@inproceedings{gao-etal-2024-enhancing-emotion,
title = "Enhancing Emotion Prediction in News Headlines: Insights from {C}hat{GPT} and {S}eq2{S}eq Models for Free-Text Generation",
author = "Gao, Ge and
Kim, Jongin and
Paik, Sejin and
Novozhilova, Ekaterina and
Liu, Yi and
Bonna, Sarah T. and
Betke, Margrit and
Wijaya, Derry Tanti",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.526",
pages = "5944--5955",
abstract = "Predicting emotions elicited by news headlines can be challenging as the task is largely influenced by the varying nature of people{'}s interpretations and backgrounds. Previous works have explored classifying discrete emotions directly from news headlines. We provide a different approach to tackling this problem by utilizing people{'}s explanations of their emotion, written in free-text, on how they feel after reading a news headline. Using the dataset BU-NEmo+ (Gao et al., 2022), we found that for emotion classification, the free-text explanations have a strong correlation with the dominant emotion elicited by the headlines. The free-text explanations also contain more sentimental context than the news headlines alone and can serve as a better input to emotion classification models. Therefore, in this work we explored generating emotion explanations from headlines by training a sequence-to-sequence transformer model and by using pretrained large language model, ChatGPT (GPT-4). We then used the generated emotion explanations for emotion classification. In addition, we also experimented with training the pretrained T5 model for the intermediate task of explanation generation before fine-tuning it for emotion classification. Using McNemar{'}s significance test, methods that incorporate GPT-generated free-text emotion explanations demonstrated significant improvement (P-value {\textless} 0.05) in emotion classification from headlines, compared to methods that only use headlines. This underscores the value of using intermediate free-text explanations for emotion prediction tasks with headlines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-etal-2024-enhancing-emotion">
<titleInfo>
<title>Enhancing Emotion Prediction in News Headlines: Insights from ChatGPT and Seq2Seq Models for Free-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ge</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jongin</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sejin</namePart>
<namePart type="family">Paik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Novozhilova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Bonna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Margrit</namePart>
<namePart type="family">Betke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derry</namePart>
<namePart type="given">Tanti</namePart>
<namePart type="family">Wijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Predicting emotions elicited by news headlines can be challenging as the task is largely influenced by the varying nature of people’s interpretations and backgrounds. Previous works have explored classifying discrete emotions directly from news headlines. We provide a different approach to tackling this problem by utilizing people’s explanations of their emotion, written in free-text, on how they feel after reading a news headline. Using the dataset BU-NEmo+ (Gao et al., 2022), we found that for emotion classification, the free-text explanations have a strong correlation with the dominant emotion elicited by the headlines. The free-text explanations also contain more sentimental context than the news headlines alone and can serve as a better input to emotion classification models. Therefore, in this work we explored generating emotion explanations from headlines by training a sequence-to-sequence transformer model and by using pretrained large language model, ChatGPT (GPT-4). We then used the generated emotion explanations for emotion classification. In addition, we also experimented with training the pretrained T5 model for the intermediate task of explanation generation before fine-tuning it for emotion classification. Using McNemar’s significance test, methods that incorporate GPT-generated free-text emotion explanations demonstrated significant improvement (P-value \textless 0.05) in emotion classification from headlines, compared to methods that only use headlines. This underscores the value of using intermediate free-text explanations for emotion prediction tasks with headlines.</abstract>
<identifier type="citekey">gao-etal-2024-enhancing-emotion</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.526</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>5944</start>
<end>5955</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Emotion Prediction in News Headlines: Insights from ChatGPT and Seq2Seq Models for Free-Text Generation
%A Gao, Ge
%A Kim, Jongin
%A Paik, Sejin
%A Novozhilova, Ekaterina
%A Liu, Yi
%A Bonna, Sarah T.
%A Betke, Margrit
%A Wijaya, Derry Tanti
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F gao-etal-2024-enhancing-emotion
%X Predicting emotions elicited by news headlines can be challenging as the task is largely influenced by the varying nature of people’s interpretations and backgrounds. Previous works have explored classifying discrete emotions directly from news headlines. We provide a different approach to tackling this problem by utilizing people’s explanations of their emotion, written in free-text, on how they feel after reading a news headline. Using the dataset BU-NEmo+ (Gao et al., 2022), we found that for emotion classification, the free-text explanations have a strong correlation with the dominant emotion elicited by the headlines. The free-text explanations also contain more sentimental context than the news headlines alone and can serve as a better input to emotion classification models. Therefore, in this work we explored generating emotion explanations from headlines by training a sequence-to-sequence transformer model and by using pretrained large language model, ChatGPT (GPT-4). We then used the generated emotion explanations for emotion classification. In addition, we also experimented with training the pretrained T5 model for the intermediate task of explanation generation before fine-tuning it for emotion classification. Using McNemar’s significance test, methods that incorporate GPT-generated free-text emotion explanations demonstrated significant improvement (P-value \textless 0.05) in emotion classification from headlines, compared to methods that only use headlines. This underscores the value of using intermediate free-text explanations for emotion prediction tasks with headlines.
%U https://aclanthology.org/2024.lrec-main.526
%P 5944-5955
Markdown (Informal)
[Enhancing Emotion Prediction in News Headlines: Insights from ChatGPT and Seq2Seq Models for Free-Text Generation](https://aclanthology.org/2024.lrec-main.526) (Gao et al., LREC-COLING 2024)
ACL
- Ge Gao, Jongin Kim, Sejin Paik, Ekaterina Novozhilova, Yi Liu, Sarah T. Bonna, Margrit Betke, and Derry Tanti Wijaya. 2024. Enhancing Emotion Prediction in News Headlines: Insights from ChatGPT and Seq2Seq Models for Free-Text Generation. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 5944–5955, Torino, Italia. ELRA and ICCL.