology to uncover these high-
quality solution plans.

Most LLM-based plan generation methods use
a "forward reasoning" strategy, leveraging CoT ex-
amples to deduce plans from problem descriptions.
However, our empirical studies for code generation
tasks suggest that "backward reasoning" — deduc-
ing from the given solution/code — often produces
higher-quality plans. To facilitate this, we estab-
lish a dataset D, comprised of paired elements
(xi, yi), where xi represents the problem descrip-
tion, and yi represents the solution to xi. For com-
plex programming tasks, the LLM may not be able
to generate high-quality solution plans directly from
xi. In contrast, as yi represents the solution to xi

as authored by the programmer, it intrinsically en-
compasses the programmer’s solution plan for ad-
dressing the problem. Consequently, we infer the
solution plan si, written by the programmer when
composing yi to solve xi, by reasoning backwards

5881

Problem

Solutions

Solutions

LLM

Plans

Problem Solutions

Plans

Code Model

GEN_CODE

ProblemGEN_PLAN

Code Head

Plan Head

Dataset

Figure 3: Our framework for the training phase of CodePLAN: backward reasoning from solutions via
LLM about the programmer’s solution plan at the time of solving this programming problem, and using
these solution plans and solutions to fine-tune the code generation model in an alternating multi-task
fashion.

from yi. The solution plan we deduce backwards
from yi is typically superior to the solution plan
obtained directly from xi using the LLM (see sec-
tion 4.5). We guide the LLM to generate solution
plans based on provided prompt (yp, sp), utilizing
the prompt template shown in Figure 2. For a new
yi ∈ D, the LLM emulates the prompt (yp, sp) to
reason backwards a solution plan si for yi.

3.2. Training Model with Plans

We initially outline the methodology for training
the base model using the solution plans. In this
procedure, we employ the intermediate solution
plans, generated by LLMs, as a novel fine-tuning
task assigned to the base model. The specifics
of this training process are graphically depicted in
Figure 3.

In conventional fine-tuning strategies, the base
code generation model typically aims to minimize
the cross-entropy loss between the generated code
and the target code, serving as the primary training
objective:

Lcode (θ1) = −
∑
t

log pθ1(wt | w1:t−1, D) (1)

where D represents the problem description and
W = (w1, ...wt) represents the ground truth code.

Nonetheless, this conventional fine-tuning strat-
egy fails to equip the model with inferential profi-
ciency. To endow smaller models with the LLM’s
capability to decompose intricate problems, we add
a training task -distilling reasoning ability from LLM
- generating solution plans. This task is executed
to minimize the cross-entropy loss between the
solution plans generated by the model and those
generated by the LLM:

Lplan (θ2) = −
∑
t

log pθ2(st | s1:t−1, D) (2)

where D represents the problem description and
S = (s1, ...st) represents the solution plan gener-
ated by LLM.

This approach not only equips the model with
code generation capabilities but also enables it to
generate intermediate solution plans. Within this
training workflow, we utilize an alternating train-
ing strategy to fine-tune our model, distinguishing
between the two tasks using two unique charac-
ters: [GEN_CODE] and [GEN_PLAN]. Given
the stark differences between program language
and natural language, we modified our model by
incorporating a new “plan head” at the end of the
base model to generate solution plans. The total
loss function optimized in our model is:

L = (1− λ)Lcode + λLplan (3)

where λ is a hyperparameter that regulates the
weight assignment for the loss of the two tasks. In
our experimental setup, λ=0.5.

3.3. Inferencing with Plans

Leveraging a multi-task fine-tuning approach, our
framework enables the base model to generate
both code and solution plans. In this context, we
detail how, during the inference phase, the solu-
tion plans produced by the model enhance code
generation, as illustrated in Figure 4.

Plan Sampling. As shown in Figure 4, the in-
ference phase of CodePLAN is delineated into
three specific stages. Initiated in the first stage,
we use the fine-tuned model to generate the solu-
tion plans. The input of the model consists of the
[GEN_PLAN] label and the problem description
xi, and its output is the solution plan si. However,
the utilization of a greedy decoding strategy is in-
sufficient to assure the precision of the solution
plans. This deficiency prompted us to consider

5882

Problem Extract example
input/output pairs Example unit tests

I/O

Plan-based tuned
code model Plan Code

Generated codes
with plan

Generated Plans

Filter by example
unit test results

Plan

GEN_CODE

GEN_PLAN

Code

Final codes

Hidden unit tests
I/O

1

1 2

2

2

23
3

3

GEN_CODE

Figure 4: The inference phase schematic comprises three stages: ① Initially, the model formulates
candidate solution plans based on the provided problem description. ② Subsequently, as indicated by
the dashed line, solution plans generated in Stage ① are integrated with the problem description for
code generation. Candidate solution plans are chosen based on the evaluation outcomes of the code
generated through example unit tests. ③ Ultimately, the selected high-quality solution plan is used as a
prompt, integrated within the problem description for a new cycle of code generation.

the methods by which programmers tackle com-
plex competition problems: in such scenarios, a
plethora of potential solution plans are conceived,
with code being written and subsequently verified
through unit tests.

Accordingly, we incorporated a novel strategy -
“plan sampling” - to get the correct solution plans.
This approach permits the sampling of multiple
solution plans per problem, thereby encouraging
the model to ideate akin to a programmer while
acknowledging that complex programming prob-
lems may have multiple solutions. For the sec-
ond stage, the model utilizes the [GEN_CODE]
label, the problem description xi, and the solu-
tion plan si as input, and then proceeds to gener-
ate a small volume of codes yi = {yi1 , yi2 , ..., yin}
in accordance with the solution plan, where n is
limited to 10. This process can be formally de-
fined as: yi ←− f(xi, si), where f represents the
base model. Considering time constraints, we sam-
ple up to 20 solution plans. The quality of a so-
lution plan is indicated by the number of gener-
ated codes that successfully pass the example unit
tests ti — typically, only one or two as specified
in the problem description. This evaluation metric
is formalized as score(si) =

∑
yin∈yi

δ(yin , si, ti).
Here, δ(yin , si, ti) represents whether the code
yin , guided by the plan si, passes the exam-
ple unit tests ti, defined as: δ(yin , si, ti) :=

{
1, if yin passes ti
0, otherwise

. Consequently, the solution

plan correlating with the highest number of suc-
cessful code tests is deemed as the highest quality,
formally captured by si = argmaxsi∈S(Score(si)).
Transitioning to the third stage, our framework ele-
vates the model’s code generation capability using
the chosen top-tier solution plan. Codes gener-
ated within this enhanced framework are further
assessed by hidden unit tests, which are more rig-
orous than the example unit tests, often capturing
edge cases or extreme instances of the code’s
functionality.

4. Experiments

4.1. Experiment Setup

Dataset and Models. In this study, we evalu-
ate our approach on two mainstream code gen-
eration datasets: (1) APPS (Hendrycks et al.,
2021). (The dataset was collected from several
programming competition platforms (e.g. Code-
forces, LeteCode, etc.) with 10,000 problems, of
which 5,000/5,000 problems were divided for train-
ing/testing and divided into three levels accord-
ing to the difficulty of the problems, introductory
level, interview level, and competition level. (2)
MBPP (Austin et al., 2021). The dataset con-

5883

Pass@1 Pass@5 Pass@100Model Size Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All
Codex 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25 - - - -
GPT2 1.5B 1.30 0.70 0.00 0.68 3.60 1.03 0.00 1.34 - - - -
GPT-Neo 2.7B 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58 - - - -
GPT-J 6B 5.60 1.00 0.50 1.82 9.20 1.73 1.00 3.08 - - - -
StarCoder 164M 1.73 0.44 0.01 0.63 4.70 1.43 0.46 1.89 14.80 5.50 3.80 7.02
CodeGen 350M 1.54 0.38 0.08 0.56 4.91 1.26 0.37 1.82 17.40 5.51 4.10 7.62
CodeT5 220M 0.71 0.27 0.03 0.31 2.40 0.94 0.12 1.07 9.90 3.53 1.60 4.42
CodeT5+ 770M 4.41 0.99 0.26 1.53 9.92 2.59 1.05 3.75 23.50 8.33 6.50 11.00
CodeT5 770M 3.30 0.68 0.15 1.10 8.12 1.89 0.74 2.91 21.30 6.53 6.00 9.38
CodeT5+CodePLAN 770M 7.87 1.61 0.42 2.62 14.66 3.54 1.59 5.37 28.60 9.17 8.60 12.94

Relative Improvement 138.5% 136.8% 162.5% 138.2% 80.5% 87.3% 114.9% 84.5% 34.3% 40.4% 43.3% 38.0%

Table 1: Performance by Pass@k on APPS: “Intro”: introductory, “Inter”: interview, “Comp”: competition.

sists of 974 programming problems constructed
from crowdsourcing, with 374/90/500 problems
divided for training/validation/testing and 10 re-
served for few-shot prompt learning. We choose
two of the most popular code generation models,
CodeT5-770M (Wang et al., 2021) and CodeGen-
350M (Nijkamp et al., 2022), to validate the effec-
tiveness of our approach. And the solution plans
we use for training are from OpenAI’s GPT-3.5-
Turbo API (OpenAI, 2022).

Metric. To evaluate the functional correctness
of generated codes, we followed the previous
works (Hendrycks et al., 2021; Chen et al., 2021)
using pass@k as the evaluation metric. This metric
measures the functional correctness of the code by
executing unit test cases. For each problem sam-
pled to generate n>=k copies of code, the number
of correct codes c<=n, pass@k metric is calculated
as follows:

pass@k = E
Problems

1−
(

n− c
k

)
(

n
k

)
 (4)

In our experimental setup, we sample 100
copies of the code for each problem to compute
pass@{1, 5, 100}

Training/Inference Setting. For the training
phase associated with the APPS dataset, we ad-
hered to the data preprocessing structure as delin-
eated in the original paper (Hendrycks et al., 2021).
The established maximum lengths for the source
sequence and the target sequence were 600 and
512, respectively. The batch size was configured
to 32, and the learning rate was specified at 2e-5,
a learning rate decay of 0.05. The fine-tuning pro-
cess was executed 10 epochs. When approaching
the MBPP dataset, we remained consistent with
the data preprocessing methodology laid out in the
original paper (Austin et al., 2021). The respective
maximum lengths for the source sequence and the
target sequence were set at 350 and 300. Both
the batch size and the learning rate mirrored the

parameters established for the APPS dataset. Im-
portantly, we implemented a total of 50 rounds of
fine-tuning for the MBPP, to account for the more
limited number of training sets within this dataset.
In the inference stage, we employed temperature
sampling for both APPS and MBPP, with respective
temperature settings of 0.6 and 1.2. For each prob-
lem, we stipulated the generation of 100 instances
of the code and 20 solution plans.

4.2. Experimental Results on APPS

We evaluated our models and compared them
with several baseline models, which include GPT-
2 (Radford et al., 2019), GPT-Neo (Black et al.,
2021), GPT-3 (Brown et al., 2020), CodeX (Chen
et al., 2021), CodeT5 (Wang et al., 2021),
CodeT5+ (Wang et al., 2023), StarCoder (Li et al.,
2023a) and CodeGen (Nijkamp et al., 2022). Note
that all models except CodeX and GPT-3 are
fine-tuned on APPS. As illustrated in Table 1,
CodePLAN notably bolsters the code generation
competency of the model, surpassing models
equipped with several folds the number of parame-
ters. Specifically, across all levels of the APPS
benchmark, CodePLAN secures an impressive
gain of over 130% in the pass@1, as compared
to the standard fine-tuning process. Moreover, our
method manifests considerable improvements in
the pass@5 and pass@100. It’s worth empha-
sizing that the enhancement engendered by our
method on the pass@1 metric is significantly more
pronounced than on the pass@100. This denotes
that CodePLAN significantly escalates the likeli-
hood of the model generating correct code for
the identical question. Furthermore, CodePLAN
can generate a larger volume of correct codes
than alternative methods, thereby proving advan-
tageous for subsequent post-processing tasks like
code ranking. Interestingly, the relative improve-
ment of CodePLAN on complex, competition-level
questions surpasses that on introductory-level and
interview-level questions, indicating that Code-
PLAN empowers smaller models to solve complex
programming problems with reasoning capabilities.

5884

Pass@1 Pass@5Method Intro Inter Comp All Intro Inter Comp All
CodeGen-350M

standard finetune 1.54 0.38 0.08 0.56 4.91 1.26 0.37 1.82
CoT finetune 1.38 0.35 0.06 0.50 3.95 1.21 0.21 1.56

CodePLAN w/o PS 2.06 0.56 0.09 0.77 5.27 1.62 0.40 2.11
CodeT5-770M

standard finetune 3.30 0.68 0.15 1.10 8.12 1.89 0.74 2.91
CoT finetune 3.22 0.78 0.14 1.15 7.65 1.99 0.36 2.84

CodeRL* 3.76 0.79 0.16 1.25 9.20 2.08 0.69 3.22
CodePLAN w/o PS 3.90 0.80 0.20 1.30 9.25 2.17 0.78 3.31

Table 2: Results with different training methods on APPS.

Method Pass@1 Pass@5 Pass@80
CodeGen-350M

Standard finetune 7.51 14.98 30.29
CoT finetune 7.95 15.01 30.12

CodePLAN w/o PS 10.39 18.66 33.05
CodeT5-770M

Standard finetune 13.78 26.01 47.89
CoT finetune 12.06 24.03 47.01

CodePLAN w/o PS 15.13 28.07 51.09

Table 3: Results with different training methods on
MBPP.

4.3. Comparative Analysis of Various
Training Approaches

In this section, we compare various training tech-
niques on APPS and MBPP, namely standard fine-
tuning, CoT fine-tuning, RL-based fine-tuning, and
CodePLAN without Plan Sampling (abbreviated as
CodePLAN w/o PS). Across these methods, a con-
sistent base model is employed. CoT fine-tuning,
inspired by existing research (Ho et al., 2022), is
not typically used for code generation. For this
method, we merge the solution plan with the code
to create a target sequence. During inference, the
model produces a "CoT + Code" output, with the
Code segment extracted for assessment. For the
RL-based fine-tuning, our reference point is the
CodeT5 checkpoint released by CodeRL (Le et al.,
2022), a framework that harnesses RL training for
code generation.

Result on APPS. On the APPS benchmark,
we conducted this experiment using CodeT5
770M (Wang et al., 2021) and CodeGen 350M (Ni-
jkamp et al., 2022) as base models. Table 2
presents the comparative results of CodePLAN
w/o PS alongside various fine-tuning methodolo-
gies on the APPS benchmark. We can find that
the code generation ability of smaller base mod-
els is improved by distilling the reasoning ability
of the LLM, and that this approach outperforms
other fine-tuning methods on all difficulty levels
of the APPS benchmark. Compared to standard

fine-tuning and RL-based fine-tuning, the inference
ability of the smaller model is improved by distill-
ing the inference ability of the LLM thus indirectly
improving the code generation ability of the base
model. In contrast, standard fine-tuning and RL-
based fine-tuning methods lack high-level thinking
as a supervisory signal and are not beneficial for
improving the reasoning ability of smaller models.
While CoT fine-tuning has proven its mettle in sim-
pler NLP tasks (Ho et al., 2022), our experiments
reveal its direct application to the intricate realm of
code generation to be less impactful. In this con-
text, CodePLAN demonstrates a significant edge.

Result on MBPP. We also conducted this exper-
iment on MBPP, where we followed the experimen-
tal setup of the original paper (Austin et al., 2021)
and also used the CodeT5-770M and CodeGen-
350M as the base models. The outcomes are
presented in Table 3. Mirroring findings from the
APPS benchmark, CodePLAN (w/o PS) consis-
tently outperforms both standard fine-tuning and
CoT fine-tuning methods by leveraging the distilled
reasoning capabilities of the LLM.

4.4. Impact Analysis of Varying Solution
Plan Sample Sizes

Table 4 presents the results of ablation experi-
ments, examining the effect of varying the num-
ber of sampled solution plans during inference. In
this setup, the model-generated solution plan si is
appended to the problem description xi to guide
the code generation process yi ←− f(xi, si). In-
terestingly, with N=1, where the base model gen-
erates a single solution plan using greedy decod-
ing, the code generation performance doesn’t im-
prove. It might even degrade compared to when
no solution plan is used (N=0, represented by
yi ←− f(xi)). This indicates that solution plans
derived via greedy decoding may lack precision.
However, employing multiple samplings to select
quality solution plans can significantly enhance
the model’s code generation efficacy. Moreover,

5885

Plan Sampling Number Pass@1 Pass@5 Pass@100
Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All

N=0 3.82 0.78 0.15 1.26 9.25 2.07 0.68 3.22 21.30 6.53 6.00 9.38
N=1 2.40 0.57 0.09 0.84 5.49 1.50 0.43 2.08 15.10 5.43 3.90 7.06
N=5 5.33 1.04 0.24 1.74 11.02 2.59 1.04 3.96 24.70 7.57 7.10 10.90

N=10 6.61 1.33 0.35 2.19 12.92 3.03 1.33 4.67 26.30 8.43 8.10 11.94
N=20 7.87 1.61 0.42 2.62 14.66 3.54 1.59 5.37 28.60 9.17 8.60 12.94

Table 4: Results of ablation experiments with different number of sampling plans.

0 1 2 3 4 5 6 7 8 9 10
Plan Sampling Number

0

200

400

600

Nu
m

be
r o

f C
or

re
ct

 C
od

es

Introductory

0 1 2 3 4 5 6 7 8 9 10
Plan Sampling Number

0

150

300

450

Nu
m

be
r o

f C
or

re
ct

 C
od

es
Interview

0 1 2 3 4 5 6 7 8 9 10
Plan Sampling Number

0

10

20

30

Nu
m

be
r o

f C
or

re
ct

 C
od

es

Competition

0 1 2 3 4 5 6 7 8 9 10
Plan Sampling Number

0

400

800

1200

Nu
m

be
r o

f C
or

re
ct

 C
od

es

All

CodePLAN CodePLAN(w/o PS) Standard finetune

Figure 5: Results of different number of solution
plans on the number of correct codes generated.

a greater sampling quantity increases the likeli-
hood of identifying a more accurate solution plan.
Figure 5 depicts how sampling solution plans of
varying quantities and difficulties impacts the count
of accurately generated codes, evaluated against
the APPS dataset. Across all difficulty levels, it
is evident that, with N=2, there’s an uptick in cor-
rect codes relative to the "Standard Finetune". By
N=3, the performance even eclipses that of "Code-
PLAN(w/o PS)". These findings underscore that a
minimal sampling of solution plans can effectively
yield high-quality selections. This confirms that our
approach not only amplifies the code generation
prowess of smaller models but also refines their
inference accuracy.

4.5. Evaluation of LLM-Generated
Training Data Quality

In this subsection, we delve into the quality analysis
of training data formulated by the LLM. Assessing
the quality of solution plans directly generated by
the LLM poses challenges. Instead, we resort to
an indirect method, evaluating the quality of codes
generated under the guidance of these solution
plans. For this assessment, we utilize CodeT5
770M, which underwent standard fine-tuning on
the APPS dataset. The results, presented in Ta-
ble 5, compare the quality of LLM-generated solu-
tion plans from problem descriptions ("Problem to
Plan") and those derived from backward reasoning
using ground truth codes ("Code to Plan"). The
label "No-Plan" indicates scenarios where LLM-

Method Pass@1 Pass@5 Pass@10
CodeT5-770M

Without Plan 0.37 1.19 1.71
Problem to Plan 0.73 2.02 2.81

Code to Plan 1.35 3.52 4.78

Table 5: Quality results of solution plans generated
from LLM using different approaches on APPS.

generated plans were not used as auxiliary guid-
ance. Our findings reveal that solution plans de-
rived from backward reasoning using ground truth
codes surpass in quality those generated directly
from intricate problem descriptions. This likewise
indirectly ensures the quality of our distilled data.

5. Discussion

How Does Solution Plan Quality Impact Model
Performance in Code Generation? Based on
the data in Table 4 and Figure 5, it is clear that
the quality of solution plans significantly influences
model performance. Instead of enhancing the
model’s code generation capabilities, subpar solu-
tion plans might actually degrade its performance.
We believe that these lower-quality plans could be
misconstrued by the model as noise, negatively
affecting its foundational capabilities. On the other
hand, high-quality solution plans can greatly boost
the model’s code generation, leading to a higher
output of accurate codes. As such, devising a
method to select high-quality solution plans be-
comes crucial in code generation,

What Distinguishes Our Approach from Con-
ventional Code Post-Processing Methods in
Code Generation? It’s worth noting that various
post-processing code methodologies (Chen et al.,
2022; Zhang et al., 2022; Inala et al., 2022) employ
a technique to rank potential codes. However, such
a ranking strategy doesn’t inherently enhance
the model’s code generation capabilities. In
contrast, our approach actively encourages the
model to produce more correct codes. Consider
a scenario in a programming competition: a
conventionally fine-tuned model might generate
100 code samples for a problem, yet only 1 or 2 of
those might pass the unit test. This low accuracy
complicates the task of code ranking. Conversely,
our method drives the model to yield a much

5886

pass@1 pass@2 pass@5
0

1

2

3

4

5

6 CodeT5
CodeT5+Ranker
CodeT5+CodePLAN+Ranker

Figure 6: The complementarity between CodeR-
anker and our CodePLAN.

higher proportion of accurate codes—perhaps
50 to 90 out of 100. This surge in accurate code
generation certainly aids in the ranking process.
We adopted the CodeRanker (Inala et al., 2022) to
train a Ranker to validate our assertions. Figure 6
presents the results of CodeT5, CodeT5+Ranker,
and CodeT5+CodePLAN+Ranker on APPS.
CodeT5+Ranker improves CodeT5’s pass@{1,2,5}
by an average of 54.5%, and in combination
with CodePLAN, CodeT5+Ranker+CodePLAN
brings an average of 91.3% improvement, it
demonstrates the advantages of CodePLAN in
code ranking tasks and it is also proved that the
two are orthogonal.

6. Conclusion

We introduced an innovative code generation
framework named CodePLAN. During its training
phase, CodePLAN uniquely emphasizes the gen-
eration of solution plans, aiming to refine and op-
timize the overall code generation process. In
the inference phase, the framework leverages au-
tonomously produced solution plans, strategically
enhancing the likelihood of producing accurate
codes. Our extensive experimental evaluations
provide compelling evidence of the efficacy of our
approach, demonstrating a significant boost in the
performance of smaller models in code genera-
tion.

Limitations

Here we summarize two main limitations:
Firstly, the first limitation is that due to the limited

dataset we have not considered what CodePLAN’s
preferences are for different types of programming
topics. Some code generation datasets are now
starting to consider dividing the dataset based on
different algorithms (Li et al., 2023b), so we may in
the future integrate different algorithms in the solu-
tion plan to enhance CodePLAN’s ability to learn
different algorithms and evaluate CodePLAN at a

fine-grained level (e.g., different algorithm types).
Secondly, we considered only one programming

language. In our future work, we plan to explore
the adaptability of this framework across different
programming languages and more intricate coding
scenarios. With the continuous advancement in
automatic code generation techniques, we believe
methods like CodePLAN will play a pivotal role in
furthering the progress of this domain.

Acknowledgments

The work is supported in part by the Natu-
ral Science Foundation of Shandong Province,
China (Grant No. ZR2021MF059), the Na-
tional Natural Science Foundation of China (Grant
Nos. 62192731, 62072007, 62192733, 61832009,
62192730), the National Key R&D Program (Grant
No. 2023YFB4503801) and the Key Program of
Hubei (Grant No. JD2023008).

7. Bibliographical References

Jacob Austin, Augustus Odena, Maxwell Nye,
Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie Cai, Michael Terry, Quoc
Le, et al. 2021. Program synthesis with large lan-
guage models. arXiv preprint arXiv:2108.07732.

John W Backus, Robert J Beeber, Sheldon Best,
Richard Goldberg, Lois M Haibt, Harlan L Her-
rick, Robert A Nelson, David Sayre, Peter B
Sheridan, Harold Stern, et al. 1957. The for-
tran automatic coding system. In Papers pre-
sented at the February 26-28, 1957, western
joint computer conference: Techniques for relia-
bility, pages 188–198.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale
autoregressive language modeling with mesh-
tensorflow. If you use this software, please cite
it using these metadata, 58.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang
Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. 2022. Codet: Code generation with gen-
erated tests. arXiv preprint arXiv:2207.10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared

5887

Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Daniel Fried, Armen Aghajanyan, Jessy Lin,
Sida Wang, Eric Wallace, Freda Shi, Ruiqi
Zhong, Wen-tau Yih, Luke Zettlemoyer, and
Mike Lewis. 2022. Incoder: A generative model
for code infilling and synthesis. arXiv preprint
arXiv:2204.05999.

Dan Hendrycks, Steven Basart, Saurav Kadavath,
Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song,
and Jacob Steinhardt. 2021. Measuring coding
challenge competence with apps. NeurIPS.

Namgyu Ho, Laura Schmid, and Se-Young Yun.
2022. Large language models are reasoning
teachers. arXiv preprint arXiv:2212.10071.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas
Pfister. 2023. Distilling step-by-step! outperform-
ing larger language models with less training
data and smaller model sizes. arXiv preprint
arXiv:2305.02301.

Tao Huang, Zhihong Sun, Zhi Jin, Ge Li, and
Chen Lyu. 2024. Knowledge-aware code gener-
ation with large language models. arXiv preprint
arXiv:2401.15940.

Jeevana Priya Inala, Chenglong Wang, Mei Yang,
Andres Codas, Mark Encarnación, Shuvendu
Lahiri, Madanlal Musuvathi, and Jianfeng Gao.
2022. Fault-aware neural code rankers. Ad-
vances in Neural Information Processing Sys-
tems, 35:13419–13432.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei
Shang, and Ge Li. 2023. Self-planning code
generation with large language model. arXiv
preprint arXiv:2303.06689.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare,
Silvio Savarese, and Steven Chu Hong Hoi.
2022. Coderl: Mastering code generation
through pretrained models and deep reinforce-
ment learning. Advances in Neural Information
Processing Systems, 35:21314–21328.

Bolun Li, Zhihong Sun, Tao Huang, Hongyu Zhang,
Yao Wan, Ge Li, Zhi Jin, and Chen Lyu. 2024.

Ircoco: Immediate rewards-guided deep rein-
forcement learning for code completion. arXiv
preprint arXiv:2401.16637.

Raymond Li, Loubna Ben Allal, Yangtian Zi,
Niklas Muennighoff, Denis Kocetkov, Cheng-
hao Mou, Marc Marone, Christopher Akiki, Jia
Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier
Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier,
Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin
Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhat-
tacharyya, Wenhao Yu, Swayam Singh, Sasha
Luccioni, Paulo Villegas, Maxim Kunakov, Fe-
dor Zhdanov, Manuel Romero, Tony Lee, Nadav
Timor, Jennifer Ding, Claire Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor,
Siva Reddy, Daniel Fried, Dzmitry Bahdanau,
Yacine Jernite, Carlos Muñoz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. 2023a. Starcoder:
may the source be with you!

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang,
Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin,
and Ge Li. 2023b. Taco: Topics in algorith-
mic code generation dataset. arXiv preprint
arXiv:2312.14852.

Xin-Ye Li, Jiang-Tian Xue, Zheng Xie, and Ming Li.
2023c. Think outside the code: Brainstorming
boosts large language models in code genera-
tion. arXiv preprint arXiv:2305.10679.

Yujia Li, David Choi, Junyoung Chung, Nate
Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. 2022. Competition-
level code generation with alphacode. Science,
378(6624):1092–1097.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016. Latent predic-
tor networks for code generation. arXiv preprint
arXiv:1603.06744.

Chen Lyu, Ruyun Wang, Hongyu Zhang, Hanwen
Zhang, and Songlin Hu. 2021. Embedding api
dependency graph for neural code generation.
Empirical Software Engineering, 26:1–51.

Zohar Manna and Richard J Waldinger. 1971. To-
ward automatic program synthesis. Communica-
tions of the ACM, 14(3):151–165.

http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161

5888

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2022. Codegen: An open large
language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474.

OpenAI. 2022. ChatGPT. https://openai.
com/blog/chatgpt/.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni,
and Chandan K. Reddy. 2023. Execution-based
code generation using deep reinforcement learn-
ing. Transactions on Machine Learning Re-
search.

KaShun Shum, Shizhe Diao, and Tong Zhang.
2023. Automatic prompt augmentation and se-
lection with chain-of-thought from labeled data.
arXiv preprint arXiv:2302.12822.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Richard J Waldinger and Richard CT Lee. 1969.
Prow: A step toward automatic program writing.
In Proceedings of the 1st international joint con-
ference on Artificial intelligence, pages 241–252.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2022. Self-consistency
improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi D.Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023. Codet5+: Open code large language mod-
els for code understanding and generation. arXiv
preprint.

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven CH Hoi. 2021. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for
code understanding and generation. arXiv
preprint arXiv:2109.00859.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. 2022. Chain of thought prompting elic-
its reasoning in large language models. arXiv
preprint arXiv:2201.11903.

Frank F Xu, Uri Alon, Graham Neubig, and Vin-
cent Josua Hellendoorn. 2022. A systematic
evaluation of large language models of code.
In Proceedings of the 6th ACM SIGPLAN Inter-
national Symposium on Machine Programming,
pages 1–10.

Pengcheng Yin and Graham Neubig. 2018. Tranx:
A transition-based neural abstract syntax parser
for semantic parsing and code generation. arXiv
preprint arXiv:1810.02720.

Tianyi Zhang, Tao Yu, Tatsunori B Hashimoto, Mike
Lewis, Wen-tau Yih, Daniel Fried, and Sida I
Wang. 2022. Coder reviewer reranking for code
generation. arXiv preprint arXiv:2211.16490.

Denny Zhou, Nathanael Schärli, Le Hou, Jason
Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Olivier Bousquet, Quoc Le, and Ed Chi.
2022. Least-to-most prompting enables com-
plex reasoning in large language models. arXiv
preprint arXiv:2205.10625.

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openreview.net/forum?id=0XBuaxqEcG
https://openreview.net/forum?id=0XBuaxqEcG
https://openreview.net/forum?id=0XBuaxqEcG
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

5889

A. Early Exploration Experiments

In the course of our preliminary experimental inves-
tigations, we discerned that the solution plans, con-
jured by LLM(specifically refers to gpt-3.5-turbo)
from the problem descriptions, were integrated with
these descriptions to serve as prompts. This com-
posite data was subsequently fed to the fine-tuned
smaller models. We observed that this method-
ology marginally enhanced the smaller models’
aptitude in addressing complex programming prob-
lems. Furthermore, by manually selecting the most
superior solution plans, we were able to signifi-
cantly amplify the smaller models’ code generation
capacities. We singled out these high-quality solu-
tion plans based on the substantial improvement
they afforded to the CodeT5-770M model. Inter-
estingly, as revealed from our analysis of Table 6,
these high-quality solution plans demonstrated a
degree of generalization, thereby leading to a sub-
stantial improvement in the performance of other
smaller models. This crucial insight spurred us
to explore a fresh approach aimed at tapping into
the latent potential of smaller models in tackling
intricate programming problems.

B. Examples

B.1. Examples of Generated Plans

Some examples of solution plans generated by
LLM based on ground truth codes are shown in Fig-
ure 7 and Figure 8. The example in Figure 7 is an
interview-level problem on the APPS benchmark,
and the example in Figure 8 is a competition-level
problem on the APPS benchmark.

B.2. Example Generated Programs

Figures 9 to 11 provide illustrative examples of
code produced by CodeT5, under the influence
of various fine-tuning methods. Code segments
failing to pass the unit test are presented on a
red background, whilst code that successfully nav-
igates the unit test is outlined on a green back-
ground. As evidenced in Figure 9, CodeT5, when
fine-tuned using our proposed approach, gener-
ates a significantly higher volume of correct code
than when it is fine-tuned with the standard method.
Figure 10 depicts how CodeT5, when fine-tuned
using our methodology, can effectively address is-
sues that remain unresolved when CodeT5 is fine-
tuned using the standard method. This outcome
stems from the standard fine-tuning method’s lim-
ited success in enhancing the smaller model’s rea-
soning abilities, whereas our method successfully
amplifies the mini-model’s cognitive capabilities by
fostering mutual enhancement between the two

tasks. Furthermore, our strategy of deploying high-
quality solution plans as cues significantly aug-
ments the probability of correct code generation.
Figure 11, however, reveals a failure scenario
where despite our method yielding a greater num-
ber of accurate codes, the selection of an incorrect
solution plan (generated by the greedy decoding
of CodePLAN w/o PS) as a cue fails to produce
correct codes. This is attributable to the incor-
rect solution plan being perceived as noise by the
smaller model, thereby compromising the smaller
model’s innate abilities.

5890

Method Intro Inter Comp All
CodeT5-770M Pass@1

No-Plan 3.30 0.68 0.16 1.10
With-Plan(greedy) 4.90 (↑ 48.5%) 1.03 (↑ 51.5%) 0.14 (↓ 14.3%) 1.62 (↑ 47.3%)

With-Plan(best) 9.72 (↑ 194.5%) 1.91 (↑ 180.9%) 0.45 (↑ 181.3%) 3.18 (↑ 189.1%)
CodeT5-770M Pass@5

No-Plan 8.12 2.01 0.74 2.98
With-Plan(greedy) 11.30 (↑ 39.2%) 2.69 (↑ 33.8%) 0.61 (↓ 17.6%) 4.00 (↑ 34.2%)

With-Plan(best) 18.90 (↑ 132.8%) 4.56 (↑ 126.9%) 1.80 (↑ 143.2%) 6.88 (↑ 130.9%)
CodeT5-220M Pass@1

No-Plan 0.71 0.27 0.03 0.31
With-Plan(greedy) 1.36 (↑ 91.5%) 0.29 (↑ 7.41%) 0.04 (↑ 33.3%) 0.45 (↑ 45.2%)

With-Plan(best) 1.62 (↑ 128.2%) 0.40 (↑ 48.2%) 0.06 (↑ 100.0%) 0.58 (↑ 87.1%)
CodeT5-220M Pass@5

No-Plan 2.40 0.94 0.12 1.07
With-Plan(greedy) 3.56 (↑ 48.3%) 1.02 (↑ 8.5%) 0.19 (↑ 58.3%) 1.36 (↑ 27.1%)

With-Plan(best) 4.71 (↑ 96.3%) 1.22 (↑ 29.8%) 0.24 (↑ 100.0%) 1.70 (↑ 58.9%)
GPT2-1.5B Pass@1

No-Plan 1.30 0.70 0.00 0.68
With-Plan(greedy) 3.37 (↑ 159.2%) 0.50 (↓ 40.0%) 0.04 (↑ ∞) 0.94 (↑ 38.2%)

With-Plan(best) 4.13 (↑ 217.7%) 0.65 (↓ 7.1%) 0.08 (↑ ∞) 1.20 (↑ 76.5%)
GPT2-1.5B Pass@5

No-Plan 3.60 1.03 0.00 1.34
With-Plan(greedy) 8.20 (↑ 127.8%) 1.54 (↑ 49.5%) 0.22 (↑ ∞) 2.51 (↑ 87.3%)

With-Plan(best) 9.66 (↑ 168.3%) 1.79 (↑ 73.8%) 0.38 (↑ ∞) 3.02 (↑ 125.4%)

Table 6: Results of different smaller models on APPS with different solution plans generated from LLM.

5891

Numbers $1, 2, 3, \dots n$ (each integer from 1 to n once) are written on a board. In one operation you can erase any two
numbers a and b from the board and write one integer $\frac{a + b}{2}$ rounded up instead.
You should perform the given operation $n - 1$ times and make the resulting number that will be left on the
board as small as possible. For example, if $n = 4$, the following course of action is optimal: choose $a =
4$ and $b = 2$, so the new number is 3, and the whiteboard contains $[1, 3, 3]$; choose $a = 3$ and $b =
3$, so the new number is 3, and the whiteboard contains $[1, 3]$;choose $a = 1$ and $b = 3$, so the new
number is 2, and the whiteboard contains $[2]$. It's easy to see that after $n - 1$ operations,there will
be left only one number.Your goal is to minimize it.
-----Input-----
The first line contains one integer t ($1 \le t \le 1000$) — the number of test cases.
The only line of each test case contains one integer n ($2 \le n \le 2 \cdot 10^5$) — the number of
integers written on the board initially. It's guaranteed that the total sum of n over test cases doesn't
exceed $2 \cdot 10^5$.
-----Output-----
For each test case, in the first line, print the minimum possible number left on the board after $n - 1$
operations. Each of the next $n - 1$ lines should contain two integers — numbers a and b chosen and
erased in each operation.
-----Example-----
Input 1\n4 Output 2\n2 4\n3 3\n3 1

Problem Specification

Ground Truth Code Solution Plan

for _ in range(int(input())):
 n = int(input())
 k = n
 print(2)
 for i in range(n - 1, 0, -1):
 print(i, k)
 if (k + i) % 2 != 0:
 k = (k + i) // 2 + 1
 else:
 k = (k + i) // 2

1. Read the input value for the number of
test cases.

2. For each test case, read the input value
for n.

3. Assign k the value n.

4. Print the number 2.

5. For values of i between n-1 and 1 (inclusive), perform the
following steps:

- Print the values of i and k.

- Check if the sum of k and i is odd. If so, update the
value of k to (k+i)//2 + 1. If not, update the value of k to
(k+i)//2.

6. Repeat steps 2-5 for all the test cases.

Figure 7: An example of an interview-level problem and ground truth code on the APPS benchmark, and
a solution plan generated by LLM based on the ground truth code.

5892

You're playing a game called Osu! Here's a simplified version of it. There are n clicks in a game. For each click there are
two outcomes: correct or bad. Let us denote correct as "O", bad as "X", then the whole play can be encoded as a sequence of n
characters "O" and "X". Using the play sequence you can calculate the score for the play as follows: for every maximal
consecutive "O"s block, add the square of its length (the number of characters "O") to the score. For example, if your play
can be encoded as "OOXOOOXXOO", then there's three maximal consecutive "O"s block "OO", "OOO", "OO", so your score will be 2^2
+ 3^2 + 2^2 = 17. If there are no correct clicks in a play then the score for the play equals to 0. You know that the
probability to click the i-th (1 ≤ i ≤ n) click correctly is p_{i}. In other words, the i-th character in the play sequence
has p_{i} probability to be "O", 1 - p_{i} to be "X". You task is to calculate the expected score for your play.
-----Input-----
The first line contains an integer n (1 ≤ n ≤ 10^5) — the number of clicks. The second line contains n space-separated real
numbers p_1, p_2, ..., p_{n} (0 ≤ p_{i} ≤ 1).
There will be at most six digits after the decimal point in the given p_{i}.
-----Output-----
Print a single real number — the expected score for your play. Your answer will be considered correct if its absolute or
relative error does not exceed 10^{ - 6}.
-----Examples-----
Input 3\n0.5 0.5 0.5 Output 2.750000000000000
-----Note-----
For the first example. There are 8 possible outcomes. Each has a probability of 0.125. "OOO" → 3^2 = 9; "OOX" → 2^2 =
4; "OXO" → 1^2 + 1^2 = 2; "OXX" → 1^2 = 1; "XOO" → 2^2 = 4; "XOX" → 1^2 = 1; "XXO" → 1^2 = 1; "XXX" → 0. So
the expected score is $\frac{9 + 4 + 2 + 1 + 4 + 1 + 1}{8} = 2.75$

Problem Specification

Ground Truth Code Solution Plan

(n, a, b) = (int(input()), 0, 0)

for i in map(float, input().split()):

 (a, b) = (a + i * (1 + b * 2), i * (b + 1))

print(a)

1. Read the input value for n.

2. Initialize variable a to 0. Initialize
variable b to 0.

3. For each floating point number i in a list created by
splitting the input(), do the following:

 a. Update the value of variable a by adding i multiplied by
(1 plus b multiplied by 2) to the current value of a.

b. Update the value of variable b by adding i multiplied by
(b plus 1) to the current value of b.

4. Print the value of a.

Figure 8: An example of an competition-level problem and ground truth code on the APPS benchmark,
and a solution plan generated by LLM based on the ground truth code.

5893

Given is a string S. Replace every character in S with x and print the result.

-----Constraints-----
 - S is a string consisting of lowercase English letters.
 - The length of S is between 1 and 100 (inclusive).

-----Input-----
Input is given from Standard Input in the following format:
S

-----Output-----
Replace every character in S with x and print the result.

-----Sample Input-----
sardine

-----Sample Output-----
xxxxxxx

Replacing every character in S with x results in xxxxxxx.

Standard Fine-tuning

s = input()

s = list(s)

for i in range(len(s)):

 if(s[i]!='x'):

 s[i] = 'x'

print(''.join(s))

s=input()
for i in s:
 if i=='x':
 print(i,end='')
 else:
 print(i,end='')

s = input()
for i in range(len(s)):
 s1 = s[i]
 s2 =
str(s1).replace(s1,
str(i+1))
 print(s2)

s = input()
ans = ""
for i in s:
 ans += i+"x"
print(ans)

CodePLAN (w/o PS)

S = str(input())
B = []
for i in S:
 b = str(i)
 B.append(b)
for i in S:
 x = B.index(i)
 B[x] = 'x'
print(''.join(B))

S = input()
s = []
for i in S:
 s.append(i)
s.sort()
for i in range(len(s)):
 s[i]=s[i].replace(s[i]
, 'x')
print(''.join(s))

s = input()
x = []
for i in s:
 z = i.replace(i, 'x')
 x.append(z)
print(''.join(x))

S = str(input())
ans = []
for i in S:
 ans.append(i.replace(i
, 'x'))
print(''.join(ans))

Problem Specification

Figure 9: An example of a problem on the APPS benchmark and code generated by CodeT5 with
different ways of fine-tuning: only one of the four copies of code generated by CodeT5 with standard
finetune passes the unit test, while all four copies of code generated by CodeT5 with our CodePLAN (w/o
PS) fine-tuning pass the unit test.

5894

Find the number of palindromic numbers among the integers between A and B (inclusive).
Here, a palindromic number is a positive integer whose string representation in base 10 (without leading zeros) reads the same forward and backward.

-----Constraints-----
 - 10000 \leq A \leq B \leq 99999
 - All input values are integers.

-----Input-----
Input is given from Standard Input in the following format:
A B

-----Output-----
Print the number of palindromic numbers among the integers between A and B (inclusive).

-----Sample Input-----
11009 11332

-----Sample Output-----
4

There are four integers that satisfy the conditions: 11011, 11111, 11211 and 11311.

Standard Fine-tuning

A,B = map(int,input().split())

print(sum(11*(10**(i-1))-

int(str(i)[::-1])) for i in

range(A,B+1))

a,b=list(map(int,input()
.split()))

c=0
for i in range(a,b+1):
 s=str(i)
 p=10**len(s)
 if p<=i:
 c+=int(s[::-1])

print(c)

a, b = map(int,
input().split())
c = []
for i in range(a, b + 1):
 for j in range(10):
 if j > 9:
 j -= 10
 r = int(str(i)[::-1])
 if r > 9:
 r -= 10
 c.append(r)
ans = sum(c)
print(ans)

def main():
 a,b = list(map(int,

input().split()))
 ans = 0
 for i in range(a, b + 1):
 ans += int(str(i)
 [::-1]) < 10 ** 18
 print(ans)
def __starting_point():
 main()
__starting_point()

CodePLAN (w/o PS)

(a, b) = map(int,
input().split())
ans = 0
for i in range(a, b + 1):
 p = str(i)
 if p[::-1] == p:
 ans += 1
print(ans)

(A, B) = map(int,
input().split())
(A, B) = (A - 1, B - 1)
(N, C) = (0, set())
for i in range(A, B + 1):
 if i in C:
 continue
 if str(i)[::-1] == str(i):
 C.add(i)
 else:
 N += 1
print(N)

(a, b) = map(int,
input().split())
l = list(range(a, b + 1))
def f(x):
 s = str(x)
 if len(s) % 2 == 0:
 s = s[1:]
 return int(s, 10)
ans = 0
for x in l:
 if f(x) == x:
 ans += 1
print(ans)

(a, b) = map(int,
input().split())

c = 0
for i in range(a, b + 1):
 (p, s) = (0, str(i))
 for j in range(len(s) -
1):
 p = 10 * p + int(s[j])
 if p < 10 and p == int(s):
 c += 1
print(c)

CodePLAN

def is_palindrome(n):
 s = str(n)
 return s == s[::-1]
(a,b)=map(int,input().split())
ans = 0
for i in range(a, b + 1):
 s = str(i)
 if is_palindrome(i):
 ans += 1
print(ans)

def is_palindrome(n):
 return str(n) == str(n)[::-1]
(a,b)=map(int,input().split())
ans = 0
for i in range(a, b + 1):
 s = str(i)
 if is_palindrome(i):
 ans += 1
print(ans)

def is_palindrome(x):
 x = str(x)
 if x == x[::-1]:
 return True
 else:
 return False
(a,b)= map(int,input().split())
ans = 0
for i in range(a, b + 1):
 x = str(i)
 if is_palindrome(i):
 ans += 1
print(ans)

(a, b) =
map(int,input().split())
c = 0
for i in range(a, b + 1):
 x = str(i)
 if x == x[::-1]:
 c += 1
print(c)

Problem Specification

1. Define a function called `is_palindrome` that takes in a number as input and checks if it is a palindrome.2. Read in two integers `A` and `B` as input.3. Initialize a variable
called `ans` to 0.4. Loop through all numbers between `A` and `B` (inclusive) using the `range` function.5. Convert each number to a string using `str(i)`.6. Check if the
string is equal to its reverse using `str(i)[::-1]`.7. If the string is a palindrome, increment `ans`.8. Print out the final value of `ans`.",

Figure 10: An example of a problem on the APPS benchmark and code generated by CodeT5 with
different ways of fine-tuning: CodeT5 with the standard fine-tune method generates four copies of
code that do not pass the unit test, while CodeT5 with our CodePLAN (w/o PS) generates one of the four
copies of code that pass the unit test, and we select a high-quality solution plan to be spliced after the
problem description as a prompt, and CodeT5 with CodePLAN generates four copies of code that pass
the unit test.

5895

In 2020, AtCoder Inc. with an annual sales of more than one billion yen (the currency of Japan) has started a business in programming education.
One day, there was an exam where a one-year-old child must write a program that prints Hello World, and a two-year-old child must write a program that receives integers
A, B and prints A+B.
Takahashi, who is taking this exam, suddenly forgets his age.
He decides to write a program that first receives his age N (1 or 2) as input, then prints Hello World if N=1, and additionally receives integers A, B and prints A+B if N=2.
Write this program for him.
-----Constraints-----
 - N is 1 or 2.
 - A is an integer between 1 and 9 (inclusive).
 - B is an integer between 1 and 9 (inclusive).
-----Input-----
Input is given from Standard Input in one of the following formats:
1
2
A
B
-----Output-----
If N=1, print Hello World; if N=2, print A+B.
-----Sample Input-----
1
-----Sample Output-----
Hello World
As N=1, Takahashi is one year old. Thus, we should print Hello World.

Standard Fine-tuning

n=int(input())

if n==1:

 print("Hello World")

elif n==2:

 print("Hello World")

else:

 print(n*a+n*b)

n = int(input())
if n==1:
 print("Hello World")
elif n==2:
 print("Hello World")
 print(n+n)
else:
 print("Hello World")
 print(n+n)

n=int(input())
if n%2==0:
 print("Hello World")
else:
 print("Hello World")
 a=n//2
 b=n%2
 print(a,b)

n=int(input())
if n==1:
 print("Hello World")
elif n==2:
 print("Hello World")
else:
 print("Hello World")
 print(n,n+1,n+2)

CodePLAN (w/o PS)

import sys
input = sys.stdin.readline
n = int(input())
if n == 1:
 print('Hello World')
else:
 a = int(input())
 b = int(input())
 print(a + b)

n = int(input())
if n == 1:
 print('Hello World')
else:
 a = int(input())
 b = int(input())
 if n == 2:
 print(a + b)
 else:
 print(a + b)

n = int(input())
if n == 1:
 print('Hello World')
else:
 print(int(input()) +
int(input()))

n = int(input())
if n == 1:
 print('Hello World')
else:
 (a, b) = map(int,
input().split())
 print(a + b)

CodePLAN

n = int(input())
for i in range(n):
 (a, b) =
 map(int,input().split())
 if a == 1:
 print('Hello
World')
 elif a == 2:
 print(a + b)
 else:
 continue

for i in range(int(input())):
 (a, b) = map(int,
input().split())
 if a == 1:
 print('Hello
World')
 elif a == 2:
 print(a + b)
 else:
 continue

import sys
input = sys.stdin.readline
n = int(input())
for i in range(n):
 (a, b) = list(map(int,
input().split()))
 if a == 1:
 print('Hello World')
 elif a == 2:
 print(a + b)
 else:
 pass

n = int(input())
while n:
 (a, b) = list(map(int,
input().split()))
 if a == 1:
 print('Hello World')
 elif a == 2:
 print(a + b)
 else:
 a -= 1
 n -= 1

Problem Specification

1. Read an input value that represents the number of test cases to be executed.2. For each test case, read in two integers a and b.3. If a is equal to 1, print \"Hello
World\".4. If a is equal to 2, print a+b.\n5. If a is not equal to 1 or 2, continue to the next step.6. Repeat steps 2-5 for all test cases.

Figure 11: An example of a problem on the APPS benchmark and code generated by CodeT5 with
different ways of fine-tuning: All four copies of CodeT5 generated by the standard fine-tuning method
fail the unit test, while all four copies of CodeT5 generated by our CodePLAN (w/o PS) pass the unit test.
However, we select an incorrect solution plan and splice it after the problem description as a prompt that
all four copies of CodeT5 with CodePLAN do not pass the unit test.

	Introduction
	Related Work
	CodePLAN
	Generating Plans through LLM
	Training Model with Plans
	Inferencing with Plans

	Experiments
	Experiment Setup
	Experimental Results on APPS
	Comparative Analysis of Various Training Approaches
	Impact Analysis of Varying Solution Plan Sample Sizes
	Evaluation of LLM-Generated Training Data Quality

	Discussion
	Conclusion
	Bibliographical References
	Early Exploration Experiments
	Examples
	Examples of Generated Plans
	Example Generated Programs

