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Abstract
In low-resource Named Entity Recognition (NER) scenarios, only a limited quantity of strongly labeled data is
available, while a vast amount of weakly labeled data can be easily acquired through distant supervision. However,
weakly labeled data may fail to improve the model performance or even harm it due to the inevitable noise. While
training on noisy data, only certain parameters are essential for model learning, termed safe parameters, whereas
the other parameters tend to fit noise. In this paper, we propose a noise-robust learning framework where safe
parameters can be identified with guidance from the small set of strongly labeled data, and non-safe parameters are
suppressed during training on weakly labeled data for better generalization. Our method can effectively mitigate the
impact of noise in weakly labeled data, and it can be easily integrated with data level noise-robust learning methods
for NER. We conduct extensive experiments on multiple datasets and the results show that our approach outperforms
the state-of-the-art methods.
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1. Introduction

Named entity recognition (NER) is a fundamen-
tal task in natural language processing aiming at
locating entity mentions in a given sentence and
assign them to certain types, and it has a wide
range of applications (Khalid et al., 2008; Etzioni
et al., 2005; Aramaki et al., 2009; Bowden et al.,
2018). Nevertheless, the acquisition of abundant
high-quality human annotated data is costly, and in
many cases there is only a small amount of strongly
labeled data. Fortunately, the entity labels can be
automatically generated by distant supervision, the
common practice of which is to match entity men-
tions in an unlabeled dataset with typed entities in
external gazetteers or knowledge bases. However,
this approach inevitably introduces label noise into
the training set, which may lead to deterioration of
the model performance without proper treatment.
There are many methods proposed to improve the
performance of NER networks on datasets with
the existence of noise, such as sample separa-
tion (Li et al., 2020; Yu et al., 2019; Li et al., 2020;
Meng et al., 2021) and training tricks like early stop-
ping (Liang et al., 2020). Some works leverages
the small set of human annotated data to handle
the distantly supervised data more effectively, but
their studies remain in the data level, such as build-
ing an additional classification model to distinguish
noisy labels from the ground truth labels (Onoe and
Durrett, 2019) or training a model on the strongly
labeled data to revise the weak label (Jiang et al.,
2021).

In this paper, we shift our focus to the model pa-
rameter level. Researches show that only certain
parameters are essential for model learning dur-

ing training on noisy data, termed safe parameters,
whereas the other parameters tend to fit noise (Xia
et al., 2021). Inspired by recent works (He et al.,
2022; Chen et al., 2021a), we present a novel in-
sight: rather than using the strongly labeled data to
train a teacher model and generate pseudo labels,
it is better to discover safe parameters relying on
the limited trusted data. Driven by this insight, we
propose a noise-robust learning framework con-
sisting of three stages, where safe parameters can
be identified with guidance from the small set of
strongly labeled data. The contributions of our work
can be summarized as follows:

1. We propose a novel framework for noise ro-
bust learning in low-resource NER scenarios. To
our knowledge, it is the first time to solve this prob-
lem from the perspective of parameter level.

2. We propose a novel strategy to identify the
safe parameters and introduce an effective opti-
mization strategy to suppress the other parameters
during distantly supervised training.

3. The results of extensive experiments show
that our approach outperforms the state-of-the-art
methods. Moreover, it can be easily integrated with
data level noise-robust NER methods and further
enhance their performance.

2. Methodology

2.1. Safe Parameters Learning
The concept of safe parameters comes from the
lottery ticket hypothesis (LTH), which was originally
proposed to advocate the existence of an indepen-
dently trainable sparse sub-network from a dense
network (Frankle and Carbin, 2019). LTH has been



5923

Figure 1: The overall framework of our method.

explored widely in numerous contexts, such as im-
age classification (Chen et al., 2021a,b) and natural
language processing (Chen et al., 2020). Xia et al.
(2021) extend LTH to the field of noise-robust learn-
ing, suggesting that only partial parameters are
crucial for model learning and generalization, while
the other parameters tend to fit noisy labels.

For NER, large weakly labeled data can be easily
acquired through distant supervision while human
annotated data is usually limited. Inspired by the
works of LTH, we propose a novel method to iden-
tify safe parameters with guidance of the limited
strongly labeled data, and enhance distantly super-
vised NER with lottery training, where the non-safe
parameters are suppressed.

2.2. Noise-Robust Learning Framework

We divide our learning approach into three stages
as illustrated in Figure 1. In the first stage, we
train the model merely on the small set of strongly
labeled data, and we utilize the training informa-
tion to identify the safe parameters. In the second
stage, we reset the model parameters to their ini-
tial values, and train the model on the large dis-
tantly supervised data from scratch. We do not
train from the temporary model checkpoint at the
end of the first training stage because training on
a very small clean dataset may result in the model
getting trapped in a local optimum that is hard to
escape from. In this stage, we apply a different
optimization method and suppress the updating of
non-safe parameters during training, which effec-
tively mitigates the impact of noise and ultimately
leads to better generalization. In the third stage,
we unfreeze the non-safe parameters and fine-tune
the model on the small set of strongly labeled data.

The importance of parameters is determined by
two factors: the magnitude of the parameters and

their gradients during the first-stage training. The
significance of parameters has an active correla-
tion with the magnitude of parameters in the pre-
trained model (Han et al., 2015), and if the value is
zero or close to zero, the parameter is inactivated
and non-critical for optimization (Lee et al., 2019).
Meanwhile, the safe parameters should play an
important role in the first-stage training, where the
model is trained merely on clean data and the safe
parameters should be actively updated to fit the ob-
jective function. Thus, the magnitude of gradients
during the first-stage training is also crucial.

A simple and straightforward way to combine the
two factors is applying the product of the magnitude
of parameters and their gradients. We denote the i-
th parameter as ωi, and the initial value of ωi is ωi0.
In our first-training stage, we record the gradients
of all parameters at each step. The training loss
of the first stage is denoted as L, and the gradient
of ωi at the training step j is ∂L

∂ωij
. The importance

score of ωi is defined as

f(ωi) =

N∑
j=0

|ωi0| · |
∂L

∂ωij
| (1)

where N is the number of training steps in the first
stage. We use f(ωi) as a criteria to rank the pa-
rameters and those with the top ranking are con-
sidered safe parameters. Based on the ranking of
parameters, we can generate a parameter mask
W , where the elements are assigned a value of 1
if the corresponding parameter is determined as a
safe parameter, and 0 otherwise.

∥W∥0
k

= p (2)

where ∥ · ∥0 means the standard l0-norm, k is the
number of parameters and p is the ratio of safe
parameters.
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Methods CoNLL03 OntoNotes5.0 Wikigold
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Ours 0.848 0.874 0.861 0.806 0.830 0.818 0.700 0.769 0.733
NEEDLE 0.843 0.857 0.850 0.795 0.819 0.807 0.673 0.758 0.713

Supervised Baselines
Supervised RoBERTa 0.824 0.773 0.798 0.765 0.807 0.785 0.640 0.725 0.680
Smooth Bound 0.845 0.789 0.816 0.771 0.812 0.791 0.655 0.731 0.691

Noise-Robust Distantly-Supervised Methods
BOND 0.821 0.809 0.823 0.785 0.808 0.797 0.674 0.739 0.705
RoSTER 0.859 0.849 0.855 0.802 0.824 0.813 0.697 0.758 0.726

Method Integration
NEEDLE + Ours 0.851 0.873 0.862 0.812 0.828 0.820 0.704 0.765 0.733
RoSTER + Ours 0.854 0.876 0.865 0.808 0.834 0.822 0.701 0.773 0.735

Table 1: Performance of all methods on three datasets measured by precision (Pre.), recall (Rec.) and F1
scores.

2.3. Estimating the Ratio of Safe
Parameters

We have presented how to judge the safety of pa-
rameters and then divide them into safe and harm-
ful ones. However, how to obtain the ratio of safe
parameters p remains an issue. Fortunately, pre-
vious works (Xia et al., 2021) show that the model
performance is not sensitive to the variation of p, so
the accuracy of safe prameters’ ratio is not crucial
and a rough estimate of p is enough. We exploit
the entity distribution difference between strongly
labeled data and distantly supervised data to help
estimate the ratio of safe parameters. Intuitively,
if the difference is large, the label distribution of
distantly supervised data is deviated a lot from the
ground truth. Therefore, the number of safe pa-
rameters has a negative correlation with the entity
distribution difference. We use the Kullback-Leibler
(KL) divergence to calculate the distance between
two distributions. However, most words in an NER
dataset are not entities, whose labels are set to O.
The proportion of O is very high in both strongly la-
beled dataset and weakly labeled dataset, making
the KL divergence of their label distribution quite
small. So we ignore the label O and only take those
words labeled as entities into account. We estimate
the probability of entity labels by their frequency,
and then calculate the KL divergence. Noting that
the value of KL divergence can be anywhere from
0 to infinity theoretically, we set a very small thresh-
old τ > 0, representing the minimum proportion
of safe parameters. But practically, the values of
KL divergence in most NER datasets are smaller
than 1. Therefore, the ratio p of safe parameter is
determined by

p =

{
1−KL(p||q), 1−KL(p||q) > τ
τ, 1−KL(p||q) ≤ τ

(3)

There might be a more accurate way to estimate p,
but it is not the focus of our work and we leave it to

the future work.

2.4. Optimization Method
By calculating the importance scores of model pa-
rameters and estimating the ratio of safe parame-
ters, we can finally determine which parameters are
safe. In order to combat label noise and prevent the
model from fitting noisy data, we suppress the non-
safe parameters during training on weakly labeled
data and block the updates of non-safe parame-
ters. Specifically, we apply to mask the gradient of
parameter ω at each step by W

grad(ω) ⇐ W ⊙ grad(ω) (4)

where ⊙ denotes the element-wise multiplication.
We propose two masking strategy termed hard
mask and soft mask. For hard mask strategy, the
element of W is either ‘0’ or ‘1’. ‘1’ means that the
parameter is safe and ‘0’ means that the parameter
is not essential for model generalization. For soft
mask strategy, we set the mask value of non-safe
parameters as a small number greater than 0, and
set the mask value of safe parameters as a number
slightly less than one. We cannot guarantee that
the identification of safe parameters is absolutely
accurate, so we provide the non-safe parameters a
chance to slowly update and also reduce the confi-
dence of updates of safe-parameters.

3. Experiments

3.1. Datasets
We conduct experiments on CoNLL03 (Sang and
Meulder, 2003), OntoNotes5.0 (Weischedel et al.,
2013) , and Wikigold (Balasuriya et al., 2009). For
each dataset, we select a specific portion of data
as strongly labeled data, while discarding labels of
the remaining data and generate distant labels for
it. In this work, instead of introducing new distant
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CoNLL03 OntoNotes5 Wikigold
S-Mask 0.861 0.818 0.733
H-Mask 0.859 0.817 0.729
R-Mask 0.820 0.801 0.698

w/o Mask 0.818 0.794 0.691

Table 2: The F1 scores of different model varia-
tions.

label generation methods, we follow the previous
work (Liang et al., 2020; Meng et al., 2021) and
use the distant labels provided by (Meng et al.,
2021). We randomly selected 2 percent of the
CoNLL03 and OntoNotes5.0 datasets as clean
samples. Given the considerably smaller size of
the Wikigold dataset, we increased this proportion
to 10 percent.

3.2. Baselines

We compare our method with the following base-
lines. NEEDLE (Jiang et al., 2021) also studies
the low-resource scenario where limited strongly
labeled data and a large amount of weakly labeled
data are available. We directly fine-tune the pre-
trained RoBERTa (Liu et al., 2019) on the strongly
labeled data as a supervised baseline. Smooth
Bound (Zhu and Li, 2022) is also a state-of-the-art
supervised method for NER. Roster (Meng et al.,
2021) and Bond (Liang et al., 2020) are noise-
robust learning methods for distantly supervised
NER, and to be fairly compared with our method,
we first apply them to the weakly labeled data and
then fine-tune the model on the clean data.

3.3. Experimental Details

We use the pre-trained RoBERTa-base model
as our backbone model. For the three datasets
CoNLL03, OntoNotes5.0, and Wikigold, the maxi-
mum sequence lengths are set to be 150, 180, and
120 tokens; the number of the first-stage training
epochs and the third-stage training epochs are the
same, which are set to be 30, 20, 30; the number
of the second-stage training epochs are set to be 3,
2, 5. For all three datasets: The training batch size
is 32 and the threshold τ in Eq.3 is 0.2. We use
Adam (Kingma and Ba, 2015) as the optimizer, and
the peak learning rate is 3e− 5, 1e− 5, 5e− 7 for
the first, sencond, and third training stage respec-
tively with linear decay. The warmup proportion
is 0.1. We conducted each experiment five times
and reported the mean precision and recall scores.
We train the model on 1 NVIDIA A100 Tensor Core
GPU.

3.4. Main Results
The main results of baselines and our method are
shown in Table 1. Our method outperforms all
baselines, which proves the effectiveness of our
framework. The results of supervised methods are
significantly lower, indicating that incorporating dis-
tantly labeled data with appropriate noise handling
techniques can enhance the model performance.
In addition, we also integrate our method with two
data-level noise-robust training approaches by ap-
plying them to our second-stage training, and the
results show that our method can further improve
their performances, suggesting that the parameter-
level approach and data-level approach can com-
plement each other to achieve superior results.

3.5. Ablation Studies and Analysis
In this paper, we propose two gradient masking
strategies, namely hard mask (H-Mask) and soft
mask (S-Mask). Zhu et al. (2023) claim that simply
fine-tuning the data with noisy labels followed by
fine-tuning on clean samples can achieve strong
performance, so we conduct experiments without
parameter masking (w/o Mask) to testify the effec-
tiveness of parameter suppression during distantly
supervised training. We also experiment with a ran-
dom parameter masking (R-Mask) strategy, where
safe parameters are randomly selected. The re-
sults are shown in Table 2. It can be seen that
the evaluation results of soft mask and hard mask
are very close, and the F1 score of soft mask is
slightly higher than hard mask, indicating that iden-
tification of safe parameters of our method is not
absolute accurate, and a more relaxed standard
for suppressing non-safe parameters leads to bet-
ter performance. Random parameter suppression
strategy performs better than simply fine-tuning the
data with distant labels without any parameter sup-
pression followed by fine-tuning on clean samples,
but their F1 scores are both significantly lower than
hard mask or soft mask. This indicates that param-
eter freezing can combat noise memorization as a
regularization method, but our lottery training with
safe parameter selection is more noise robust and
can achieve better results.

In order to examine the influence of noise magni-
tude on our approach, we randomly change a cer-
tain proportion of labels in the distantly supervised
data, and the proportion is called corruption rate.
In Figure 2, we can see that the performance gain
from incorporating distantly supervised training di-
minishes with increasing corruption rate and dis-
tantly supervised training even reduces the model
performance since the noise is too strong. How-
ever, our lottery training is less affected by label
noise, allowing the utilization of distantly labeled
data even under higher levels of noise.
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Figure 2: The model performance on CoNLL03
under different levels of noise.

4. Related Works

The idea of separating parameters into different lev-
els and treating them differently during the training
process came from the outgrowth of Lottery Ticket
Hypothesis (LTH) (Frankle and Carbin, 2019), and
subsequent research, including studies by He et al.
(2022) and our own, applied this theory to vari-
ous contexts and designed distinct approaches to
address specific challenges. We apply LTH to a
common low-resource scenario where strongly la-
beled data is limited while a large amount of weakly
labeled data is available, which is especially com-
mon in NER as distant supervision is a widely used
way to acquire data labels. Our work distinguishes
itself from previous works in several key aspects:

1. The core idea of our work is leveraging the
small amount of strongly labeled data to facili-
tate noise-robust training with weakly labeled data
based on LTH, and we devised a novel three-stage
training framework that fully capitalizes on weakly
labeled data without degradation of model perfor-
mance caused by noise.

2. Given that the application of LTH to different
contexts all require the estimation of the propor-
tion of different parameter types, we introduced an
innovative technique tailored specifically for NER.

3. We avoid complex optimization strategies by
carefully designing our three-stage training frame-
work. This design enables us to more accurately
identify safe parameters with the assistance of the
limited clean data, while He et al. (2022) used a bi-
level optimization strategy to ensure the reliability
of safe parameter.

Our study primarily focuses on the noise intro-
duced by distant supervision, but even human-
annotated data may not be completely noise-free,
which is a limitation in our approach. Some re-
searchers propose to identify overly ambiguous or
mislabeled samples and mitigate their impact when
training neural networks by exploiting differences
in the training dynamics of clean and mislabeled
samples (Pleiss et al., 2020).

5. Conclusion

In this paper, we propose a three-stage noise-
robust learning framework for low-resource NER
from the perspective of parameter level, which iden-
tify the safe parameters leveraging insight provided
by the training process on a small set of strongly
labeled data, and suppress the non-safe parame-
ters to impact the noise during training on distantly
labeled data. Experiments on three representative
datasets show that our method outperforms the
state-of-the-art methods and it can be integrated
with other methods for superior results.
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